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Prefacio a la Segunda Edición de 2019 

Parece natural que luego de publicada una obra escrita por quien continua trabajando en 
la materia que la obra trata, su autor sienta la necesidad de corregir y mejorar la versión 
original y aún de incluir temas que, con el paso del tiempo, cada vez más parecen 
"haberse quedado en el tintero". Pues bien, esta nueva edición tiene la pretensión de 
cubrir, aunque sea en parte, algunas de aquellas carencias de origen de la primera 
versión que tuve el honor fuese publicada como premio al libro 2010 por la Asociación 
Argentina de Control Automático. No me ocuparé en este prefacio de mencionar la 
larga lista de correcciones de estilo, simplificaciones en la notación y reorganización de 
muchos párrafos y temas con miras a hacer más amigable y didáctica su lectura. En 
cambio, sí creo necesario referirme a los más significativos nuevos contenidos que 
fueron incluidos en la presente edición.  
 
La nueva versión del Capítulo 2 incluye la descripción de los procesos que perturban las 
medidas de una unidad inercial. Dicha descripción se complementa con una 
introducción del concepto de Variancia de Allan, fundamento teórico esencial del 
procedimiento para medir y caracterizar dichas perturbaciones que hoy en día un 
estándar de la industria. Con base en la medida de la Variancia de Allan las unidades 
inerciales se clasifican según las clases de performance descritas en ese Capítulo. El 
concepto de modelo markoviano unificado introducido en el párrafo 2.7 permite 
formular esas perturbaciones en forma acorde con la teoría de fusión de datos que luego 
es aplicada a los esquemas de navegación integrada expuestos en el Capítulo 10.  
 
Los contenidos del Capítulo 8 de la primera edición se expanden en los actuales Capítulos 8 
y 9. El primero preserva como eje la descripción de los sistemas satelitales de navegación 
global (GNSS) pero elabora con mayor detalle los principios que gobiernan el diseño de un 
receptor GNSS basado en software. Se pretende así motivar al lector a incursionar en una 
tecnología de rápida evolución impulsada por vastos recursos de investigación asignados a 
nivel mundial. A partir del modelo de la señal de RF en la antena, se formula 
matemáticamente la transformación de esta señal a lo largo de la etapa de RF del receptor 
previo a su demodulación compleja y muestreo digital. A partir de esta formulación se 
describen los procedimientos  numéricos que, aplicados a la secuencia muestreada, permiten 
determinar: a) los satélites visibles de la constelación y rastrearlos, b) el tiempo de 
tránsito de la señal entre cada satélite y el receptor, c) el desvío Doppler de la señal en 
tanto que medida de la velocidad relativa respecto de cada satélite visible, d) la 
secuencia de bits de datos que contiene el mensaje emitido por cada satélite y e) una 
medida de la fase de la portadora. 
 
En el Capítulo 9, el receptor GNSS es visto en tanto que sensor exoceptivo de tres 
observables, a saber: de código, de fase y Doppler. Se modelan matemáticamente las 
medidas de estos observables teniendo en cuenta las múltiples perturbaciones que las 
afectan. Con base en estos modelos se consideran diversas opciones para determinar la 
posición y la velocidad (absolutas o relativas), juntamente con las correspondientes 
imprecisiones asociadas.  El subcapítulo 9.4 está consagrado a las técnicas de fase 
subrayando su potencial para el posicionamiento de muy alta precisión. Se destaca la 
dificultad inherente de estas técnicas de posicionamiento debida al carácter ambiguo de la 
medida de la fase que, en la práctica, sólo puede ser medida módulo un número entero de 
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ciclos.  Se establecen observables diferenciales derivados del observable primario que 
habilitan la aplicación de técnicas numéricas para la determinación de la ambigüedad entera 
exclusivamente con datos obtenidos época por época. Estas técnicas, conocidas como de 
cinemática en tiempo real, en inglés Real Time Kinematics ó simplemente RTK, requieren 
de un considerable esfuerzo computacional. En el subcapítulo 11.7 se retoma este tema para 
demostrar que cuando los observables forman parte de un esquema de navegación 
integrada, las ambigüedades pueden estimarse en tanto que variables reales juntamente 
con el estado cinemático del vehículo. 
 
El material del Capítulo 9 de la primera edición es expuesto en mayor detalle en los actuales 
Capítulos 10 y 11. El primero está dedicado exclusivamente a exponer el problema del 
filtrado no lineal junto con sus dos versiones aproximadas más populares: el Filtro de 
Kalman Extendido (EKF: Extended Kalman Filter) propuesto inicialmente por 
Jazwinski, (1970) y el Filtro de Kalman con "Puntos Sigma" (SPKF: Sigma Point 
Kalman Filter) propuesto por Julier/Uhlmann/Durrant-Whyte, (1995).  Se incluyen 
pseudo-códigos para ambos procedimiento lo cual pensamos será de utilidad para los 
programadores. 
 
El Capitulo 11, dedicado exclusivamente a ejemplos de aplicación, amplía, 
considerablemente, los casos expuestos en la primera edición. Se distinguen los 
procedimientos comunes a todos los sistemas de navegación de aquellos que, siendo 
dependientes de la configuración instrumental del problema, tienen que ver con el cálculo 
de la innovación y con la actualización de la estimación del filtro de fusión datos.  Los 
primeros darán lugar a módulos de SW comunes a muchas aplicaciones, los segundos 
requieren establecer para cada aplicación específica: a) el modelo de las desviaciones de 
las medidas inerciales, b) los modelos de los sensores exoceptivos, c) el modelo de las 
innovaciones y d) el modelo de las desviaciones del estado y de los parámetros. El 
ultimo subcapítulo está dedicado a exponer el diseño completo de un sistema de 
navegación aplicado al radar de apertura sintética (SAR) aerotransportado de la 
CONAE. Con datos experimentales de vuelos de prueba se evalúan las performances de 
varias configuraciones instrumentales alternativas. De los resultados se extraen 
conclusiones que reflejan relaciones de compromiso prácticas entre la complejidad del 
SW y la calidad de la instrumentación disponible. 
 
 

Martín España  
Junio 2019 
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Prólogo a la Edición de 2010 

La rápida expansión del campo de aplicación de la navegación ha ido de la mano del 
acelerado avance de las tecnologías de integración masiva de componentes electrónicos 
y unidades de cómputo, juntamente con el desarrollo de actuadores y sensores 
miniaturizados en tecnología MEMS (Micro Electro Mechanical Systems). En la 
actualidad, las aplicaciones abarcan campos tan diversos como la microcirugía, la 
neuro-navegación, los vehículos autónomos (aéreos, terrestres y subacuaticos), las 
misiones espaciales o los servicios basados en la localización del usuario. Es posible 
afirmar que las funciones de casi cualquier dispositivo portátil o diseñado para 
desplazarse en el espacio (autónomamente o no) son susceptibles de ser mejoradas, 
ampliadas o automatizadas gracias a la inclusión de un sistema de navegación en alguna 
de sus variantes. Esto incluye teléfonos celulares, herramientas y sensores a bordo de un 
móvil en cualquier medioambiente  La navegación autónoma, habilitada mayormente 
por estas nuevas tecnologías, ha abierto a su vez nuevas fronteras y líneas de 
investigación relativas el diseño de sistemas cooperativos conformados por conjuntos de 
entidades dinámicas independientes que comparten información y objetivos comunes. 
Ejemplos de estos sistemas son los grupos de robots en celdas de manufactura, las 
flotillas de vehículos en misiones de rescate y los arreglos reconfigurables de 
microsatélites en vuelo coordinado. Este último concepto es sin duda una de las ideas 
más novedosas formuladas por la industria espacial del presente siglo y seguro 
impactará decisivamente en las nuevas tecnologías de observación de la Tierra desde el 
espacio. En particular, motiva actualmente enormes esfuerzos de desarrollo de nuevos 
diseños de radares espaciales tanto para las aplicaciones de observación SAR (Synthetic 
Aperture Radar) como de supervisión. 
 
Fruto de la alta integración y miniaturización de los circuitos digitales son los sistemas 
embebidos basados, ya sea, en las clásicas tarjetas PC/104 para los sistemas con 
requerimientos de mayor flexibilidad funcional o, para aquellos orientados a 
aplicaciones específicas, en tecnologías como los SoC (System on a Chip), FPGA (Field 
Programmable Gate Arrays) o ASIC (Application Specific Integrated Circuit). En todos 
los casos el resultado es una gran capacidad de cómputo y comunicaciones disponibles a 
bordo de un móvil. Una consecuencia importante de esta nueva realidad es la 
posibilidad de implementar poderosos algoritmos numéricos que estiman, con una alta 
tasa de salida de datos, simultáneamente los parámetros de navegación y las 
imprecisiones instrumentales. Esto se realiza usando una variada gama de instrumentos 
cuyos datos son procesados ni bien están disponibles y no necesariamente en forma 
sincrónica.  Estos algoritmos, llamados de navegación integrada, emplean métodos de 
fusión de datos con origen en la teoría del filtrado no lineal de procesos estocásticos. 
Los algoritmos más utilizados constituyen extensiones del Filtro de Kalman ya sea en 
sus versiones analíticas, i.e.: EKF (Extended Kalman Filter) y LKF (Linearized Kalman 
Filter) o Bayesianas, i.e: SPKF (Sigma Point Kalman Filter) y UKF (Unscented 
Kalman Filter).  La principal ventaja de estas técnicas es que, se benefician de la 
diversidad de fuentes de información instrumental para reducir la incertidumbre de los 
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estimados. De este modo, la certidumbre resultante resulta siempre mejor que la mejor 
de todas provista por cada instrumento tomado individualmente. Esto hace posible por 
un lado, utilizar instrumentos que proveen sólo información parcial del estado de 
navegación y por otro reducir las exigencias de calidad y precisión de cada instrumento 
en particular. Dado que, tanto el costo como el volumen de los instrumentos crecen 
rápidamente con la precisión requerida, la complementación de instrumentos, 
posibilitada por los nuevos algoritmos, hace de estos últimos el sustrato natural del 
software embebido usado en los nuevos y ubicuos sistemas de navegación, expandiendo 
y reforzando aún más su campo de aplicaciones.  
 
Por lo dicho anteriormente, los nuevos resultados de la teoría de fusión de datos se 
potencian sinérgicamente con los avances tecnológicos en instrumentación y 
computación. Esto confiere a la disciplina un dinamismo particular y gran interés en 
muchos laboratorios de investigación. Frente a esta realidad caracterizada por la 
innovación, el presente volumen busca exponer, lo más rigurosamente posible, los 
fundamentos conceptuales en los que se basa la actividad entendiendo que de este modo 
el lector podrá beneficiarse de un material que le permitirá comprender, desarrollar o 
anticipar nuevas tendencias.  
 
La navegación integrada es un ejemplo claro de interdisciplinariedad que toca a un 
mosaico de tecnologías y métodos matemáticos de los cuales, la mayoría de los textos 
actuales exponen aspectos parciales. Así, para abarcar la diversidad inherente a esta 
tecnología el investigador y el tecnólogo se ven obligados a recorrer una extensa 
bibliografía. Dadas las necesidades de nuestro medio en el cual el desarrollo de esta 
tecnología es aun incipiente la obra ofrece, a quienes deseen iniciarse en el tema, un 
punto de partida único y coherente que abarca la diversidad de aspectos que conducen a 
la comprensión y al diseño de los sistemas de navegación actuales.  
 
La obra expone rigurosamente los fundamentos matemáticos de los métodos modernos 
de la navegación integrada entendiendo que sólo la comprensión cabal de éstos 
permitirá a ingenieros y tecnólogos desarrollar nuevos sistemas de navegación y al 
investigador innovar en el tema. Dichos fundamentos incluyen las tecnologías actuales 
de los instrumentos de navegación, los sistemas de navegación satelital global junto con 
los modelos matemáticos de sus mediciones, los métodos numéricos de integración de 
las ecuaciones diferenciales cinemáticas, la representación de la orientación de un 
cuerpo, las transformaciones de coordenadas entre distintos sistemas de referencia, la 
modelización del campo geo-gravitatorio y la descripción matemática de los métodos de 
fusión de datos.  
 
Más de 10 años de experiencia en la materia se reflejan en aportes metodológicos, 
puntos de vista novedosos y descripción de aplicaciones en cuyo desarrollo participé en 
forma directa.  Dicha experiencia estuvo vinculada al diseño y desarrollo de unidades de 
navegación para la Comisión Nacional de Actividades Espaciales y a mi labor como 
profesor de la asignatura que dicto desde 2006 en el Departamento de Investigación y 
Doctorado de la Facultad de Ingeniería de la UBA. 
 
El libro consta de 9 capítulos. En el Capítulo 1 se define el concepto de navegación y se 
clasifican los métodos clásicos según la instrumentación utilizada.  Se introducen 
conceptos como navegación inercial, navegación strapdown y navegación integrada que 
luego serán abordados en detalle en el resto del volumen. En el Capítulo 2 se enuncian 
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los principios físicos y principales tecnologías empleadas en los instrumentos inerciales 
actuales y se formula la estructura del modelo matemático de una unidad de medidas 
inerciales. El Capítulo 3 estudia las diversas representaciones de la orientación de un 
cuerpo en el espacio y formula las ecuaciones diferenciales (cinemáticas) que describen 
su evolución en el tiempo. El Capítulo 4 introduce los sistemas de coordenadas usuales 
junto con los elementos de geodesia requeridos en la disciplina. En particular, se 
justifican los distintos modelos del campo geo-gravitacional utilizados según el tipo de 
aplicación. En el Capítulo 5 se deducen las ecuaciones de navegación para las ternas de 
navegación usuales. El Capítulo 6 estudia la dinámica de propagación de los errores de 
las ecuaciones de navegación. En el Capítulo 7 se describen los algoritmos de 
navegación inercial de tipo strapdown en tiempo real para las ternas ECEF y LGV. El 
Capitulo 8 presenta los sistemas de Navegación Satelital Global (GNSS) operativos o en 
curso de serlo y se concentra en la descripción de las señales, los servicios y los 
observables del sistema GPS.  En el Capitulo 9 se describen los métodos de fusíón de 
datos usados en la navegación integrada y se exponen ejemplos de aplicación. 
Finalmente, en el Apéndice A se deduce la expansión en armónicos esféricos del campo 
gravitatorio terrestre usado, principalmente, en aplicaciones espaciales. 
 
Es mi deseo expresar un muy especial agradecimiento a Juan Ignacio Giribet y a Juan 
Carrizo, ambos de la Facultad de Ingeniería de la UBA, por su valiosa participación en 
diversos desarrollos compartidos. Su generosa disposición en numerosas y valiosísimas 
charlas contribuyó significativamente a la concreción y depuración de esta obra.  Vaya 
también un agradecimiento genérico a los estudiantes de mi materia que esforzadamente 
asimilan, critican y aplican los conceptos de esta obra logrando finalmente convencerme 
del interés de los mismos. 
 
Finalmente, quiero dejar sentado mi reconocimiento a la CONAE, institución que me 
cobijó y estimuló con sus ambiciosos proyectos y desafíos a ingresar en este 
apasionante campo de la tecnología moderna.  
 

Martín España  
Abril 2010 
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Capítulo 1  

Introducción 

 
Es costumbre denominar “parámetros de navegación” al conjunto de valores numéricos 
que describen la posición, la velocidad y la orientación de un vehículo respecto de un 
dado sistema de referencia y en unas dadas unidades. Con base en esta denominación, 
navegación se define habitualmente como “el arte y la ciencia que permiten determinar 
los parámetros de navegación de un vehículo con información disponible a bordo del 
mismo.”  
 
Desde tiempos remotos, motivados por sus desplazamientos sobre la tierra o el mar, los 
seres humanos han utilizado diversas técnicas de navegación. Algunas permiten 
determinar el valor absoluto de los parámetros de navegación del vehículo (o del 
individuo) gracias a mediciones referidas a cuerpos exteriores al mismo, por ejemplo, 
los objetos cercanos en la navegación “a vista”, los astros de posición conocida en el 
firmamento*, el campo geomagnético local que, mediante una aguja imantada, permite 
determinar el rumbo respecto del norte magnético (técnica utilizada antiguamente en 
China, en Europa y en algunas civilizaciones mesoamericanas).  Otras técnicas se basan 
en la medición de la velocidad de variación de los parámetros de navegación, lo que 
requiere conocer sus valores iniciales en un punto de partida. En este caso, los nuevos 
parámetros de navegación son determinados por “extrapolación” integrando la 
velocidad de cambio. Este procedimiento, tradicionalmente usado en la navegación 
marina, es conocido en inglés con el nombre de “dead-reckoning” en alusión al método 
de medir la velocidad de un barco respecto de un cuerpo muerto supuestamente inmóvil 
sobre la superficie del agua.  Similarmente, en aeronavegación se utiliza la medición de 
la velocidad respecto del aire exterior obtenida mediante tubos de Pitot. La medición de 
la velocidad combinada con el conocimiento del rumbo magnético permite estimar la 
posición por extrapolación desde una posición conocida anterior.  
 
Una limitación de los métodos de extrapolación clásicos es la dependencia de sus 
mediciones respecto de un medio (aire o agua) que no solamente es constantemente 
perturbado por corrientes o vientos sino que además sus propiedades físicas cambiantes 
(temperatura, la presión, la humedad, etc.) alteran la estabilidad de la medición ya sea 
de la velocidad o de la aceleración. Durante el siglo XX se desarrollaron instrumentos 
inerciales que permiten medir, a bordo del vehículo, su aceleración y velocidad angular 
respecto de un sistema inercial (sistema fijo respeto de las estrellas) en forma estable e 
independientemente de las condiciones ambientales. Esta ventaja motivó una gran 
difusión de estos instrumentos, en particular, en las aplicaciones a la aeronavegación y 
al desarrollo de cohetes. Sin embargo, como veremos, toda técnica de extrapolación 
conlleva un crecimiento polinomial con el tiempo de los errores en los parámetros de 
navegación.  
 

                                                
* Esto incentivó la invención de astrolabios a partir del siglo XV y más tarde sextantes y cronómetros. 
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Las anteriores limitaciones han hecho que la navegación inercial pura sea cada vez 
menos utilizada en nuestros días, exceptuando aplicaciones en las que se requiera de una 
autonomía total del vehículo o que deba asegurarse inmunidad a fallas y a posibles 
interferencias exteriores.  Ejemplos de aplicaciones en las que está vedada toda 
información exterior al vehículo son los submarinos en misiones íntegramente debajo 
del agua o los misiles balísticos intercontinentales.  De otro modo, es cada vez más 
frecuente combinar medidas inerciales con otras provenientes de instrumentos que 
pueden medir alguno o todos los parámetros de navegación en forma directa. 
 
La aviación civil es un ejemplo de tipico de navegación que combina regularmente la 
tecnología inercial con sensores de referenciación absoluta. Los mas utilizados son radio 
señales provenientes de estaciones en Tierra (sistemas VOR, NDB, ILS, etc. 
Kayton/Fried, 1997) o en el espacio (sistemas satelitales de navegación global como el 
GPS). Importa destacar sin embargo que, a pesar de la rápida evolución de los 
instrumentos de navegación absoluta, ningún avión prescinde hoy en dia de información 
inercial, ya sea para complementar la no inercial o como fuente de información 
redundante en prevención de fallas.  

1.1 Sistemas de referencias 

Un sistema de referencia es una terna de 3 vectores ortogonales con base en un punto 
origen que permite definir las coordenadas en que son representados los parámetros de 
navegación. Para poder expresar sus resultados, todo sistema de navegación usa una o 
más ternas de referencia en sus distintas fases de cómputo. En el Capítulo 4 se presentan 
en forma detallada las ternas de referencia usuales y las transformaciones de 
coordenadas que las vinculan, mientras tanto mencionamos algunas que son de interés a 
los fines de la presente introducción.  
 

 
Las ternas: ECEF (Earth Centered Earth Fixed) y ECI (Earth Centered Inertial) cuyos 
ejes, respectivamente, (xe, ye, ze) y (xi, yi, zi) son indicados en la Fig. 1.1, comparten su 
origen en el centro de masa de la Tierra (CM) y el eje zezi que coincide, a su vez,  con 

xi 
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el eje de rotación terrestre. Los otros dos ejes están contenidos en el plano ecuatorial.  
En el caso de la ECEF estos ejes son solidarios a la Tierra mientras que en la terna ECI 
permanecen inmóviles en el espacio inercial (o como suele decirse respecto de las 
“estrellas fijas”). La terna ECEF, regularmente utilizada en navegación en las cercanías 
de la Tierra, ha sido adoptada por los Sistemas Satelitales de Navegación Global 
(GNSS) tales como GPS, GLONASS y GALILEO. Dedicaremos los Capítulos 8 y 9 a 
estudiar estos sistemas y las mediciones a que dan acceso. Por su parte, la terna ECI 
tiene el interés, desde un punto de vista matemático, de que las ecuaciones de 
movimiento a las que da lugar adoptan la forma más simple posible. En cambio, para 
una referencia no inercial (p.e. la ECEF) las ecuaciones se obtienen mediante 
transformaciones de las ecuaciones en ECI que, como se verá en detalle en al Capítulo 
5, incluyen términos originados en las aceleraciones aparentes de Coriolis o centrípeta.   
 
En transportes intra-atmosféricos (aéreos, marinos o terrestres) es usual utilizar una 
terna centrada en el CM cuyo eje z sea ortogonal al plano tangente local al elipsoide 
normal (ver definición en el Capítulo 4) denominada terna de la vertical geodésica local 
o LGV (Local Geodetic Vertical). Un caso particular es la terna geográfica, denotada 
con el superíndice “g” en la Fig. 1.1, cuyos ejes (xg, yg, zg) son paralelos, 
respectivamente, a las direcciones Este, Norte y Arriba (Up) locales.  

1.2 Clasificación de los métodos de navegación 

Los métodos de navegación son tan variados como los principios físicos que permiten 
medir o calcular los parámetros de navegación o como los sistemas de referencias 
respecto de los cuales éstos están referidos.  A grandes rasgos y como fuera sugerido en 
la introducción de este capítulo, pueden distinguirse dos grandes clases: los métodos de 
extrapolación y los métodos de referenciamiento absoluto (véase también la 
clasificación propuesta por Kayton/Fried, 1997): 

1.2.1 Métodos de extrapolación 
Usan mediciones de las derivadas temporales (velocidades y aceleraciones lineales o 
angulares) o de variaciones relativas de los parámetros de navegación respecto de un 
valor anterior. Los valores absolutos de los parámetros de navegación son obtenidos 
mediante integración o acumulación de las mediciones a partir de un valor inicial.  Los 
instrumentos típicos son: sensores inerciales, odómetros, codificadores rotatorios, 
sensores de velocidad del aire, etc. y son denominados introceptivos por no depender de 
una referencia exterior. En los sistemas que utilizan el efecto Doppler (electromagnético 
o acústico) para medir velocidad, la posición relativa respecto de la fuente también se 
determina por extrapolación, por lo que quedan incluidos en este grupo.  
 
Dado que los parámetros de navegación se obtienen por integración de las mediciones, 
los errores en éstas y/o en las condiciones iniciales inducen errores de navegación que 
crecen polinomialmente con el tiempo por lo cual, para trayectorias prolongadas estos 
métodos requieren ser actualizados con mediciones absolutas de la posición o la 
orientación. A pesar de estas limitaciones, tienen el interés de ser independientes de 
referentes exteriores al vehículo y la ventaja de disponer de información en forma casi 
continua o a una alta tasa de adquisición.  
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1.2.2 Métodos de referenciamiento absoluto  
Utilizan sensores que miden directamente parámetros de navegación (pueden ser 
coordenadas de posición, velocidad u orientación) respecto de un dado sistema de 
referencia mediante la detección e identificación de señales u objetos exteriores al 
vehículo, razón por la cual estos sensores son denominados genéricamente exoceptivos. 
Cuando el parámetro medido es directamente la posición del móvil respecto de algún 
hito conocido, situación frecuente en robótica móvil (Siegwart/Nourbakhsh, 2004), es 
más usado el nombre de auto-localización. Contrariamente a los sensores introceptivos, 
las mediciones exoceptivas suelen ser adquiridas en instantes discretos y no siempre en 
tiempo real. Se destacan en este grupo los sistemas que utilizan los siguientes 
principios, algunos de los cuales son desarrollados más abajo: 
 

 Radionavegación. 
 Navegación celeste. 
 Navegación con mapa. 
 Rebote de señal (sonar, radar, lidar).  
 Navegación por imágenes (visión/reconocimiento de formas) 
 Sensores de distancia (explorador laser). 

Sistemas de Radionavegación  
Se basan en una red de estaciones radiotrasmisoras de referencia fijas a la Tierra o 
montadas sobre plataformas móviles (espaciales, terrestres, marinas o aéreas). Los 
instrumentos/receptores a bordo del vehículo detectan las señales emitidas y calculan su 
posición relativa respecto de las estaciones emisoras de referencia.  El desplazamiento 
en la frecuencia de la portadora de la señal debido al efecto Doppler permite medir su 
velocidad radial respecto de las estaciones emisoras.  Los sistemas de radionavegación 
terrestre más usados en aeronavegación son los NDB (Non-Directional Beacons) o 
radiofaros no direccionales, los VOR (VHF-Omnidirectional Range) y los DME 
(Distance Measurement Equipment) (Kayton/Fried, 1997). Los dos primeros miden la 
dirección que une al vehículo con la fuente emisora y el último la distancia a un punto 
de referencia. El primero es el más antiguo en vigencia y consiste en una red que emite 
señal polarizada verticalmente con portadoras entre 200KHz y 1600KHz. Mediante el 
principio “goniométrico” el receptor detecta las direcciones de procedencia de la señal 
de dos o más emisores con las que calcula la posición del vehículo. Entre las ventajas de 
los NDB para la aeronavegación figuran su bajo costo de mantenimiento, la posibilidad 
de delegar la responsabilidad de la precisión al usuario y el hecho de que la propagación 
inherentemente “terrestre” extiende su alcance más allá de la curvatura del horizonte.  
Sus principales limitaciones son la orografía local y el efecto de las reflexiones 
ionosféricas a estas frecuencias. Los VOR son ciertamente los más difundidos en la 
aeronavegación comercial. Su estándar adoptado por la OACI (Organización de la 
Aviación Civil Internacional) consiste de una portadora de entre 108MHz y 118MHz. 
En esa banda, la reflexión ionosférica es casi inexistente y la propagación en línea recta 
evita la interferencia entre estaciones más allá del horizonte. Contrariamente a los NDB, 
la señal transportada por la portadora VOR provee directamente la información de la 
dirección de procedencia lo que simplifica las funciones del receptor (Hurley et all., 
1951). Una considerable mejora tecnológica introducida en la segunda generación de 
esta tecnología es la denominada Doppler VOR que permite reducir la imprecisión del 
ángulo de procedencia de 2,8º a 0,4º (Anderson/Flint, 1959).  
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El DME es un sistema “activo” basado en la medición del tiempo de respuesta de una 
estación de referencia a una interrogación emitida por el vehículo. El tiempo de ida y 
regreso de la señal es medido con el reloj del receptor por lo que no es necesaria 
ninguna sincronización entre relojes. Inclusive la estabilidad del reloj no es crítica en el 
método vistas las cortas diferencias de tiempos involucradas. Es usual que estos equipos 
estén ubicados en estaciones VOR (VOR/DME) de modo que la combinación de ambos 
permite medir en forma absoluta el radio y la dirección a dicha estación.  En el ámbito 
militar las funciones VOR/DME están integradas en los sistemas conocidos como Tacan 
(Tactical Air Navigation) con una portadora única en el rango 960-1215 MHz, lo que 
permite antenas más pequeñas de mayor portabilidad.   
 
Desde un punto de vista conceptual es posible medir “pasivamente” (con señales 
unidireccionales) los tiempos de propagación a un receptor desde los emisores de 
referencia de una red “estampando” el instante de emisión en la propia señal emitida y 
luego comparar a éste con el tiempo de recepción en el receptor. Esto requiere, sin 
embargo, de una alta sincronía y estabilidad de todos los relojes involucrados. Las 
importantes mejoras en la precisión y la estabilidad de la medición del tiempo 
alcanzadas a partir de los años 70´s mediante relojes atómicos (con estabilidad de largo 
plazo del orden de 1 parte en 1013) dieron un impulso decisivo a estas técnicas.  
 
El requerimiento de que el receptor del usuario cuente con un reloj de alta estabilidad y, 
más aún, sincronizado con los otros relojes de la red pudo ser superado gracias a la 
introducción del concepto de “pseudo-rango”. Este concepto consiste en disponer y 
utilizar un número redundante de mediciones de distancias (4 en R3 ó 3 en R2) a los 
elementos de la red de referencia todas afectadas por el mismo sesgo del reloj del 
receptor y a partir de ellas determinar, simultáneamente, las coordenadas de la posición 
y el sesgo horario.  Este método es utilizado en nuestros días por los más ubicuos 
sistemas de radionavegación existentes: los GNSS entre los que se cuentan el sistema 
GPS (EEUU), el GLONASS (Rusia) y el futuro GALILEO (UE).  La gran ventaja de 
los sistemas GNSS es que permiten, en todo instante y bajo cualquier condición 
atmosférica, posicionar un receptor ubicado en cualquier punto interior a la constelación 
de satélites de referencia con un error acotado.  El seguimiento de la fase de cada 
portadora por parte del receptor hace posible además medir la velocidad radial de éste 
respecto de cada satélite (medición conocida como “Doppler” o delta-pseudo-rango”) y 
aún obtener, mediante técnicas interferométricas, posicionamientos relativos con 
precisión de centímetros o medir directamente los parámetros de la orientación de un 
receptor multi-antena. Estas metodologías, discutidas en el Capítulo 9, constituyen la 
base de los más modernos sistemas de navegación de alta precisión. 

Navegación Celeste  
El fundamento de la navegación celeste es la medición de la elevación y azimut de uno 
o más cuerpos celestes de referencia.  Esta medición combinada con la del tiempo y la 
predicción del movimiento relativo de los astros permitió desde tiempos remotos 
posicionar en latitud y longitud a un observador sobre la Tierra. Modernamente, algunos 
de estos sistemas utilizan catálogos de estrellas junto con relojes de alta precisión y 
algoritmos de reconocimiento de patrones estelares para determinar la latitud, la 
longitud y la orientación de vehículos espaciales o aéreos de gran altura. Estos 
instrumentos utilizados en combinación con una plataforma inercial estabilizada 
permiten actualizar periódicamente la orientación de ésta última evitando la 
acumulación de los errores por integración referirda en el Párrafo 1.3.2.  
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En la configuración “star tracker” un sensor estelar (usualmente un telescopio con 
campo de visión angosto enfocando su imagen sobre una placa CCD) sigue una o más 
estrellas mediante comandos ejercidos sobre los ejes de su suspensión cardánica 
montada sobre una plataforma inercial.  Su posición angular provee así directamente la 
información absoluta de la orientación inercial de la plataforma al menos según dos 
ángulos (p.e. azimut y elevación).  Como veremos, esta información exterior sumada a 
la provista por instrumentos inerciales y ambas procesadas mediante un filtro 
estocástico de fusión de datos puede ser usada para re-estimar los parámetros de 
navegación y aun recalibrar los instrumentos inerciales durante el curso de la 
navegación.  Estos esquemas de navegación integrada son introducidos brevemente más 
abajo en el Párrafo 1.4 de este Capítulo y son tratados en más en detalle en los Capítulos 
10 y 11. 

Navegación con mapa  
También llamada “por ajuste de mapas”, esta técnica consiste en producir un mapa local 
del medioambiente del vehículo usando sensores montados sobre el mismo tales como: 
cámaras, sonar, radar, laser, etc. que detectan hitos, referencias externas o morfologías 
preestablecidas. El mapa local es comparado con un mapa global de la región accesible 
al vehículo previamente codificado en una base de datos almacenada en la memoria de 
la computadora de navegación.  El sistema de navegación “ajusta” el mapa local dentro 
del mapa global y cuando lo logra determina la posición global y la orientación del 
vehículo.  El ajuste del mapa puede resultar extremadamente demandante en recursos 
computacionales si estuviese basado exclusivamente en la búsqueda exhaustiva dentro 
del mapa global. Para reducir esta búsqueda se apela a métodos de filtrado no lineal que 
combinan información de otras fuentes tales como instrumentos inerciales. Schon et al. 
(2006) describen aplicaciones de la teoría de filtros bayesianos de partículas a la 
navegación con mapa de vehículos submarinos, aéreos y terrestres. Los desafíos de 
estos métodos son las exigencias impuestas a los sensores y a los algoritmos de 
detección para evitar ambigüedades que confundan la localización.  
 
Un campo de aplicación en creciente expansión de esta técnica son los robots móviles 
en ambientes interiores tales como ambientes industriales, comercios, almacenes, etc., 
en los que se aprovecha la estructura conocida del entorno y la buena definición de los 
sensores ambientales en cortas distancias. Ciertos algoritmos le permiten a la 
computadora del robot explorar y aprender el mapa medioambiental cuando éste se 
modifica (Masson, 2003).  
 
Una técnica usada en aeronavegación es la conocida como navegación con ayuda de 
terreno que utiliza modelos digitales de elevación almacenados en la memoria de la 
computadora de navegación. Estos modelos son correlacionados con los perfiles 
altimétricos adquiridos en vuelo mediante un radar o lidar.  Un algoritmo selecciona el 
perfil que maximiza la correlación y de este modo estima la desviación de la trayectoria 
en la dirección transversal al paso nominal. Con esta información se corrigen los 
parámetros de navegación y/o se recalibran los instrumentos inerciales. Bergman et al. 
(1997) proponen como solución el uso de un estimador bayesiano óptimo combinando 
un modelo digital de terreno con un radar y un baroaltímetro.  
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1.3 Navegación Inercial  

En tanto que método de extrapolación, la navegación inercial se sustenta en el siguiente 
principio básico de la cinemática: Conocidos en un instante inicial la velocidad, la 
orientación y la posición de un móvil así como los valores instantáneos presentes y 
futuros de su aceleración lineal y su velocidad angular relativas a un dado sistema de 
referencia, es posible calcular la posición, la velocidad y la orientación del vehículo en 
todo instante futuro.  Cabe destacar que, la aceleración lineal y la velocidad angular de 
un cuerpo, contrariamente a la posición, la velocidad y la orientación, pueden ser 
medidas sin información exterior al mismo.  
 

Si los vectores ,i iP f , i

gg 3 denotan las componentes en terna inercial ECI, 

respectivamente, de la posición de un móvil, la fuerza por unidad de masa (fuerza 
específica) actuante sobre él y la aceleración gravitacional en función de su posición, la 
aplicación de los principios de la mecánica clásica permite arribar a la siguiente 
ecuación diferencial cuya solución determina la posición y la velocidad del móvil 
futuras 0t t  . 

 

0 0 0 0( ) ( ); ( ) ; ( ) ;i i i i

g t t t    V P g P f P P V V     (1.1) 

 
Para sistemas de referencia no-inerciales, la Ec. (1.1) debe ser corregida mediante los 
términos correspondientes a las aceleraciones aparentes de Coriolis y centrípetas. 
 
Las mediciones a bordo de un vehículo con las que cuenta un sistema de navegación 
inercial son de dos tipos: la fuerza específica o aceleración inercial –medida con 
acelerómetros– y la velocidad angular –medida con giróscopos. Resulta importante 
distinguir entre aceleración y aceleración inercial o fuerza específica. En efecto, el 
principio cinemático de la relatividad nos advierte que sin mediciones relativas a algún 
objeto externo, es imposible determinar el estado de movimiento de un vehículo 
moviéndose libremente en un campo gravitacional. En consecuencia, un acelerómetro 
sólo podrá medir la fuerza específica o componente no gravitacional de la aceleración 
impresa al vehículo ya sea por efecto de la propulsión, la sustentación o la resistencia 
mecánica (fricción, fuerza aero- o hidro-dinámicas, etc.).  Lo anterior, junto con el 
principio cinemático mencionado más arriba, implica la necesidad de conocer la 
aceleración gravitacional en cada punto del espacio mediante algún modelo matemático, 
aspecto que será abordado en el Capítulo 4. Por su parte, un giróscopo mide la 
velocidad angular de un cuerpo respecto del espacio inercial.  En base a las mediciones 
de los giróscopos, el sistema de navegación inercial calcula la variación de la 
orientación del vehículo. En el Capítulo 2 se presentan los principios físicos y 
tecnológicos de los sensores inerciales modernos y se describen los parámetros que 
caracterizan su desempeño. Allí se presentan además los distintos tipos de 
perturbaciones estocásticas que afectan las mediciones inerciales, se estudian sus 
modelos matemáticos y se describen los métodos que permiten caracterizarlas 
experimentalmente.  
 
Las ventajas reconocidas de un sistema de navegación inercial son (Kayton/Fried, 
1977):  

 Producen información de los parámetros de navegación a muy alta tasa de 
muestreo y con gran ancho de banda. 
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 Sus medidas no son interferibles y no requieren de estaciones o puntos de 
referencia externos.  

 Utiliza información accesible en todo instante y en todo punto (sobre y fuera del 
planeta) con calidad independiente del medio donde se mueva el vehículo. 

 
Entre sus desventajas mencionamos sin embargo: 

 Necesita conocer la orientación y la posición iniciales del vehículo. 
 La adquisición del rumbo inicial requiere la inmovilidad del vehículo durante el 

proceso llamado de “girocompás”, que puede durar algunos minutos, y de 
giróscopos de resolución suficiente como para medir la velocidad angular de la 
Tierra (15º/hr).  

 Los errores de medida en los instrumentos inerciales y en los parámetros de 
navegación iniciales inducen errores que crecen polinomialmente con el tiempo 
(ver más adelante en este Capítulo).  

 Requieren de la actualización periódica de los parámetros de navegación con 
mediciones absolutas. 

 
Existen esencialmente dos formas de implementar los sistemas de navegación inercial.  
La más clásica, empleada en las primeras aplicaciones, utiliza una plataforma 
estabilizada respecto del sistema de referencia sobre la cual se montan los instrumentos 
inerciales. Actualmente, la gran mayoría de las aplicaciones prescinde de una 
plataforma estabilizada y utiliza mediciones de instrumentos inerciales fijos a la 
estructura del vehículo. Esta última configuración es conocida con el nombre de 
strapdown en la literatura inglesa y sus ventajas se cifran en una significativa reducción 
en costos y en la complejidad mecánica del sistema. A continuación introducimos 
brevemente los dos conceptos.  

1.3.1 Navegación inercial con plataforma estabilizada 

 
Una plataforma estabilizada está diseñada para mantener su orientación respecto de una 
dada terna de referencia, por lo cual, debe poder rotar libremente respecto de la 

Vehículo 

Acelerómetros 

Vehículo 

Eje interior 

Eje medio 

Lectura del rumbo (yaw) 

   



Gimbals
o 

Eje externo (yaw) 

Giróscopos 

Plataforma estabilizada 

Figura 1.2: Suspensión cardánica de una plataforma giroestabilizada LGV. 

Lectura del 
cabeceo (pitch) 
pitch 
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estructura del vehículo que la alberga. De hecho, y dado que su orientación permanece 
fija respecto de la referencia, se puede decir que es el vehículo el que rota libremente 
alrededor de la plataforma.  La solución clásica a este problema es la conocida 
suspensión cardánica (en honor a su inventor el matemático italiano Girolamo Cardano 
(1501-1576)) que consiste, como se muestra en la Fig. 1.2, en tres anillos encastrados 
(“gimbal rings” en inglés), cada uno de ellos suspendido por un soporte de tipo pivote 
solidario al anillo inmediato exterior estando la plataforma sostenida por el eje pivote 
más interno. Para vehículos intra-atmosféricos con sistema de referencia LGV es usual 
que el eje exterior corresponda al azimut (yaw), el medio al cabeceo (pitch) y el interior 
a la guiñada (roll).  
 
Como se ve en la Fig. 1.2, una plataforma estabilizada permite medir directamente estos 
ángulos (ángulos de Euler) que caracterizan la orientación instantánea del vehículo 
respecto del sistema de referencia elegido. 
 
En condiciones ideales: fricción nula en los ejes, exacto balanceo de la estructura 
mecánica (centro de gravedad de la plataforma en la intersección de los tres ejes) y 
ausencia de pares externos (ambientales, flexibilidad de cables, etc.), la plataforma no se 
vería afectada por ningún par exterior independientemente del estado de movimiento del 
vehículo lo que aseguraría, de acuerdo con la segunda ley de Newton, la invariancia de 
la orientación de la plataforma respecto de un sistema inercial.  En la práctica es 
necesario implementar un sistema de control para desacoplar la plataforma del 
movimiento del vehículo. Con este fin se disponen 3 servo-motores respectivamente en 
la cabecera de cada uno de los ejes de la suspensión cardánica y tres giróscopos 
mutuamente ortogonales montados sobre la plataforma. Los giróscopos son usados en 
un lazo de servo-control de la velocidad angular inercial pω  de la plataforma tal como 

el indicado en la Fig. 1.3. Cuando 0ref ω , el par vectorial c actuante sobre los servo-

motores tiende a cancelar el par de perturbación p. El resultado es un par efectivo nulo 
sobre la plataforma que se traduce en la invariancia de su orientación inercial.  
 
También es posible mantener la plataforma alineada respecto de una referencia no 
inercial precalculando adecuadamente la consigna 3( )ref t ω  .  Por ejemplo, cuando el 

sistema de referencia esté fijo a la Tierra la velocidad angular de referencia será la 
velocidad angular de la Tierra: ref e ω . En cambio, si se usa la terna geográfica con 

orientación cardinal (ejes paralelos a las direcciones E, N, U), al desplazarse, el 
vehículo “arrastra” consigo la referencia por lo que a e  debe adicionarse la “rotación 

de transporte”  debida al desplazamiento de la terna de referencia a la misma 
velocidad V del vehículo sobre la superficie de curvatura no nula del elipsoide normal 
(ver definiciones en el Párrafo 5.3.1). Denotando con el superíndice “g” la expresión de 
los vectores en coordenadas geográficas  resulta: 
 

( ) sen( )g g g g g g
e e gref t         ω ρ V zK     (1.2) 

 

Donde: gK  representa el tensor de curvatura local del elipsoide normal expresado en 
coordenadas “g”,   el cambio en longitud,   la latitud local y gz  el versor local 

ortogonal al elipsoide normal. 
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Para sistemas de alta performance el lazo de control de la Fig. 1.3 resulta un desafío 
tanto desde el punto de vista tecnológico como teórico. En particular, los actuadores 
deben tener gran rango dinámico y ancho de banda para ser capaces, a la vez, de 
compensar rápidas y pequeñas perturbaciones y responder a los comandos de ref, los 
rodamientos deben estar diseñados para minimizar la fricción coulombiana en los ejes y 
todo el sistema (gimbals + plataforma) debe estar debidamente balanceado respecto de 
los ejes para minimizar los acoplamientos cinemáticos.  Los sistemas más avanzados 
utilizan sofisticadas herramientas de observación y de control multivariable no linealy 
adaptable. Entre las soluciones de muy alta performance propuestas citamos: Shtessel 
(1995), Royalty (2005) o Li y otros (1998). Véase también el número del IEEE Control 
Systems Magazine, de Febro de 2008 dedicado al tema. 
 

 
Los 3 acelerómetros mutuamente ortogonales montados sobre la plataforma estabilizada 
miden las componentes de la aceleración inercial en el sistema de referencia elegido.  
Para el caso de una terna de referencia inercial, estas magnitudes junto con la 
gravitación determinan el movimiento del vehículo (Ec. (1.1)).  Cuando el sistema de 
referencia es no-inercial, es necesario corregir las mediciones de fuerza específica con 
las aceleraciones aparentes. En particular, para la terna de referencia geográfica, la 
fuerza específica corregida por los efectos de Coriolis y de la fuerza centrífuga debidos 
a la rotación terrestre y a la rotación de transporte resulta ser (ver Párrafo 5.3 del 
Capítulo 5):  
 

(2 )  ( )g g g g g g g g

corr      f f Ω ρ V Ω Ω P    (1.3) 

 
De la anterior surge la siguiente ecuación análoga a la (1.1): 
 

 0 0( ) ; ( ) ;g g g g

g corr t  V g P f V V     (1.4) 

 
Es usual englobar la aceleración centrípeta y la aceleración gravitacional en el término 
de la gravedad aparente: ( ) ( ) ( )g g g g g

g   g P g P Ω Ω P  y, consiguientemente, 

reescribir las Ecs. (1.3) y (1.4) como sigue:  
 

 
0 0

(2 )  

( ) ; ( ) ;

g g g g g

corr

g g g g

corr t

  

  

f f Ω ρ V

V g P f V V


     (1.5) 
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Figura 1.3: Lazo de “servo-control” de la velocidad angular de una plataforma 
giroestabilizada. 
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La Fig. 1.4 ilustra en forma esquemática la mecanización del cálculo de la posición y de 
la velocidad en un sistema de navegación con plataforma estabilizada según la terna 
geográfica. La computadora de navegación corrige las señales provistas por los 
acelerómetros con las aceleraciones aparentes y le adiciona la gravedad aparente local 

calculada mediante un modelo matemático en función de la posición. El resultado ( gV ) 
es integrado para obtener la velocidad gV  cuyas 2 primeras componentes (las 
horizontales) corresponden al cambio instantáneo de las coordenadas geográficas del 
vehículo en los sentidos E y N respectivamente y su 3ª componente (la vertical) a la 
variación de su altura sobre el plano tangente local al elipsoide normal.  El tensor de 
curvatura local Kg, calculado en función de la posición, permite junto con el vector gV , 
determinar las velocidades de variación de las coordenadas curvilíneas  (latitud) y  
(longitud) que luego son integradas para obtener la posición del vehículo.  

Bloqueo de gimbal  
La capacidad de la suspensión cardánica para aislar la plataforma de los movimientos 
del vehículo se ve afectada en ciertas situaciones patológicas.  En efecto, si, como 
resultado de alguna maniobra, dos ejes de la suspensión resultaren paralelos será 
imposible aislar la plataforma de las rotaciones del vehículo según un eje ortogonal a 
ambos.  Esta situación se presenta típicamente cuando un avión pica en cabeceo (pitch) 

a 90º, en este caso, como puede verse en la Fig. 1.2, el eje externo se alinea con el eje 

interior y ya no es posible aislar la plataforma de las rotaciones perpendiculares a ésta 
alrededor del eje de yaw.  Esta condición, conocida como bloqueo de gimbal, traduce, 
como se verá en el Capítulo 3, una limitación esencial de la caracterización de la 
orientación de un cuerpo mediante los ángulos de Euler.  El uso de un cuarto gimbal 
redundante permite evitar el bloqueo y es la solución adoptada en vehículos estratégicos 
que usan esta tecnología.  Una solución matemáticamente equivalente consiste en 
sustituir la suspensión cardánica por una suspensión hidráulica (gimbals hidráulicos) 
consistente en una plataforma esférica con flotabilidad nula en un medio fluido 
(Wang/Williams, 2008).  

1.3.2 Navegación inercial con instrumentos fijos al vehículo (strapdown)  
La creciente ubicuidad de los sistemas de navegación inercial en las últimas décadas es 
directamente atribuible a las posibilidades que abre la tecnología strapdown para la 
miniaturización de estos sistemas al prescindir de una plataforma estabilizada. Un 

gf

0( )g tV



eΩ

(2 )g g Ω ρ

gV
( , , )gg h 




 gV
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metros 

g, g 
Computadora 
de Navegación 

Figura 1.4: Mecanización de un navegador inercial con plataforma en coordenadas 
LGV. 
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tratamiento in extenso de esta tecnología puede ser consultado en Titterton/Weston, 
1997. 
 
Sin plataforma, la terna de la unidad de mediciones inerciales (UMI), en particular la de 
los acelerómetros, no está alineada con la terna de referencia o de navegación, por lo 
que es necesario determinar analíticamente la orientación relativa entre ambas ternas 
para poder resolver la fuerza específica medida según los ejes de la terna de navegación 
(Ec. (1.3)). Este procedimiento es conocido como plataforma analítica y requiere 
integrar numéricamente y en tiempo real la medición del vector velocidad angular 
provista por la UMI.  Por su parte, a diferencia de los giróscopos montados sobre la 
plataforma que sólo miden desviaciones respecto de la velocidad angular nula en un 
lazo de control, los giróscopos de un sistema strapdown deben poder registrar todo el 
rango de velocidades angulares del vehículo.  De este modo, puede decirse que con esta 
tecnología, las complicaciones mecánicas son sustituidas por mayores exigencias sobre 
los sensores inerciales y sobre la complejidad de los algoritmos numéricos. 
 
El presente volumen aborda la navegación de móviles moviéndose en el espacio de 
dimensión 3. Este contexto es el que presenta mayor complejidad, tanto desde el punto 
de vista conceptual como práctico. Los algoritmos de integración numérica de las 
ecuaciones cinemáticas no-lineales desarrollados en el Capítulo 7 se basan en el 
esquema propuesto por Savage (2006) por ser éste el más versátil y mejor adaptado a la 
estructura de las ecuaciones. El algoritmo se destaca por su eficiente manejo de las 
dinámicas, usualmente muy diversas, de traslación y rotación de un móvil en 3D. Una 
ventaja adicional es la facilidad que ofrece de ajustar paramétricamente la intensidad de 
cómputo según las dinámicas involucradas. 
 
La restricción a dimensiones inferiores a 3 podría plantearse como caso particular de 
esta versión general, sin embargo, la reducción de la dimensionalidad puede agregar 
mucha estructura al problema, por lo cual, convendrá considerar caso por caso las 
posible simplificaciones, tanto en la formulación de las ecuaciones como en los 
algoritmos numéricos resultantes. 
 
El aumento del nivel de integración y de la capacidad de cálculo de las computadoras 
digitales, así como los nuevos desarrollos en materia de sensores inerciales, produjeron 
una migración de las aplicaciones hacia la tecnología strapdown. Esta tendencia se ve 
acentuada, de un lado por el rol que adquiere la tecnología MEMS (sistemas micro 
electro mecánicos) en la miniaturización de las unidades inerciales (ver número 
especial: IEEE Proceedings, Aug. 1998) y, del otro, por la posibilidad de implementar 
en una computadora abordo complejos algoritmos numéricos de fusión de mediciones 
inerciales y no-inerciales (satelitales u otros). Estos algoritmos, que como veremos más 
abajo son la base de los sistemas de navegación integrada, permiten potenciar las 
prestaciones de los instrumentos inerciales reduciendo sus exigencias de estabilidad y 
precisión. Como resultado, actualmente sólo unas pocas aplicaciones de navegación de 
precisión usan plataformas estabilizadas entre las que se cuentan los vehículos 
estratégicos intercontinentales (Wang/Williams, 2008).  El presente libro se abocada 
principalmente a los métodos e instrumentos requeridos por la configuración strapdown 
y a la inserción de esta última en los sistemas de navegación integrada. 
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Propagación de errores en la navegación inercial strapdown 
A modo de ejemplo, consideremos el problema de la navegación cartesiana 
bidimensional referida a una terna geográfica local con origen en un punto fijo de la 
superficie terrestre, tal como se indica en la Fig. 1.5.  

 
La UMI consta de una dupla de acelerómetros que mide las aceleraciones según las 
direcciones fijas al vehículo ax y ay y un giróscopo que mide la velocidad angular del 
vehículo D en la dirección hacia abajo (D). Si D es el ángulo de la proa del vehículo 
respecto de la dirección Norte se tiene: 
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   (1.6) 

 
Introduciendo la siguiente notación, que será justificada en el Capítulo 4, para un vector 
s genérico expresado respectivamente en coordenadas “g” y “b”,  
 

cos sen
; ; ( ) ( )

sen cos
xN D Dg b g g g b

b D b D

yE D D

ss
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     
             

s s C s C s    (1.7) 

 
las dos últimas Ecs. (1.6) se reescriben:  
 

( )g g b

b Da C a    (1.8) 

 
Para unos dados vectores de posición y velocidad iniciales en el instante t0 y funciones 
(forzantes) ab(t) y D(t), la posición, velocidad y orientación del vehículo en 
coordenadas geográficas locales corresponde a la solución de las siguientes ecuaciones 
diferenciales no lineales de la cinemática: 
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Figura 1.5: Navegación strapdown bidimensional. 
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0 0 0 0

0 0
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En el Capítulo 5 se presentan formulaciones más generales de estas ecuaciones y se 
discuten sus implicancias para la navegación inercial.  Mientras tanto, simplificaremos 
la presentación para esta introducción suponiendo: D0 y a=constante. Bajo estas 
condiciones, consideraremos los efectos de los errores en el conocimiento de las 
condiciones iniciales: 0 0 0, ,  P V , y de sesgos constantes ,x y   y 

D , 

respectivamente, en las mediciones acelerométricas y de la velocidad angular.   
 
Un error D  en el conocimiento de la orientación del vehículo hará diferir las 

componentes en terna geográfica de la aceleración calculada con las Ecs. (1.6)
(indicadas con ^ en la Fig. 1.6) de sus valores reales de acuerdo con: 
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Junto con la anterior las siguientes ecuaciones modelan los errores en las componentes 
de la velocidad y la posición en terna “g” para pequeños valores del ángulo D :  
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Las soluciones de las Ecs (1.11) son:  
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Figura 1.6: Efecto del error de orientación sobre las 
coordenadas de la aceleración.  
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De las anteriores se destaca el crecimiento polinomial con el tiempo (cúbico en el caso 
de la posición) de los errores provocado por el desconocimiento de las condiciones 
iniciales y por los sesgos instrumentales.  
 
Esta característica, propia de los métodos de extrapolación (ver el siguiente párrafo) 
exige, o bien instrumentos de muy alta calidad o bien la reinicialización periódica de los 
parámetros de navegación.  

1.4 Navegación multisensor o integrada  

Las técnicas de fusión de datos permiten combinar información proveniente de distintas 
fuentes para inferir los valores de las variables que se desean estimar.  En general puede 
decirse que la eficacia de estas técnicas se basa en que mientras más fuentes de 
información se dispongan de una misma variable más podrá reducirse su imprecisión o 
incrementar la confiabilidad de su estimación. En teoría, una adecuada combinación de 
mediciones adquiridas por diversos sensores producirá siempre un resultado mejor que 
el que se obtendría usando solamente el mejor de los sensores disponibles. La mejora 
cuantitativa de la estimación resultante de la fusión de datos dependerá de la 
perfomance da cada sensor específico, del tipo de proceso y de las condiciones en que 
se adquieran los datos (calidad y cantidad por unidad de tiempo de la información 
adquirida, etc.) y del algoritmo de fusión de datos utilizado.  Todo algoritmo de fusión 
de datos sólo funcionará correctamente bajo ciertas y determinadas circunstancias 
consistentes, entre otras, con las hipótesis simplificadoras postuladas en su diseño.  Por 
lo tanto, la selección del tipo de algoritmo y las condiciones en que éste es utilizado 
pueden ser cruciales para la calidad del resultado.  Cada algoritmo de fusión de datos 
requiere de información a priori como por ejemplo: las estadísticas de los procesos 
aleatorios involucrados, el grado de dependencia estadística (o correlación) entre las 
mediciones fusionadas, la estructura del modelo matemático de cada sensor y su 
correspondiente parametrización, etc. Estos algoritmos necesitan conocer la perfomance 
de cada sensor, y una evaluación incorrecta de éstas últimas podría traducirse en 
estimaciones erradas. 
 
La tecnología actual permite disponer a bordo de casi cualquier vehículo de una 
variedad de instrumentos de navegación de bajo consumo y volumen reducido. Esto 
combinado con la accesibilidad de una alta capacidad de computo, se tradujo en las 
ultimas décadas en un desarrollo sostenido de nuevos algoritmos de fusión de datos 
cada vez mas eficientes y precisos con las consiguientes mejoras en la confiabilidad, 
continuidad y precisión de las estimaciones (Luo et al., 2007).  En particular para las 
aplicaciones de navegación estos esquemas permiten potenciar la complementariedad 
entre los sensores intro- y exoceptivos. Como se dijo, los primeros pueden ofrecer altas 
tasas de información de velocidades y aceleraciones (lineales o angulares) de los 
parámetros de navegación pero no pueden evitar la acumulación de errores debida al 
proceso de integración de las mediciones. Por su parte, los sensores exoceptivos 
(cámaras CCD, GPS, sonar, radar, lidar, star-trackers, radio-beacons, altímetros, etc.) 
proveen directamente información posicional con errores acotados pero a instantes 
discretos y con retardos lo que se traduce en graves limitaciones para aplicaciones como 
el control de vehículos en tiempo real, la adquisición de imágenes con sensores remotos, 
enfoque de imágenes SAR, etc.  
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La Fig. 1.7 muestra un esquema típico de navegación integrada con fusión de 
mediciones introceptivas y exoceptivas. El vector x contiene los parámetros de 
navegación a estimar, los vectores m y m


 corresponden, respectivamente, a las 

magnitudes introceptivas y a sus mediciones. Por otra parte, ( )ky t


 es el vector de las 

mediciones exoceptivas adquiridas en el instante tk. Como normalmente los sensores 
introceptivos proveen información a alta tasa de muestreo, en la figura se suponen 
funciones continuas del tiempo. Por su parte, los datos exoceptivos están indexados con 
el índice tk porque en la práctica son adquiridos en instantes discretos. Véase que el 
índice k califica también a la función hk( , ) del modelo del sensor. Esto es debido a que 
el conjunto de sensores activos no necesariamente es el mismo en todo instante  Las 
mediciones ( )m t


 son preprocesadas con el modelo inverso del sensor, residente en la 

computadora de navegación, que depende del vector de parámetros ˆ
ip  para obtener la 

estimación ˆ ( )m t  de las mediciones introceptivas.  Las ecuaciones diferenciales de la 
cinemática, introducidas en el Capítulo 5, están representadas por le modelo f(x,m) y 
son las que permiten extrapolar las estimaciones de los parámetros de navegación a 
partir de sus estimaciones iniciales.  Las mediciones exoceptivas ( )ky t


 disponibles en el 

instante tk son comparadas con las correspondientes salidas extrapoladas calculadas 
usando los modelos de los sensores activos en dicho instante y la estimación actual 
ˆ ( )ktx  de los parámetros de navegación.  La innovación ( )ky t  es luego procesada por el 

filtro de fusión de datos para actualizar (o corregir) tanto a ˆ ( )ktx  como a las 

estimaciones de los parámetros ˆ ( )i kp t  y ˆ ( )e kp t  de los sensores intro- y exoceptivos, 

respectivamente. Esta última acción es denominada calibración instrumental. 
Finalmente la solución instantánea ˆ ( )tx  de las ecuaciones diferenciales del extrapolador 
calculada en tiempo real es el resultado de la navegación y ésta queda accesible a una 
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Figura 1.7: Sistema de navegación con integración de mediciones intro y 
exoceptivas. x agrupa las variables de navegación, pi y pe son los parámetros de los 
sensores. 
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tasa de muestreo sólo limitada por la velocidad de cálculo de la computadora de 
navegación a bordo del vehiculo.  
 
El Capítulo 6 aborda el problema de la sensibilidad de las ecuaciones cinemáticas a los 
errores iniciales e instrumentales. En él se establecen y estudian las ecuaciones de 
propagación de estos errores. La codificación de las ecuaciones cinemáticas 
(introducidas en el Capítulo 5) en forma de algoritmo digital apto para la navegación 
inercial en tiempo real es desarrollada en el Capítulo 7. Todo sistema de navegación que 
use una unidad inercial (actualmente la mayoría) necesariamente incluirá un código de 
este tipo en el SW de la computadora de navegación. El Capítulo 8 se centra en la 
descripción de los sistemas satelitales de navegación global (GNSS). En él se describe 
su configuración espacial y terrestre, las características de las señales en el espacio y los 
fundamentos de la arquitectura de un receptor GNSS.  Esto último es clave para 
comprender las funciones básicas del receptor en tanto que instrumento de navegación 
exoceptivo. Las medidas que este instrumento proporciona (llamadas comúnmente 
"observables") son descritas en detalle en el Capítulo 9 junto con sus precisiones.  Se 
detallan, en el mismo Capítulo, los procedimientos implementados dentro del receptor 
para determinar, autónomamente, su posicionamiento en terna ECEF. El Capítulo 10 
está dedicado a la descripción de los métodos numéricos basados en la teoría del filtrado 
no lineal que permiten la fusión e integración de datos inerciales con otros provenientes 
de una diversidad de sensores exoceptivos. Dichas técnicas aplicadas a la navegación se 
han familiarizado dentro de esa disciplina con el nombre genérico de navegación 
integrada.  En el capítulo se describen los dos enfoques más utilizados en la práctica a 
saber: el filtro de Kalman extendido (EKF: Extended Kalman Filter) y el filtro de 
Kalman por puntos sigma (SPKF: Sigma Points Kalman Filter).  
 
Una parte considerable del SW de un sistema de navegación resulta independiente de la 
aplicación y aun de la configuración instrumental exoceptiva que ésta reclame. El 
Capitulo 11, dedicado exclusivamente al tratamiento de ejemplos recurrentes en la 
práctica, expone en su primera parte aquellos cálculos que son específicos de cada 
aplicación.  Con el objeto de demostrar los aspectos del diseño y de la evaluación de un 
sistema de navegación real, al final del capítulo se presenta el desarrollo completo de un 
sistema de navegación aplicado al SAR aerotransportado de la CONAE. Se comparan 
varias configuraciones instrumentales con base en datos de vuelo procesados mediante 
herramientas típicas de evaluación de la performance de un filtro de fusión de datos. 
Los resultados del análisis comparativo pueden ser interpretados en base a los conceptos 
de reconstructibilidad y observabilidad expuestos en Carrizo/España/Giribet, 2014.  
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Capítulo 2  
Instrumentos Inerciales  

 
El principio de equivalencia fuerte de la teoría de la relatividad nos advierte que sin 
mediciones relativas a algún objeto externo, no es posible determinar el estado de 
movimiento de un móvil libre en un campo gravitacional y, en particular, medir su 
aceleración (gravitacional). Por otra parte, sí son detectables las fuerzas no 
gravitacionales ejercidas sobre un cuerpo y trasmitidas a través de su estructura sólida. 
Llamaremos inerciales a estas últimas fuerzas y acelerómetro al dispositivo usado para 
medirlas. Del mismo modo llamaremos giróscopo al instrumento que permite medir la 
velocidad angular de un cuerpo en rotación respecto de un sistema inercial sin usar una 
referencia exterior. Tanto la aceleración como la velocidad angular de un cuerpo son 
magnitudes vectoriales, por lo que la medición de cada una de ellas requiere conocer su 
proyección sobre al menos 3 ejes no coplanares.   
 
Los sistemas de navegación inercial son aquellos que utilizan exclusivamente 
instrumentos inerciales (acelerómetros y giróscopos). Dado que la aceleración 
gravitacional no puede ser medida, la navegación inercial requiere necesariamente de un 
modelo matemático del vector gravitación en función de las coordenadas del vehículo. 
Este tema es tratado en el Capítulo 4.   
 
Entre las ventajas de los sensores inerciales (sensores introceptivos por excelencia) se 
destacan que sus medidas son independientes del medio en que se mueve el vehículo y 
que no requieren de ninguna referencia exterior al mismo. Estas características sumadas 
a su capacidad de ofrecer información a alta frecuencia hacen de la navegación inercial 
una de las opciones más utilizadas desde su inserción a principios del siglo XX.  
 
La primera parte de ese Capítulo está dedicada a exponer los principios básicos del 
funcionamiento de los sensores inerciales y las principales tecnologías disponibles para 
su diseño. El lector encontrará una descripción ampliada de estas tecnológicas y otras 
variantes, en Titterton et y otros (1997).  
 
Un aspecto que condiciona la selección de la tecnología es claramente su uso y puesto 
que la tendencia dominante, así como el foco de este volumen, son los sistemas 
strapdown este es el tipo de aplicaciones que guiará nuestro interés. Como se mencionó 
en el Capítulo 1 esta opción impone demandas muy específicas. En particular para los 
giróscopos, interesa alta estabilidad en el factor de escala y el sesgo en un amplio rango 
de velocidad angular. Visto el tipo de aplicaciones de la tecnología strapdown también 
resultan importantes en la decisión el tamaño, el costo y el nivel de consumo eléctrico 
requerido por el instrumento.  
 
A partir de mediados de los 90´s, los sensores inerciales micromaquinados de estado 
sólido han suscitado un creciente interés.  En éstos la estructura mecánica sensible al 
movimiento forma parte del circuito electrónico integrado de adquisición de la medida. 
Nuevos y diversos principios físicos aplicables sensores inerciales de este tipo son hoy 
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en día objeto de una intensa investigación en muchos laboratorios del mundo. Esta 
tecnología, aplicable a numerosos tipos de microsensores, es conocida como micro-
electromechanical systems o MEMS (ver IEEE Proc., Special Issue, 1998). Sus ventajas 
más relevantes son la miniaturización y robustez de los sensores y la posibilidad de 
producción masiva a bajo costo. Lo anterior hace a los sensores MEMS aptos para una 
vasta gama de nuevas aplicaciones. Entre los campos clásicos y las muevas áreas 
favorecidas por esta tecnología mencionamos las aplicaciones biomédicas, la robótica 
móvil, aplicaciones de realidad virtual, vehículos autónomos, mini y micro satélites, etc.   

Más recientemente, los sensores ópticos han ganado mucho terreno en aplicaciones 
comerciales. Si bien los precios son en promedio aun superiores a los de los MEMS más 
avanzados, su atractivo radica en su alta precisión y estabilidad a la vez que resultan 
cada vez más competitivos en tamaño, en particular los FOG. A nuestro entender esta 
tecnología es la más promisoria para la navegación strap-down de precisión en un 
futuro cercano.   

Las diferentes tecnologías disponibles ofrecen diversos compromisos entre los 
parámetros de performance de una UMI entre los cuales mencionamos: la sensibilidad, 
el rango de medida, el ancho de banda, la resolución, la linealidad del factor de escala, 
la estabilidad del sesgo de medida, la potencia del ruido, etc. En los sensores 
multidimensionales interesa asegurar la descorrelación entre las medidas según los ejes 
sensibles ortogonales así como la correcta alineación de estos últimos.  
 
Se propone un modelo matemático de una UMI que contempla tanto sus aspectos 
deterministas como estocásticos. El conocimiento cabal de ambos rubros resulta clave 
en el diseño de los filtros de fusión de datos usados para la navegación integrada que 
serán presentados en el Capítulo 10. Vista la complejidad inherente a la descripción 
estocástica, una buena parte del Capítulo es dedicada a describir en detalle los ruidos de 
medida y a introducir al lector en la metodología, basada en la variancia de Allan, para 
caracterizar y medir los distintos procesos que constituyen al  ruido. 
 
La temperatura afecta tanto las estadísticas de las perturbaciones como las propiedades 
mecánicas y eléctricas del dispositivo, por los que es deseable conocer la sensibilidad de 
los parámetros respecto de la temperatura (TCS: Temperature coefficient sensibility) en 
caso de que haber excursiones térmicas importantes durante el uso. 

2.1 Acelerómetros  

 
La configuración básica de un acelerómetro consiste de una masa testigo 
contrabalanceada por un elemento elástico fijo a la carcasa del instrumento (solidaria a 
su vez al vehículo en el caso strapdown o a la plataforma inercial estabilizada, ver Fig. 

escala carcasa 

resorte 
aceleración 
inercial 

reposo 

Figura: 2.1: Principio de funcionamiento de un acelerómetro.  

masa  

x 

eje sensible  
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2.1). De este modo, de acuerdo con la 2ª ley de Newton una fuerza inercial (no 
gravitatoria*) actuante sobre la carcasa produce un desplazamiento de la masa testigo 
respecto de la primera. Este desplazamiento es transformado en una señal medible.  
 
Un análisis elemental conduce a la siguiente función de transferencia entre la fuerza 
específica actuante en la dirección del eje sensible y el desplazamiento de la masa 
testigo: 
 

   
2 2 2

1/ 1/( )
( )

( ) r
r

D K

M M Q

M Mx s
H s

f s s s s s
 

  
   

    (2.1) 

 
Donde K es la constante elástica del resorte, D el amortiguamiento y M la masa testigo. 

El diseño del dispositivo tiene en cuenta el factor de calidad /Q KM D  y la 

frecuencia de resonancia /r K M  . La sensibilidad en baja frecuencia se mejora 

reduciendo r  aunque esto reduce en general el ancho de banda. Por otra parte, dadas 

r  y M, la forma de la respuesta queda determinada por el factor de amortiguamiento 

que, como se advierte de la (2.1), queda fijado por Q. En los instrumentos 
miniaturizados la principal fuente de perturbaciones mecánicas es el movimiento 
Browniano de las moléculas del gas que rodea a la masa testigo y a su suspensión 
elástica. En Gabrielson (1993) (ver también Yazdi et al., 1998) se demuestra que este 
efecto se traduce en un ruido total de aceleración equivalente (RTAE) dado por: 
 

 24 4
/B B r

K TD K T
RTAE m s Hz

M QM


     (2.2) 

 
Donde KB es la constante de Boltzman y T la temperatura en ºK. Las Ecs. (2.1) y (2.2) 
ponen de manifiesto el compromiso de diseño entre las constantes Q, M y r  En 
particular, altos valores de la calidad Q producen bajos valores del RTAE pero a costa 
de que por encima de cierto valor de Q aparezcan resonancias indeseables 
( ( )rQ H j  ). 

 
Como una fuerza gravitatoria actúa en forma distribuida y, en la práctica, 
uniformemente sobre todo el dispositivo, su acción no produce desplazamientos 
relativos de la masa testigo y por lo tanto no es registrada por el acelerómetro. Así, un 
acelerómetro a bordo de un vehículo sólo medirá la aceleración inercial de este último, 
llamada también fuerza por unidad de masa o fuerza específica, en la dirección del 
movimiento de la masa testigo o eje sensible del acelerómetro. Dado que una 
aceleración es una magnitud vectorial, una unidad inercial contiene usualmente 3 
acelerómetros con sus ejes sensibles mutuamente ortogonales.  
 
De acuerdo con las leyes de inercia y gravedad de Newton, la siguiente ecuación 
modela el comportamiento de un acelerómetro.  
 

                                                
*En el Capítulo 4 se discutirá la diferencia entre fuerza gravitatoria y fuerza gravitacional. 
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2
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i i id

dt
  

P
P f g    (2.3) 

 
Donde Pi, fi y gi son, respectivamente, su posición la fuerza específica actuante y la 
aceleración gravitatoria expresados respecto de un sistema de referencia inercial. De 
(2.3) surge que un acelerómetro inercialmente en reposo ( 0i P ) en un campo 
gravitatorio registra la fuerza específica en este caso de sustentación: fi= -gi [m/seg2] 
que compensa el efecto del campo.  Por ejemplo, esto es lo que medirá un acelerómetro 
en reposo sobre una mesa con su eje sensible en la dirección de la vertical local. 

2.1.1 Acelerómetros realimentados de péndulo  
El principio de funcionamiento enunciado más arriba corresponde a una medición a lazo 
abierto de la aceleración.  Para obtener mediciones más estables y precisas se recurre a 
una configuración en lazo cerrado que mantiene fija la masa testigo (masa del péndulo) 
en su posición de reposo. Un diseño usual para alta sensibilidad es el acelerómetro de 
pivote con realimentación de fuerza. Un esquema de un diseño unidireccional se ilustra 
en la Fig. 2.2.  
 

 
El elemento flexible es sustituido por un lazo de regulación que mantiene al péndulo en 
la posición cero. El sensado del ángulo del pivote puede ser capacitivo, inductivo 
(mostrado en la figura), óptico o resistivo. Este último basado en cambios de la 
resistividad del pivote con la flexión.  La medida de la aceleración es proporcional a la 
corriente que produce el par restitutivo que regresa al péndulo a su posición de cero.  Al 
limitarse el desplazamiento de la masa testigo (masa del péndulo), se aumenta el rango 
dinámico y se asegura que el funcionamiento del sensor sea siempre en su zona de 
máxima sensibilidad y uniformemente lineal sobre toda su escala de medida la que así 
puede abarcar de 4 a 5 órdenes de magnitud (relación entre la resolución y la 
aceleración máxima).  El rango de estos sensores puede alcanzar los 100g. Las 
principales fuentes de error son: el sesgo de medida (0.1mg a 10mg), resultado de pares 
elásticos residuales y desplazamientos en la medición del cero, la inestabilidad del 

factor de escala debido a efectos térmicos (TCS 0.1%) y un umbral de ruido 

(resolución) en RMS:  10g. 
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Figura 2.2: Esquema de un acelerómetro unidireccional de tipo péndulo. 
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2.1.2 Acelerómetros micromaquinados MEMS  
Los acelerómetros MEMS se agrupan según los siguientes principios básicos de 
funcionamiento: a) de segmento resonante, b) de onda acústica superficial, c) 
piezoresistivos y d) capacitivos.  
 
a) Los primeros forman parte de una nueva generación de acelerómetros que utilizan 
como principio la alteración de la frecuencia de oscilación de un segmento mecánico, 
normalmente un cristal de cuarzo, frente a cambios en el esfuerzo a la tracción que éste 
soporta.  Los efectos no lineales son compensados utilizando dos segmentos que, en 
reposo vibran a la misma frecuencia de resonancia. La fuerza específica en el eje 
sensible altera diferencialmente el estado de tensión de cada segmento provocando una 
diferencia entre ambas frecuencias de oscilación proporcional a la excitación.  Un 
esquema simplificado del principio se ilustra en la Fig. 2.3 (ver Le Traon et al. 2005). 
 

 
b) Una onda acústica superficial como las descritas inicialmente por Lord Rayleigh 
(1842-1919), puede ser generada y entretenida sobre un cristal piezoeléctrico mediante 
una distribución periódica de electrodos implantados en su superficie. Los 
acelerómetros que usan este principio (ver Motamedi, 1994, Titerton, 1997) disponen de 
una viga en voladizo cargada en su extremo con una masa testigo (ver Fig.: 2.4).  
 

 
La frecuencia de la onda resonante es alterada variando la tracción mecánica sobre la 
superficie del cristal.  La fuerza específica impresa al anclaje en la dirección del eje 
sensible flexiona la viga alterando su tensión superficial y provocando una variación en 
la frecuencia de la onda acústica superficial que resulta así una medida de la fuerza 
específica aplicada.  La medida de estos dispositivos es directamente digitalizable y 
alcanza una resolución de 9 a 10 bits, sin embargo, usualmente el ancho de banda solo 
alcanza algunos pocos Hz. 

Eje 
sensible 

Masa testigo  

Viga  

Anclaje a 
la carcasa 

Electrodos de excitación 

Figura 2.4: Principio del acelerómetro de ondas acústicas superficiales.  

f1 f2 

Figura 2.3: Esquema de acelerómetro vibratorio en configuración diferencial. 
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Segmento1 Segmento2 
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c) Los acelerómetros piezoresistivos son los primeros en haber sido micromaquinados. 
Su estructura mecánica es similar a la mostrada por la Fig. 2.4. En este caso, un 
piezoresistor montado sobre la viga mide el estado de tensión de la misma modificado 
por la flexión producida por la aceleración inercial de la carcasa.  Sus principales 
ventajas son la simplicidad de su estructura, la del proceso de fabricación y la de la 
electrónica de medición. Sin embargo, la sensibilidad estática de los acelerómetros 
piezoeléctricos es inferior a la de los capacitivos y la temperatura la afecta 
significativamente con un coeficiente de temperatura de la sensibilidad típico de hasta 
0.2%/ºC.   
 
d) El principio de los acelerómetros capacitivos se muestra en la Fig. 2.5 a).  La fuerza 
específica exterior produce un desplazamiento de la masa testigo alterando la capacidad 
entre dos placas conductoras fijas a la carcasa, capacidad que puede ser medida 
eléctricamente de diversas maneras. Las Figs. 2.5 b) y 2.5 c) muestran las estructuras 
mecánicas más utilizadas en su fabricación. En la primera, llamada de estructura 
vertical, la masa testigo se mueve en la dirección perpendicular al plano que la contiene 
alterando su separación respecto de la placa fija. En la configuración lateral de la Fig. 
2.5 c), la masa se mueve en el plano que la contiene alterando la separación entre un 
conjunto de electrodos dispuestos en peine.  La dependencia de la sensibilidad en lazo 
abierto de los acelerómetros capacitivos es proporcional a la magnitud: 
 

MA
S

dK
   (2.4) 

 
Donde M es la masa testigo, A el área efectiva de la capacidad, K la constante elástica y 
d el espacio inter-electrodos.  

 
Entre las ventajas de los acelerómetros capacitivos mencionamos su alta sensibilidad, 
bajo ruido, estabilidad del sesgo y baja sensibilidad a la temperatura. Actualmente es 
posible fabricar acelerómetros MEMS capacitivos en silicio con performances que 
cubren desde las aplicaciones automotrices de bajo costo hasta las de alta precisión con 

resolución inferior a 1 /g Hz  en un ancho de banda de 100Hz, TCS150ppm/ºC y 

sensibilidad del sesgo a la temperatura 30g/ºC (Yazdi et al. 1998). Ciertamente los 

Figura 2.5: Configuración típica de un acelerómetro MEMs.  
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dispositivos de esta gama no son los estándares del mercado pero demuestran las 
posibilidades de una tecnología en rápida evolución.  

2.2 Giróscopos  

Los giróscopos miden rotación angular. Se distinguen los que miden la velocidad 
angular instantánea de los que miden cambios en el ángulo rotado alrededor de su eje 
sensible. En la literatura inglesa los primeros son denominados “rate gyros” y los 
segundos “rate integrating gyros (RIG)”. Los giróscopos del segundo tipo son 
particularmente útiles en vehículos sujetos a vibraciones aleatorias de amplio ancho de 
banda y elevada potencia media. En primer lugar, porque frente a grandes excursiones 
en magnitud de la velocidad angular los sensores de cambio angular reflejarán 
excursiones acotadas. En segundo lugar, porque la medición analógica que proveen es el 
verdadero ángulo rotado, en cambio, cuando esta magnitud deba obtenerse integrando 
numéricamente muestras de la velocidad angular deberá recortarse su espectro 
(antialias) degradándose la información angular efectiva.  Finalmente, como veremos 
en el Capítulo 7, los algoritmos de navegación inercial procesan directamente estos 
incrementos angulares. 
 
Desde el punto de vista de los principios físicos utilizados los giróscopos pueden 
clasificarse en rotatorios, vibratorios y ópticos. 

2.2.1 Giróscopos rotatorios  
La base de su funcionamiento es la conservación del momento angular. Son los más 
clásicos y están conformados por un volante rotatorio impulsado por un motor eléctrico 
suspendido en un montaje cardánico con ambos ejes perpendiculares al eje sensible. El 
eje del volante es soportado por rodamientos de muy bajo rozamiento.  
 

 
Según el principio giroscópico, para un momento angular H en el volante, una velocidad 
angular  impresa en el eje sensible en cuadratura genera un par de presesión =xH 
sobre el gimbal en un eje perpendicular a ambos. Cuando este par es contrabalanceado 
por un resorte lineal (indicado en al Fig. 2.6) o una barra de torsión, el ángulo de 
presesión resultante (es una medida de la velocidad angular en el eje sensible 
mientras que H determina la sensibilidad del instrumento.   
 

=xH 

: momento angular 

: en el eje sensible  

Resorte 
 Lectura angular  

Rotor 
 

Carcasa  
 

Gimbal  
 

Figura 2.6: Esquema de giróscopo monoaxial encapsulado. 
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Constructivamente, el rotor y el gimbal están encapsulados y el conjunto inmerso en un 
fluido que induce una amortiguación viscosa y determina la respuesta dinámica. El  
resultado es una función de transferencia entre  y  similar a la (2.1).  Suprimiendo el 
resorte, la viscosidad del fluido determina una velocidad de presesión angular límite 
  p p  proporcional al par T y por tanto a la velocidad angular en el eje sensible. De 

este modo, la lectura del ángulo de presesión  resulta proporcional a la integral de la 
velocidad angular (ángulo rotado) en el eje sensible lo que convierte al instrumento en 
un sensor de tipo RIG. Como la viscosidad del fluido depende de la temperatura, los 
instrumentos más precisos regulan la temperatura de su interior. 

 
Al igual que los acelerómetros es posible obtener mediciones más estables y precisas de 
la velocidad angular realimentando la excursión del ángulo de presesión para 
transformar al sensor en un instrumento de cero. Un esquema de este principio es 
ilustrado en la Fig. 2.7, en él, la medida es la corriente I proporcional al par restitutivo T 
que a su vez es proporcional a la velocidad angular en el eje sensible del instrumento.  

2.2.2 Giróscopos vibratorios   
En una masa vibrante forzada a rotar se originan fuerzas de Coriolis (ver Capítulo 5) 
que inducen vibraciones secundarias ortogonales a la vibración original y al eje de 
rotación. De este modo, parte de la energía del modo de vibración primario es 
transferida a un modo secundario como consecuencia de la rotación. La amplitud de las 
oscilaciones secundarias resulta ser así una medida de la velocidad angular en el eje 
sensible del instrumento. Este principio ha dado recientemente lugar a diversos 
desarrollos de giróscopos sin motores, partes rotatorias, ni rodamientos, construidos con 
tecnología MEMS, muchos de ellos integrados en un mismo circuito con la electrónica 
de medición. La oscilación primaria es normalmente un modo resonante de la propia 
estructura mecánica sintonizado a la frecuencia nominal que define el factor de escala 
del instrumento. La sintonía puede afinarse electrostáticamente usando electrodos ad-
hoc.  

Giróscopo de diapasón  
La versión más clásica de la aplicación de este principio es posiblemente la del 
giróscopo de doble diapasón sintonizado (tuning fork) tallado en una pieza de cuarzo 

 

: en el eje sensible  

Lectura 
angular  

Gimbal 
 

Rodamiento  
 

Amortiguación 
viscosa   

Servo   
 

Motor de torsión 

pω

I α T

Figura 2.7: Esquema de giróscopo realimentado con un servomotor de torsión. 
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piezoeléctrico (ver Fig. 2.8) de alto Q para la unidad inercial Motion Pack de Systron 
Donner desarrollada a principios de los 90´s.  

 
Una oscilación primaria inducida en las ramas superiores se manifiesta en una velocidad 
periódica lineal v en la dirección del plano que las contiene. Cuando el diapasón rota 
según el eje sensible a la velocidad angular , una aceleración de Coriolis a=2vx 
periódica actúa sobre cada una de estas ramas perpendicularmente al plano mencionado. 
Estas fuerzas se traducen en un par periódico torsional en la unión entre ambos 
diapasones que induce una oscilación secundaria fuera del plano en las ramas inferiores. 
La señal piezoeléctrica producida por las ramas inferiores es demodulada usando como 
referencia la señal del oscilador primario para obtener a la salida una señal DC 
proporcional a  

 
La Fig. 2.9 ilustra una versión integrada de diapasón sintonizado desarrollada en el 
laboratorio Charles Stark Draper en 1991 (Bernstein et al. 1993 y también Yazdi et al. 
1998).  Mediante un peine de electrodos de excitación se induce electrostáticamente una 
oscilación (modo de excitación) de las masas testigos de unos 10m de amplitud. 
Expuesto a una velocidad angular  en el eje sensible normal al plano del sustrato sobre 
el que se mueven las masas, se induce en estas últimas un movimiento oscilatorio 


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Figura 2.8: Principio de doble diapasón de cuarzo de Systron Donner. 
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ortogonal al modo primario de excitación (ver modo sensor). Este último movimiento es 
detectado capacitivamente mediante electrodos sensores.  

 
La Tabla 2.1 lista los parámetros de performance alcanzable actualmente en giróscopos 
de diapasón*, así como la esperable en unos años habida cuenta de las tendencias en el 
desarrollo de esta tecnología (ver Barbour, 2004; Geen, 2002).  
 

Tabla 2.1 

Giróscopo de disco oscilante  
El principio del diapasón es utilizado también en un diseño originalmente propuesto en 
la Universidad de California en Berkley (Juneau et al., 1997 y también Lutz et al. 
1997)). El diseño consiste en un disco en rotación oscilatoria alrededor de su eje z (ver 
Fig. 2.10). 

 
Una rotación de entrada contenida en el plano del disco (ω) induce, por Coriolis, una 
oscilación secundaria en torno de un eje que es perpendicular simultáneamente a ω y eje 
del disco y por tanto contenida en el plano éste último. La oscilación secundaria es 
captada por electrodos capacitivos situados debajo del disco. El dispositivo permite así 
medir la componente bidimensional (dos ejes de rotación simultáneos) del vector 
velocidad angular proyectada sobre el disco.  El ruido de fondo tiene una densidad de 
0.3[º/s]/ Hz .  Aún en condiciones de performance óptima el diseño actual propuesto por 

                                                
*Ver más adelante en este Capítulo las definiciones de estos parámetros en los párrafos 2.4 a 2.7 

Parámetro Tecnología actual Perfomance prevista Comentarios 

Rango de operación º/s 100-6000 100-6000 Seleccionable  

Sesgo al encendido  º/h 10-150 <1  

Inestab. sesgo  º/h 3-30 <1 -40º-85º 

Inestab. fact. esc. % 0.03-0.15 <0.01  

Ruido de fondo [º/s]/ Hz  0.5-3 0.02  

Sensibilidad a g [º/h]/g 10 0,5  

Figura 2.10: Principio de giróscopo MEMS basado en un disco vibratorio. 

Electrodo detector 

ω
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Juneau et al. (1997) adolece de sensibilidades cruzadas entre ambos ejes sensibles. Sin 
embargo, los diseños futuros contemplan usar un rebalance de fuerzas en lazo cerrado 
que permitirá mejorar la performance y evitar el acoplamiento entre ejes. Más 
recientemente, un diseño de alta performance con disco oscilante fue logrado por Geiger 

et al. (1998) para un solo eje sensible con una densidad de ruido de 0.27º/h 

(0.005[º/s]/ Hz ), estabilidad del sesgo de 65º/h, y error en el factor de escala< 0.2%. 

Giróscopo de anillo vibratorio  
La General Motors y la Universidad de Michigan (EEUU) desarrollaron conjuntamente 
un concepto de giróscopo vibratorio basado en un anillo puesto a oscilar en su modo 
natural (modo de excitación o primario) en el plano que lo contiene mediante electrodos 
dispuestos en su periferia. 
 

 
La Fig. 2.11 ilustra la estructura del anillo micromaquinado en un bloque de silicio 
cristalino y los modos elípticos de excitación y sensor que determinan movimientos 

radiales de los puntos en la periferia del anillo. Una velocidad angular ω ejercida según 
el eje de simetría del anillo genera fuerzas de Coriolis oscilantes en el plano del anillo 
que inducen el modo secundario o sensor a 45º del modo primario. Los movimientos de 
este último modo son captados por los electrodos capacitivos dispuestos sobre la 
periferia del anillo. También en este caso la frecuencia de resonancia es sintonizable 
electrostáticamente. Este concepto tiene varias ventajas sobre los presentados 
anteriormente usualmente subrayadas en la literatura, entre las que citamos: a) la 
simetría propia del anillo lo hace poco sensible a vibraciones espurias inducidas por el 
medio, b) dado que ambos modos (excitación y sensado) comparten la misma 
frecuencia de resonancia la sensibilidad es amplificada por al factor de calidad Q de la 
estructura, c) su funcionamiento es poco sensible a la temperatura que afecta igualmente 
ambos modos de oscilación, d) las asimetrías de masa o rigidez, propias del proceso de 
fabricación, pueden ser compensadas electrónicamente mediante los electrodos de 
balanceo.  
 
Se espera que a corto plazo una línea de diseño introducida recientemente en la 
Universidad de Michigan basada en una estructura íntegramente construida en 
polisilcon permita fabricar giróscopos de calidad táctica con ruido de fondo de una 
densidad del orden de 0.001[º/s]/ Hz  (Ayazi/Najafi, 1998). La tabla 2.2 resume algunos 
parámetros de performance actualmente alcanzables mediante esta tecnología.  
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Figura 2.11: Principio de giróscopo MEMS de anillo vibrante. 
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Tabla 2.2 

2.2.3 Giróscopos ópticos: Efecto Sagnac   
El principio en el que se basan todos los giróscopos ópticos es el efecto descubierto por 
el físico francés Georges Sagnac en 1913 y que lleva su nombre. Los primeros 
instrumentos que utilizaron este efecto fueron los ring laser gyro desarrollados a partir 
de 1975. A partir de 1985 hace su aparición una nueva tecnología basada en este efecto 
denominada fiber optic gyros (FOG) y considerada en un principio como una alternativa 
de bajo costo a la primera. La motivación fundamental de los giróscopos ópticos fueron 
desde un principio los requerimientos de precisión y rango dinámico impuestos por los 
nuevos sistemas strap-down. Otras ventajas son: una inherente lectura digital, arranque 
casi instantáneo, baja sensibilidad a las perturbaciones mecánicas y total independencia 
mecánica de su medio ambiente. Junto con la tecnología MEMS acaparan actualmente 
la mayor atención de los centros de desarrollo de instrumentos inerciales.   
 

 
La Fig. 2.12 ilustra el principio de Sagnac. Supóngase que el anillo, al que es solidario 
el punto P, rota alrededor de su eje de simetría a una velocidad angular 0. Sean t+ 
(trayecto en azul) y t- (trayecto en rojo) los tiempos que emplean sendos rayos de luz 
partiendo de un mismo punto P y moviéndose respectivamente en el sentido anti-horario 
y horario hasta reencontrar a dicho punto. Es fácil advertir a partir de la geometría del 
problema que si c es la velocidad de la luz y A el área incluida en el anillo, dichos 
tiempos satisfacen: 

 

Rango de operación º/s 1000 Comentarios 

Sesgo al encendido  º/h <0.06 1

Inestab. sesgo en func. º/h 0.05 1min 

Inestab. fact. esc. % <1 -40º-85ºC 

Ruido º/s rms <0.1 0-45Hz 

r 


P 

A: área 

Figura 2.12: Principio de Sagnac. 
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De la anterior, resulta una diferencia del camino recorrido por ambos rayos que, en 
primera aproximación ( 2 2 2c r  ), resulta proporcional a la velocidad angular . Un 
desarrollo en elementos diferenciales de ángulo permite demostrar que el área en la 
expresión (2.5) es la encerrada por el camino óptico independientemente de la forma 
que éste tenga. El efecto Sagnac habilita así la medición absoluta del movimiento 
angular de un sistema de referencia solidario al anillo. 

Giróscopos de láser en anillo (RLG) 
Consisten en una cavidad óptica resonante en camino cerrado con 3 o más espejos 
dentro de la cual la luz puede propagarse en ambas direcciones. La cavidad provee una 
ganancia láser que permite sostener la resonancia de dos rayos en contra-propagación 
con longitudes de onda igual a un submúltiplo entero de la longitud de los respectivos 
caminos ópticos. Típicamente la ganancia es producida por un gas de He-Ne que llena 
el interior de la cavidad. La cavidad es construida con material de muy baja expansión 
térmica de modo de limitar los cambios mecánicos de longitud del camino óptico. La 
expansión remanente es compensada mediante un servo piezoeléctrico que desplaza 
alguno de los espejos de modo de mantener la resonancia centrada en el pico de 
ganancia del gas. Sin rotación absoluta, la cavidad genera dos rayos resonantes a la 
misma frecuencia  con un número entero p de longitudes de onda encerrados en el 
camino óptico L de modo que L=p con /c   . 
 
Una rotación en un eje ortogonal al plano del camino óptico determina un cambio en 
ambos caminos ópticos dado por (2.6). La condición de auto sustentación de la 
resonancia dada por la invariancia del entero p se traduce en sendos cambios en las 
longitudes de onda en los rayos en pro y contra de la rotación en el eje sensible. Esta 
condición es expresada mediante las relaciones: 
 

/ / ( )p p c c p c p cp L L L L L p p                 (2.7) 

 
Con L  expresada por la (2.6) la rotación induce una frecuencia de batido /v c    
entre ambos rayos dada por:  
 

4 4L A A
v v v

L cL L

  
   


   (2.8) 

 
Para valores típicos de A, , L y , L/L= < 10-6, lo que refleja la gran estabilidad 
y pureza espectral requeridas de la cavidad láser para asegurar la factibilidad de la 
medición de la velocidad angular mediante un RLG. En cuanto a la frecuencia de batido 
es posible medir rangos de valores desde algunos Hz a algunos MHz, lo que da cuenta 
del amplio rango dinámico que es posible alcanzar con esta tecnología. La frecuencia de 
batido se mide mezclando ambos haces en un arreglo de prismas (“prisma mezclador” 
en la Fig. 2.13) situado en uno de los vértices lo que produce un patrón de interferencia 
cuya periodicidad espacial puede ser medida con fotodiodos. La frecuencia de batido, 
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resultante de la rotación angular, induce una velocidad de desplazamiento de las bandas 
de interferencia proporcional en dirección y sentido a la velocidad de angular. El pasaje 
de las bandas bajo el campo óptico de los diodos produce impulsos que contados 
durante un intervalo fijo son una medida del ángulo total rotado en dicho intervalo 
respecto de una terna inercial. Puesto que cada pulso corresponde a un período igual a 
1/v, para cada pulso el ángulo rotado será:  
 

/ / 4v L A         (2.9) 
 
Lo que da la medida de la sensibilidad (resolución) del instrumento (2 a 6 arcseg) en 
tanto que sensor de ángulo (RIG).   
 

 
Para muy bajas velocidades angulares las frecuencias de resonancia de ambos modos de 
propagación resultan muy cercanas ( 0v   en la Ec. (2.8)). En estas condiciones y por 
razones similares a las que provocan la sincronización de osciladores electrónicos aun 
muy levemente acoplados, v  en (2.8) puede caer abruptamente a cero limitando la 
resolución del instrumento.  El acoplamiento entre ambos modos en contra propagación 
se debe a la mutua transferencia de energía debida a la dispersión hacia atrás de la 
radiación (back-scattering) incidente sobre la superficie de los espejos de la cavidad. La 
técnica más usada para evitar la sincronización entre resonancias consiste en provocar 
mecánicamente una fluctuación angular (mechanical dither) en el eje sensible del 
instrumento con lo cual se minimiza el tiempo en que el sensor permanece en zona de 
sincronía de resonancias. Algunos efectos secundarios de este paliativo y sus soluciones 
son discutidas por Smith, (1987).  
 
Los altos costos de producción de este tipo de instrumento están ligados a la precisión 
del pulido y a la calidad del material de los espejos y del tubo laser. Por un lado, es 
necesaria una baja dispersión hacia atrás (usualmente 0.02%) para lograr una buena 
resolución y por otro, una alta reflectividad (usualmente 99.97%) para reducir las 
perdidas en la cavidad y mejorar la precisión del factor de escala (alto “Q” implica 
precisión en ). El estado del arte en tecnología del pulido de espejos permite hoy en día 
lograr, sin usar la fluctuación angular, resoluciones del orden de 0.1º/s (ver Smith, 
1987).   
 

Ánodo 
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Espejo plano  

Espejo c/control 
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Tubo laser 
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Figura 2.13: Diagrama de un giróscopo de laser de 3 espejos. 

Bandas de interferencia 

Carcasa  



Fotodetector de lectura 

Eje sensible de 
rotación 

Actuador 
vibratorio (dither) 



Martín España Comisión Nacional de Actividades Espaciales  

 39 

Giróscopos interferométricos de fibra óptica (IFOG)  
Las ventajas inherentes de los giróscopos ópticos motivaron una nueva línea de 
desarrollo de este tipo de instrumentos que pudiese paliar las desventajas de los RLG 
principalmente asociadas a los costos de producción y la insensibilidad para bajas 
velocidades angulares por sincronización de las resonancias. En los años 70´s se 
demostró en la Universidad de Utha (ver Barbour, 2004) la posibilidad de medir un 
patrón de interferencia debido al efecto Sagnac usando dos haces de luz en contra-
propagación dentro de una fibra óptica cerrada en bucle.  En lugar de una cavidad 
resonante cerrada y controlada por espejos generando internamente una luz coherente 
por efecto láser, el giroscopio interferométrico de fibra óptica (IFOG) consiste en 
espiras de fibra óptica que constituyen un camino cerrado de luz procedente de una 
fuente externa tal como un diodo superluminiscente.   
 

 
A la entrada, este haz es dividido en dos haces en contrapropagación (Fig. 2.14) que son 
luego recombinados al final de su recorrido (entre 100m y 3Km). El detector 
interferométrico mide la diferencia de fase  entre ambos haces que, a su vez, es una 
medida de la diferencia de camino recorrido y por tanto proporcional a la velocidad 
angular  
 

L 8 NA 4 RL
2

c c

    
    

  
   (2.10) 

 
Retroalimentando la fase medida mediante un controlador proporcional+integral sobre 
la frecuencia generada por el circuito de potencia óptica es posible anular la diferencia 
de fase. De este modo, el IFOG se comporta como un instrumento de cero (donde su 
sensibilidad es máxima) en el cual el desplazamiento en la frecuencia óptica es una 
medida del ángulo mecánico rotado con lo cual el instrumento se convierte en un RIG. 
Esta es la configuración preferida en muchas aplicaciones debido a su mayor rango 
dinámico y mayor estabilidad del factor de escala. 
 
Un IFOG tiene algunas ventajas notables frente al RLG: no requiere de alto voltaje, al 
no usar una luz coherente de ancho de banda puntual no tiene el problema de 
insensibilidad para bajas velocidades angulares (no requiere dither), finalmente, sus 
costos son, en general, más reducidos. Por otra parte, la variancia del error en la medida 
en  resulta ser inversamente proporcional a la longitud de la fibra óptica, por lo que 
la performance del instrumento es escalable con la longitud de ésta. Algunos resultados 



Fuente de luz 

Detector  

Divisor  

N espiras de 
fibra óptica  

Figura 2.14: Esquema de un giróscopo de fibra óptica.  
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permiten esperar que la performance de los IFOG llegue a superar a la de los RLG. Ver 
por ejemplo el IFOG desarrollado por Sanders et al. (2002) con estabilidad del sesgo 
<0.0003°/hr, densidad espectral de ruido <0.00008 deg/√hr y error en factor de escala 
<0.5 ppm. Los esfuerzos más recientes en la tecnología IFOG se concentran en su 
abaratamiento y miniaturización. 

2.3 Unidades de medidas inerciales (UMI)  

Los instrumentos inerciales de un sistema de navegación strapdown normalmente están 
agrupados dentro de un gabinete (o carcasa) a la cual son mecánicamente solidarios.  
Además de los instrumentos, el gabinete alberga la electrónica de sensado, de filtrado y  
de acondicionamiento de las señales y, en ciertos casos, de digitalización de las 
mediciones. A dicho gabinete, incluyendo los instrumentos y la correspondiente 
electrónica, se lo denomina Unidad de Medidas Inerciales (UMI).  El número de 
sensores inerciales en una UMI es variable dependiendo de la aplicación. En este 
volumen se considerarán UMI´s completas, es decir, aquellas diseñadas para proveer 
medidas vectoriales de fuerza específica y velocidad angular inerciales según tres ejes 
mutuamente ortogonales denominados ejes sensibles de la UMI. Usualmente, esto se 
logra disponiendo una terna de giróscopos y otra de acelerómetros paralelos a los ejes 
sensibles (xm, ym y zm en la Fig. 2.15).  Mediante el cálculo de las correspondientes 
proyecciones, las 6 magnitudes inerciales pueden también obtenerse con un número 
redundante de instrumentos (superior a 6) y no necesariamente dispuestos 
ortogonalmente. Se considera como mediciones provistas por la UMI las 6 componentes 
de las magnitudes inerciales vectoriales proyectadas según sus ejes sensibles.  
 

2.3.1 Modelo matemático de una UMI  
Distinguimos las componentes de cada magnitud inercial física proyectadas sobre los 3 
ejes sensibles nominales de la UMI 3( )b b bó m f ω   de sus correspondientes tríadas 

de medidas que denotamos 3( )b b bó m f ω
   . Supondremos que cada pareja de tríadas 

está relacionada mediante la siguiente familia de modelos con idéntica estructura 
matemática parametrizada por el vector 12

m p   (m=f ó  según la terna de sensores): 

 

 
( ; )

( ; ) ( )

b b
m m

b b b
m m m m m

M

M I L

 

     

m m p ξ

m p m b m σ b


       (2.11) 
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xz
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Figura 2.15: Unidad de medidas inerciales. 
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  9 12; ;
x xy xz

m
m m yx y yz m m

m
zx zy z m

   
         
     

b
σ σ p

σ
      (2.12) 

 
Donde: mξ es el vector del ruido aditivo de medida; I es la matriz identidad de 

dimensión 3; las componentes de 3
m b   son los sesgos de medida en cada dirección; 

los elementos de la diagonal de m  constituyen los errores en el factor de escala de cada 

medición de la terna, en tanto que los elementos ij  fuera de la diagonal representan los 

errores angulares de alineación entre la dirección sobre la que se mide la componente* y 
el correspondiente eje sensible nominal de la UMI. Por ejemplo, en la Fig. 2.15, la parte 
determinista de la medida xm


 resulta ser: x y z(1 )x xy xzm m m       para un error en el 

factor de escala x  y pequeños ángulos en radianes xy  y xz  que describen la no-

ortogonalidad entre el eje nominal x de la UMI y el de la medida.  
 
La segunda Ec. (2.11) destaca el hecho de que el modelo M  es bilineal en sus 
argumentos mp  y m


 y por tanto que ambas representaciones son equivalentes siendo 

los elementos de la matriz ( )L m


 lineales en m


. 
 
Cuando la precisión sea importante, las componentes de los vectores mp  podrán ser 

medidas experimentalmente en mesas de ensayo, de otro modo se adoptaran los valores 
promedios para la población que usualmente provee el fabricante del instrumento. La 
calidad de una unidad inercial está asociada a la estabilidad y la precisión con que se 
conozcan los vectores mp .  

 
Ambos modelos (2.11)/(2.12) se agrupan en un único modelo, llamado de calibración de 
la UMI, descrito mediante:  
 

( ; )
( ; )

( ; )

( )
( )

( )

; ; ;

bb

ibb
ff

b

b

T T TT T T T T T
f f i

M

M

L

L




 

 

    
       

    
 

      
 

            

ξω pω
μ μ p ξ

ξf pf

ω
σ b ξ μ σ b ξ

f

σ σ σ b b b p σ b




 



   (2.13) 

 
Donde ( ; ) ( )i  μ p μ σ b

    es la parte determinista del modelo, en tanto que su 

componente estocástica está representada por una superposición de procesos aleatorios 
de distinto origen que conforman el ruido aditivo ξ . Los filtros de fusión de datos 

necesitan modelos que describan (lo más fielmente posible) la evolución de las 
estadísticas de estos procesos.  
 

                                                
* Puede pensarse a esta dirección como aquella sobre la cual yace el sensor inercial individual, distinta a 
la correspondiente al eje nominal de la UMI.  
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Por lo anterior, el diseñador necesitará familiarizarse con los conceptos y la 
terminología relativos a la descripción, modelización y caracterización de los procesos 
que afectan la medida de una UMI. Esto será tratado en los próximos párrafos, los 
cuales, entre otros, deberían poder clarificar conceptos usuales en al industria tales 
como "bias instability", "angle random walk", "rate random walk" frecuentes en las 
hojas de datos que especifican la performance de los instrumentos inerciales.  

2.4 Elementos sobre procesos estocásticos 

En este párrafo se introducen algunos conceptos básicos frecuentemente usados para 
caracterizar los principales procesos presentes en la medida de una UMI.  

Momentos de 1º y 2º orden de un proceso estocástico. 
La caracterización simplificada más usual en ingeniería de un proceso estocástico 
continuo (t)  consiste en sus dos primeros momentos, a saber:  
 

 
1 2 1 2

Valor medio: (t)=E (t)

Función de autocorrelación: ( , ) { ( ) ( )}R t t E t t

 

 
  (2.14) 

 
Cabe subrayar, no obstante, que la descripción completa de un proceso estocástico 
requiere de los infinitos momentos de orden superior a dos. Hay, sin embargo, un caso 
destacado en el cual las estadísticas (2.14) resultan suficientes y es cuando el proceso es 
gaussiano.  
 
Para 2 1t t   , diremos que   es estacionario de 2º orden* cuando y sólo cuando 

(t) =constante y 1 2 1 2( , ) ( ), ,R t t R t t    . Cuando ( )t  es real, la estacionaridad de 2º 

orden implica, además, la condición de simetría: ( ) ( )R R    . Si ( )R   es 

absolutamente integrable respecto de  su transformada de Fourier es la función 
compleja definida mediante:  
 

 
1

2

/
2

) ( ) ( ) ( ) ( )

) ( ) ( ) ( )

j f

j f

a R d S f R R e d

b S f R S f e df


 
  

   
 


 

  


       



 





 



 (2.15) 

 
La Ec. (2.15) b) destaca el carácter bi-univoco de la transformación siempre que esté 
definida. Es fácil demostrar que, por ser ( )R   una función real y simétrica, bajo las 

condiciones de la definición (2.15), ( )S f  también es una función real y simétrica de f 

(ver Papoulis, (1991)).   
 
De la definición (2.14) y de la Ec. (2.15) b), resulta que la potencia instantánea 

 2 ( )E t  de un proceso estacionario es constante e igual a:  

 

                                                
*Wide Sense Stationary (WSS) en inglés. 
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(0) ( )R S f df


 

 ,  (2.16) 

 
De este modo que ( )S f  es vista como una densidad de potencia a lo largo del eje f  

(-, ) y llamada, por esta razón, densidad espectral de potencia (DEP o PSD en 

inglés). Claramente, puesto que (0) 0R  , ( ) 0,S f f    , de otro modo sería 

posible “filtrar potencia negativa” en alguna zona del espectro de la señal.  Si U es la 
unidad de medida de , ( )S f  se expresará en 2[U] /[Hz] . 

2.5 Descripción del ruido de medida 

Como se vio en el Capítulo 1, los errores instrumentales hacen que la navegación 
inercial sea inestable a corto plazo. Por otra parte, como se verá en el Capítulo 10 la 
navegación integrada con fusión de datos es puramente inercial entre dos instantes de 
medidas exoceptivas. Surge por lo tanto la necesidad de caracterizar cuidadosamente los 
ruidos de medida de una UMI, en particular, cuando se usen sensores miniaturizados 
tales como los de tecnología MEMS.  
 
Lo que comúnmente llamamos ruido es en realidad una señal, por lo general muy poco 
predecible, compuesta por varios procesos aleatorios superpuestos cuya potencia en alta 
frecuencia suele estar dominada por procesos muy descorrelacionados o independientes. 
A continuación se describen los procesos que más frecuentemente perturban las 
medidas inerciales.  

2.5.1 Procesos aleatorios en el ruido de medida 

Ruido blanco continuo n(t) 
Es el ruido por excelencia dado que por definición es totalmente impredecible. Lo 
definimos como el proceso estocástico centrado n(t) estacionario de segundo orden y 
caracterizado por una DEP constante nq  tal que: 

 
 

2

) ( ) 0

) ( ) . [ ] / [ ] ; [ ] / [ ]n nn

i E n t n

ii f cte q U Hz q U Hz

 

    S
  (2.17) 

 
Siendo su DEP una constante en todo el rango de frecuencias, de la (2.16) resulta que 
para cualquier instante de tiempo la potencia promedio de un ruido blanco 

(  2( ) (0)nE n t R ) no está acotada y por lo tanto carece de existencia real.  

Consistentemente, antitransformando ( ) .nn f q cte S  resulta que su función de 

autocorrelación es la función impulsiva (Papuolis, (1991)): 
 

 1 2( ) ( )[ ]n n nR q q U        (2.18) 

 
Donde, la función generalizada "delta de Dirac” ( )  [seg]-1 es aquella que opera sobre 
cualquier función integrable ( )h   tal como:  
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( ) ( ) ( ) ( ) ( )
t

t

t h d t h d h t









                (2.19) 

 
En lo que sigue se usará la notación ( ) (0, ( ) )nn t t q  para denotar un rudo blanco con 

DEP= nq . En particular, llamaremos ruido blanco unitario a: ( ) (0, ( ))un t t .  

 
A pesar de ser una idealización matemática, el concepto de ruido blanco tiene un gran 
valor práctico puesto que, como veremos, en base a él es posible modelar muchos otros 
procesos estocásticos. Además de esto, y dado que cualquier sistema físico tiene 
necesariamente un ancho de banda acotado, una perturbación de un ancho de banda 
comparativamente grande respecto de la banda pasante del canal o del sistema al que 
perturba se comportará, en la práctica, como un ruido blanco para este último. 

Ruido blanco muestreado nd(k) 
Siempre que se muestree una señal continua se estará, a la vez, muestreando un ruido 
continuo. Para evitar el fenómeno de “pliegue en frecuencia” o “alias” de una señal 
muestreada, el teorema de Shannon-Whittaker (Shannon, 1949) impone introducir, 
delante del muestreador, un filtro antialias que suprima las frecuencias superiores o 
iguales a la mitad de la frecuencia de muestreo (condición de Nyquist).  Por tanto, para 
preservar la información útil en una señal muestreada, el filtro de premuestro y el 
período de muestreo Ts deben ser cuidadosamente elegidos. Como la respuesta a un 
ruido blanco (centrado) de un filtro antialias lineal tiene valor medio (momento de 1º 
orden) nulo en todo instante de tiempo y en particular en los instantes de muestreo kTs, 
su caracterización como proceso discreto requiere sólo establecer su momento de 
segundo orden. Para esto se recurre a la aproximación estándar de suponer el filtro 
antialias ideal, es decir, con una función de transferencia como la representada en la 
Fig. 2.16.  
 

 
Así, el ruido nf(t) a la salida del filtro tiene ancho de banda Wf [Hz] y densidad espectral 
dada por:  
 

,
( )

0 ,
n f

f

nf

q f W
S f

f W


 

  (2.20) 

 
Aplicando la transformada de Fourier inversa a ( )nfS   se obtiene la función de 

autocorrelación de nf(t) que resulta (ver Papoulis (1991)): 
 

n(t) nf (t) 

Figura 2.16: Modulo de la función de transferencia de un filtro pasa-bajos ideal. 

2 fW  2 fW 

( )H j  
1 

( )H j   
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sin(2 )
{ ( ) ( )} ( ) 2

2
f

f f f n

f

nf

W
E n t n t R W q

W
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 
 

 
    (2.21) 

 
De la anterior interesa destacar que cuando el ruido filtrado es muestreado satisfaciendo 
la condición (de Nyquist) entre ancho de banda y período de muestreo: 2WfTs=1, la 
secuencia ( ) ( )d f sn k n kT  resulta descorrelacionada (es decir: ( ) 0snfR T  ) con 

potencia promedio en cada instante de muestreo kTs igual a 
2{ ( ) } (0) 2d nfnfE n k R W q    . Este argumento justifica la aproximación usual para la 

variancia de un ruido blanco muestreado en función de su densidad espectral dada por: 
2 /n snd q T   y el hecho de llamar a este último ruido blanco discreto. 

Ruido “markoviano” (t) 
En el Capítulo 10 se introducirá una definición general de proceso markoviano. Sin 
embargo, en el contexto de la modelización de ruidos se adopta normalmente la 
definición "ingenieril" más restringida que se enuncia como: la respuesta de un sistema 
lineal, invariante, asintóticamente estable excitado por un ruido blanco. Cuando el 
proceso es escalar (monovariable) el sistema es representable mediante una función de 
transferencia H(s) con todos sus polos en el semi-plano complejo izquierdo abierto 
(Fig. 2.17).  

 
Si además H(s) es una función racional en s (cociente de polinomios en s), el sistema 
lineal admitirá una representación en variables de estado de dimensión finita, 
representación que se extiende fácilmente a sistemas multi-variables como el siguiente  
 

   

  

A n

ν C n


  (2.22) 

 
Donde (0, ( ))t n Q  y (0, ( ))n tn Q  son procesos vectoriales blancos con matrices 

de DEP diagonales Q  y nQ  y matrices A, C de dimensiones apropiadas. En el caso 

una entrada una salida ( ,n  ) la respuesta de la (2.22) viene dada por: 

 

0

0 0( ) ( ) ( ) ( ) ( ) ( )
t

t

t t t t h t n d n t          νC    (2.23) 

 
Donde ( )h t  es la respuesta al impulso del sistema lineal de la Fig. 2.17. La condición de 
estabilidad asintótica impone a la vez que la matriz de transición de estado y la 
respuesta al impulso verifiquen: lim ( ) 0


    y lim ( ) 0h


  . Con lo cual, de la Ec. 

(2.23) para 0t  suficientemente alejado en el pasado cualquiera fuese su estado inicial el 

proceso ( )t  resulta ser: 
 

n(t) (t) 
H(s) 

Figura 2.17. 
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( ) ( ) ( )

( )} ( ) ( )} 0

t

t

t h t n d

E t h t E n d





    

      

ν

ν

   (2.24) 

 
La segunda expresión muestra que el proceso ( )t  es (asintóticamente) centrado. Del 
teorema fundamental enunciado en Papoulis (1991), pp 347 se tiene que las densidades 
espectrales de los procesos ( )t  y ( )n tν , respectivamente: ( )S f  y ( )nS f q , se 

relacionan a través de la  ( ) ( 2 ) ( )h t H j f H j      ( 2 f   ) mediante: 

 
2 2

( ) ( ) ( ) ( )nS f H j S f q H j          (2.25) 

 
Con lo cual, la función de autocorrelación de ( )t  (usando la (2.15)) resulta: 
 

   21 1( ) ( ) ( )R S f q H j 
           (2.26) 

 
Como es fácil comprobar, siempre que la función de transferencia ( )H s sea racional 

(cociente de polinomios en s), el cuadrado del modulo de ( )H j   es una función par de 

  (o de f). Como ejemplo consideramos el proceso de la Fig. 2.17 para: 
 

1
( ) ; 0 ( )H s n t

s   


        
 

    (2.27) 

 
excitado por el ruido blanco contínuo (0, ( ))n q t  . La solución de la Ec. diferencial 

asociada a (2.27) se escribe como: 
 

0( ) ( ) ( )( ) ( ) ( ) ( )
o

t tt t t t
o t

t e t e n d e n d       
 

           (2.28) 

 
Tomando valor esperado en la (2.28) se obtiene que el momento de primer orden 
cumple asintóticamente ( ) ( )} 0t E t    . Su función de autocorrelación (también 
asintótica) se determina usando la segunda igualdad de las (2.26) para 2 f   : 
 

 

2

2 2

/1
2 2

( ) ( )

( ) ( / 2 )
2 2

T
j

q
S f H j q

q e d q T
R S e 


  




   

 





  
  


     

   
  (2.29) 

 
De donde surge que el proceso tiene función de autocorrelación de tipo exponencial 
caracterizada por dos parámetros: el tiempo de correlación 1T 

    y la DEP constante 

del ruido banco que lo excita: q .  
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Ruido “browniano” w(t) 
También llamado proceso de Wiener o caminata aleatoria, se define como la integral de 
un ruido blanco gaussiano a partir de un dado instante inicial to (ver Fig. 2.18). Su 
modelo matemático es similar al de la Ec. (2.22) con A=0 y condición inicial nula.  
 

 
Teniendo en cuenta que n(t) es estacionario se toma to=0. En el caso escalar el ruido 
browniano es:  
 

0

( ) ( ) ( ) ( )
t

w ww t n d dw t n t dt        (2.30) 

 
Con lo cual, su valor medio y función de autocorrelación (momentos de 1er y 2º orden) 
resultan respectivamente: 
 

1 2 1 2

0 0

1 2

0 0

1 2

1 2

( )

{ ( )} 0

( , ) { ( ) ( )} ( ) ( )

{ ( ) ( )} min( , )

w

w w w

w w w

q

t t

t t

E w t

R t t E w t w t E n d n d

d d E n n q t t
 



         
  

     

 

  

  (2.31) 

 
De la última expresión surge claramente que w(t) no es estacionario ( wR  depende de 

ambos instantes de tiempo) y por lo tanto su DEP no está definida. A pesar de esto, es 
usual describirlo como caso límite de un proceso markoviano estacionario de 
autocorrelación exponencial cuando el tiempo de autocorrelación tiende a infinito. De 
este modo, haciendo 0   en la primera de las (2.29) se obtiene la siguiente 

expresión “limite” para su DEP: 
 

2

2
( )

(2 )w

K
S f

f



   (2.32) 

 
Veremos que esa expresión es usada para caracterizar procesos de muy baja frecuencia, 

llamados de tipo 2"1 / "f , parametrizados por el coeficiente wK q . 

 
Haciendo t1=t2 en (2.31), se obtiene el valor medio de la potencia instantánea de ( )w t .  
 

2 2 2( )[ ] [ ] ( , )w w wt U T R t t q t     (2.33) 

 
Se advierte que 2

w  crece linealmente con el tiempo con pendiente igual a la DEP wq  

del ruido blanco que lo genera. 

1/s 
to 

nw(t) 
 (t)[U] 

w(t)[U][T] 

Figura 2.18. 
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La Fig. 2.19 demuestra un ejemplo del ruido browniano resultante de integrar la medida 
de la velocidad angular provista por un giróscopo en reposo. La DEP del ruido blanco 
en la velocidad angular es 2 2q 0.99 [ / seg] / [Hz]   . El proceso de Wiener de salida es 

llamado ángulo browniano y se lo denota como ARW (por angle random walk). Su 

desvío estándar calculado a los 1000seg. es: q t[ ] 31,3[ ]     .  La Fig. 2.19 a) 

muestra un conjunto de 1000 realizaciones de dicho proceso en el intervalo 0-1000 seg. 
Se advierte una dispersión de las curvas creciente con la raíz cuadrada del tiempo. La 
Fig. 2.19 b) despliega un diagrama de barras de las muestras en el instante t=1000seg en 
el que puede observarse su relación con el desvío estándar teórico de la muestra. 
 
El proceso análogo al ARW en un acelerómetro es conocido como velocidad browniana 
y denotado VRW (por velocity random walk). Éste resulta de integrar un ruido blanco 
en la medida de la fuerza. Si 2

fq [m / seg] / [Hz]  es la DEP del ruido blanco, el desvío 

estándar del VRW en el tiempo t será: v fq t[m] / [seg]  .  

 
Como veremos en un próximo párrafo dedicado a la variancia de Allan, tiene interés 
considerar el promedio temporal de un ruido blanco sobre un intervalo arbitrario de 
longitud T. Se trata de una variable aleatoria, centrada, indexada por T (pero 
independiente de t por ser n(t) estacionario) cuyos dos primeros momentos se calculan 
mediante: 
 

1 1
( ) ( )} ( )} 0

t T t T

T

t t

n n d E w T E n d
T T

 

             (2.34) 

2

2

2 2

1
} ( ) ( )}

1
( )

t T t T

T

t t

t T t T t T

n n
n

t t t

E n E n n d d
T

q q
R d d d

T T T

 

  

      

        

 

  
  (2.35) 

 
Se advierte que, si bien para cualquier T la variancia de los promedios es finita, ésta 
tiende teóricamente a infinito a medida que el intervalo de promediado tiene a cero! 
Esto es una simple consecuencia de que n(t) tiene potencia infinita.  

Figura 2.19: Ejemplo de ángulo browniano de un giróscopo. 

a) b) 
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Inestabilidad del sesgo o ruido “1/f”: bi(t) 
La familia de procesos llamados evolutivos o fluctuaciones aleatorias (conocidos como 
"flickering noise" en inglés) no son representables por un modelo de estado de 
dimensión finita. Son, no obstante, descritos matemáticamente mediante su DEP del 
tipo ( ) ; 1 2biS f f     . Se trata de procesos no estacionarios, de memoria no 

acotada, que describen ciertas fluctuaciones lentas del sesgo de los instrumentos 
inerciales de particular relevancia en sensores ópticos o de tecnología MEMS. Su origen 
suele ser electrónico o electromecánico. Dado que la integral de ( )biS f  sobre el todo el 

eje de frecuencias no resulta acotada, en teoría estos procesos tienen potencia 
instantánea infinita. La manera de evitar esta contradicción es postular la existencia de 
una frecuencia límite f0 más allá de la cual la potencia del proceso es nula. Esto es 
además consistente con el hecho de que, en la práctica, a partir de cierta frecuencia estas 
fluctuaciones quedan enmascaradas por otros procesos con mayor potencia en alta 
frecuencia. 
 
La caracterización más usual para el caso 1   en términos de su DEP resulta ser: 
 

2

0

0

,
2( )

0 ,
bi

BI
f f

fS f

f f

  
 

    (2.36) 

 
Donde BI  es llamado el coeficiente de “inestabilidad del sesgo” y está expresado en las 
mismas unidades de medida (es decir: [°/seg] ó [m/seg2]).  

Ruido de rampa r(t) 
Modela derivas muy lentas del sesgo de la medida que se presentan sobre todo en 
giróscopos IFOG. La pendiente de la deriva es llamada coeficiente de rampa y se denota 
R. Para su análisis se le asocia la DEP (IEEE 647-2006): 
 

2

3
( )

(2 )r

R
S f

f



  (2.37) 

 
Tratándose de una variación tan lenta, más que un ruido es considerado muchas veces 
como un error paramétrico determinista. Este es el punto de vista adoptado en este 
volumen en el cual este proceso será visto como un sesgo lentamente variable. 

2.6 Caracterización de los procesos en el ruido de medida  

El ruido de medida se supone igual a la superposición de los procesos descritos 
anteriormente, es decir: 
 

( ) ( ) ( ) ( ) ( ) ( )t n t v t w t bi t r t        (2.38) 
 
El carácter "compuesto" de este ruido impone la necesidad de analizarlo según sus 
componentes. Así, la caracterización del ruido consiste, en primer lugar, en identificar 
dichas componentes y, en segundo, en determinar o estimar los parámetros que 
describen a cada proceso. Los métodos existentes se basan en dos hipótesis que se 
cumplen razonablemente bien en la práctica: H1: los procesos involucrados son 
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estacionarios e independientes entre sí;  H2: sus respectivos espectros de potencia no se 
solapan sobre el eje de las frecuencias. En otros términos, cada proceso se manifiesta 
predominantemente sobre una banda de frecuencia que le es exclusiva.  
 
En Quinchia et al. (2013), se expone un estudio comparativo de diversos métodos 
aplicables a la caracterización de las componentes del ruido de medida de una UMI. De 
ellos, el mas estandarizado y utilizado por la industria es el método de la variancia de 
Allan (VA) al que dedicamos los próximos párrafos.  

2.6.1 Variancia y Desvío de Allan 
La VA mide la variabilidad cuadrática media entre promedios de una misma señal 
tomados en intervalos de tiempo adyacentes de longitud uniforme T variando entre un 
valor mínimo (alta frecuencia) y un valor máximo (baja frecuencia). Llamando ( )Tx t  al 

promedio del proceso continuo ( )x t  sobre un intervalo de longitud T con inicio en t, 
definimos el proceso de las diferencias (por hipótesis estacionario) parametrizadas por 
T: ( ) ( ) ( )T T Tx t x T t x t   . Bajo las hipótesis mencionadas anteriormente, la variancia 

( )VA T  y desvío ( )DA T  de Allan de ( )x t  se definen, respectivamente, como: 
 

21
( ) ( )}

2

( ) ( )

TVA T E x t

DA T VA T




   (2.39) 

 
En IEEE Std. 647-2006 se demuestra la siguiente importante relación entre la función 
VA(T) para un dado proceso x(t) y su DEP  ( ) ( )x xxS f R   :  

 
4

2
0

( )
( ) 4 ( )

( )x

sen fT
VA T S f df

fT

 


    (2.40) 

 
De acuerdo con la (2.25), la anterior establece que la VA(T) del proceso x(t) es 
proporcional a su potencia total luego de ser filtrado por un filtro parametrizado por T, 
cuyo módulo es: 
 

2 ( )
( 2 )

( )T

sen fT
H j f

fT





    (2.41) 
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Figura 2.20: Perfil de ( 2 )TH j f  en función del producto fT. 

 
Como puede verse en la Fig. 2.20, ( 2 )TH j f  tiene un máximo dominante en 

0.4 /f T .  Así, de acuerdo con las Ecs. (2.40) y (2.41), la VA puede ser vista como 
un filtro "pasabanda" centrado en una frecuencia que decrece con T. Esta propiedad, 
junto con la hipótesis H2 y la expresión (2.38) hacen posible analizar el ruido según sus 
componentes y medir sus respectivas potencias mediante la VA.  
 
Importa señalar que la variancia de Allan resulta finita (y por lo tanto es calculable) para 
la gran mayoría de los procesos estacionarios. En particular, a pesar de tener potencia 
infinita, los procesos blanco y 1/f (presentes en gran parte de las señales de ruido) tienen 
VA(T) finitas para todo T>0. 
 
La presencia predominante en altas frecuencias del ruido blanco en la expresión (2.38) 
hace que para intervalos T crecientes, la potencia de los promedios del proceso ξ 
decrezca monótonamente con 1/T (ver Ec. (2.35)) junto con su VA. Sin embargo, la 
experiencia demuestra que el decaimiento de la gráfica de DA vs. T puede detenerse y 
aún revertirse a partir de un cierto intervalo T=Tmin suficientemente largo. Tmin puede 
ser muy grande, por lo cual, para detectarlo, podría requerirse que el horizonte del 
registro sea también de larga duración (24hs o más).  El mínimo de DA ocurrirá en 
presencia de fluctuaciones muy lentas enmascaradas, hasta Tmin, por los promedios del 
ruido blanco dominante en alta frecuencia. A partir de Tmin este ruido tendrá un efecto 
despreciable sobre el DA el cual, empezará a reflejar sólo las fluctuaciones lentas. 
Cuando el registro proviene de la salida de un instrumento (como en el caso de una 
UMI) estos procesos de muy baja frecuencia son llamados deriva del sesgo o "bias 
instability" en inglés, por lo cual se denota: TBI=Tmin.  
 
Las derivas lentas del sesgo se suponen generadas esencialmente por dos tipos de 
procesos. El primero corresponde a fluctuaciones de baja frecuencia del tipo "1/f", 
llamado con propiedad "inestabilidad del sesgo" y asociado al "codo" en la grafica 

( )DA T  en TBI (ver Fig. 2.22). El parámetro de la Ec. (2.36) que caracteriza a este 

proceso resulta precisamente de evaluar: BI= ( )BIDA T . Más allá de T=TBI la gráfica se 

mantendría constante de no mediar otras fluctuaciones de muy baja frecuencia. Las más 
prevalentes, conocidas como "rate bias instability", son modeladas como procesos 
brownianos con DEP del tipo 21 / f  (ver Eq. (2.32)) cuya DA es creciente con T (ver 
Ecs. (2.33)). En el caso de giróscopos, estas perturbaciones se denotan RRW (por rate 
random walk) y ARW (por acceleration random walk) cuando se trata de 
acelerómetros. Para intervalos T aún mayores, pueden aparecer perturbaciones cuasi-
deterministas de ultra baja frecuencia caracterizadas por la DEP (2.37) que hemos 
llamado “ruido de rampa”. 
 
Aplicando la expresión (2.40) a las DEP de los procesos que componen el ruido de 
medida de una UMI (Párrafo 2.5 y expresión (2.38)), se obtienen las expresiones 
teóricas de las respectivas VA(T) (ver Tehrani (1983)). En el Apéndice C de IEEE Std. 
647-2006, se presentan las expresiones analíticas y las gráficas de DA(T) para una lista 
muy completa de los procesos que perturban la medida de una UMI. En la 3ª columna 
de la Tabla 2.3 se consignan las expresiones de la VA para los procesos más usuales, 
junto con los coeficientes que los caracterizan. A partir de la gráfica DA(T) del ruido, 
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medida empíricamente como veremos más adelante, es posible, por un lado, identificar 
el proceso dominante en cada banda de frecuencias (siempre que lo sea en alguna, de 
otro modo significaría que podría estar enmascarado por otros procesos y en tal caso no 
habría necesidad de tenerlo en cuenta) y por otro leer directamente sus parámetros 
característicos. Esto es particularmente simple para los procesos caracterizados por una 
pendiente uniforme p en escala doble logarítmica.  
 

Tabla 2.3: DEP y VA para distintos procesos. 
 
Consideremos como ejemplo el ruido blanco estacionario: ( ) ( )x t n t , se tiene: 
 

21
( ) ( ) ( ) ( ) ( ) ;

t T t T

T T T

t T t

n t n T t n t n d n d
T

 



 
          

 
    (2.42) 

 
Con lo cual, usando la definición de ruido Browniano (2.30) y un cálculo similar a la 
Ec. (2.31), a partir de la (2.42) se obtiene su DA(T) que explica la pendiente -1/2 que 
caracteriza a este ruido en la Fig. 2.21: 
 

2 2 1/2

2

1 1
( ) ( )} ( )} ( )

2
n

T n

q
VA T E n t E w T DA T q T

T T
       (2.43) 

 
Donde ahora se tuvo en cuenta que los promedios están tomados sobre intervalos que no 
se intersecan. Se advertirá de la anterior la motivación de incluir el factor 1/2 en la 
definición (2.39) que es precisamente para equiparar la variancia de Allan del ruido 
blanco a la variancia de sus promedios (2.35) tomados independientemente.  
 
Nos detenemos en el DA de un proceso markoviano de 1º orden caracterizado por la 
DEP Ec. (2.29). A partir de la VA(T) dada por la Tabla 2.3 y llamando /T T   al 

intervalo normalizado por el tiempo de correlación T  escribimos: 
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h e e
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    (2.44) 
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Como se muestra en la gráfica de la Fig. 2.21, ( )DA   posee un máximo en * 1.89  de 

valor *

max ( ) 0.437DA DA q T     . Las coordenadas del máximo caracterizan 

totalmente a este proceso.  
 

 

Variancia de Allan a partir de una señal muestreada 
Existe una extensa bibliografía sobre los detalles técnicos de la aplicación de este 
método a señales reales muestreadas. La norma IEEE Std. 647-2006 estandariza el uso 
de este método para caracterizar todos lo procesos potencialmente presentes en los 
ruidos de medida de una UMI.  
 
Dado un registro ( )kx t  de muestras de una señal de ruido ( )x t  tomadas a lo largo de un 

horizonte de tiempo H con un intervalo de muestreo 1k ksT t t  , consideramos los 

promedios en intervalos múltiplos enteros de Ts : T=NTs, desde T=Ts (alta frecuencia) al 
valor máximo posible: T=H/2 (más baja frecuencia presente en el registro). 
Normalmente, H es varios ordenes de magnitud superior Ts, típicamente H/Ts~105. Al 
conjunto de datos dentro de un intervalo se lo llama "cluster" y a T intervalo de los 
clusters. A cada registro se le asocia la gráfica del desvío de Allan estimado ( )DA T  
definido de la siguiente manera: 
 
1) Para intervalos T=NTs crecientes con 1,..., / 2N H  y llamando ( ) /n T H T , se 
construye: 
 i) la secuencia de promedios 

 

( 1)

1
( ) ( ); 1,..., ( )

iT

T k
k i T

x i x t i n T
T  

      (2.45) 

 
 ii) la secuencia de las diferencias entre promedios: 

 
( ) ( ) ( 1)T T Tx i x i x i        (2.46) 

Figura 2.21: ( )DA   del ruido markoviano de 1º orden en escala doble 

logarítmica función del intervalo normalizado /T T  . 

DAmax= 0.437(qνTν)
1/2 

0.1((qνTν))
1/2 

 

0.01((qνTν))
1/2 

 

τ* τmax τmin 

0.95DAmax 

T/Tν 

(qνTν)
1/2 
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2) A partir de las ( )Tx i  se establecen como estimadores de la variancia y el desvío de 

Allan, respectivamente, a las estadísticas: 
 



 

( )
2

1

1
( ) ( );

2( ( ) 1)

( ) ( )

n T

T
i

VA T x i
n T

DA T VA T




 


   (2.47) 

 

La Fig. 2.22 muestra, sobre una escala doble logarítmica, una gráfica típica del ( )DA T  
medido sobre un registro de la salida de un giróscopo hipotético en condición de reposo 
con período de muestreo de 0.01seg. Los ruidos ARW, BI, RRW y RR se manifiestan 
con pendientes constantes en diferentes regiones del eje T. Esto permite leer 
directamente de la gráfica los parámetros que caracterizan estos procesos. Por ejemplo, 
la inestabilidad del sesgo aparece como una curva plana con centro en TBI y parámetro: 
BI= ( ) / 0.66BIDA T . Los perfiles de ruidos con correlación exponencial (markovianos) 

presentan una resonancia cercana al valor del tiempo de correlación dominante (Fig. 
2.21). Por esto (ver Marinsek, (2011), §4.5.5.1), sus efectos suelen manifestarse 
cercanos al tiempo de correlación 2 sT T  impuesto por el filtro pre-muestreo 

(antialias) (ver extremo izquierdo de la curva en la Fig: 2.22) que normalmente es 
diseñado con un ancho de banda próximo a la mitad de la frecuencia de muestreo: 
AB  1/Ts.  
 
Marinsek (2011) desarrolla un procedimiento semi-automático mediante el cual, para un 
dado registro de ruido, calcula primeramente su DA(T) y a partir de éste identifica y 
caracteriza los distintos procesos presentes. El SW*, fue aplicado en su tesis de 
ingeniero para caracterizar y comparar la performance de varias unidades inerciales 
comerciales.  

 

                                                
*Cuyo código abierto esta disponible en: http://psic.fi.uba.ar/index.php/publication/theses 

BI 
bi(t) 
 p=0 

ARW 
n(t) 

 p= -1/2 RRW 
w(t)  

p=1/2 

RR 
r(t) 
p=1 

Figura 2.22: Esquema de gráfica típica DA vs. T para un registro de 24hs. 
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Para un dado H, los estimadores ( )DA T  y ( )VA T  se calculan con un número de clusters 
( ( ) /n T H T ) que decrece con T. Es natural esperar entonces que la confianza 
estadística decrezca también con T. Existen diversos métodos para determinar un 

intervalo de confianza del estimador ( )DA T . El más simple y más usado se basa en la 

siguiente definición del error relativo del estimador de ( )DA T : 
 

( ) ( )
( )

( )DA

DA T DA T
T

DA T
 

 
   (2.48) 

 
Como en sí mismo es una variable aleatoria (función de la realización particular del 
ruido del registro de la señal), lo que se usa es una estimación (más o menos gruesa) de 
su desvío estándar que tiene el interés de ser independiente de los procesos presentes 
(ver IEEE Std. 647-2006, Ap. C): 
 

 
1

( ( ))
2 / 1

T
H T

  


DA    (2.49) 

 
En base a la anterior el intervalo de confianza del 66% para el intervalo T se establece 
como: 
 

 ( )(1 ( ( ))T T  DADA   (2.50) 
 
Sustituyendo valores en las dos ecuaciones anteriores se obtiene, por ejemplo, que el 
DA de un proceso que se manifieste con intervalos de T=10hs podría medirse con un 
error relativo del 25% con un grado de confianza del 66% siempre que se disponga de 
un horizonte de medidas H=90hs. Esto demuestra lo impreciso y complejo que resulta 
en la práctica medir las fluctuaciones de baja muy frecuencia.  
 
La Fig. 2.23 demuestra el rápido crecimiento, para T medios y grandes, de la dispersión 
entre las gráficas del DA adquiridas para distintas realizaciones de registros de 12hs de 
un mismo giróscopo en reposo de una UMI FalconMx.  

Figura 2.23: DA para varios registros de 12hs de un giróscopo de la unidad FalconMx 
(extraído de Marinsek, (2011) donde se caracteriza totalmente esta unidad). 
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2.7 Modelo markoviano unificado del ruido de medida 

Difícilmente se pueda exagerar la importancia de la formulación markoviana de las 
perturbaciones estocásticas en la teoría de la estimación. La razón es que la 
markovianidad es necesaria para una estimación recursiva del estado. Este tema será 
tratado en detalle en el Capítulo 10. 
 
En la práctica, no basta con que las perturbaciones respondan a un modelo markoviano, 
se requiere además, que éste último sea de dimensión finita. Esta condición estará 
asegurada toda vez que la DEP de la perturbación sea una función racional par de f (o de 
ω). En efecto, un razonamiento inverso al usado para la Ec. (2.26) y en el párrafo 
subsiguiente, permite demostrar que, en tal caso, existirá una función de transferencia 
racional H(s) (ver Fig. 2.17), con una representación de estado lineal de dimensión finita 
como la (2.22), tal que excitada por un ruido blanco a la entrada producirá una salida 
con la DEP deseada (al menos asintóticamente). La función de transferencia en cuestión 
(ver Fig. 2.17) es la que satisface (ver Papoulis, (1991)): 
 

*( 2 ) ( 2 ) ( )H j f H j f S f      (2.51) 
 
Como ejemplos tenemos las funciones de transferencia que excitadas con ruido unitario 

generan: a) Un ruido blanco con DEP (2.17) ( ; )n n nH s q q , b) Un ruido Browniano 

con DEP (2.32) ( ; ) /wH s K K s  y c) Un ruido Markoviano con DEP. (2.29)  

 

( ; , )
1

T q
H s q T

T s
 

  





   (2.52) 

 
La DEP de algunos procesos, como la inestabilidad del sesgo (bi(t), Ec. (2.36)) o el 
ruido de rampa (r(t), Ec. (2.37), son funciones racionales pero impares de f.  Por esta 
razón admiten modelos markovianos lineales pero sólo a parámetros distribuidos, es 
decir, de dimensión infinita*.  
 
En la práctica se recurre entonces a aproximar la DEP de estos procesos mediante 
expresiones racionales pares en f, a partir de las cuales, usando la igualdad (2.51), se 
obtienen las correspondientes funciones de transferencias que caracterizan a los 
procesos markovianos aproximantes.  Por las razones expuestas al final del Párrafo 
2.5.1, no nos referiremos al ruido r(t), si en cambio a bi(t) presente en gran parte de los 
sensores comerciales de tipo MEMS además de manifestarse en un zona de intervalos T 
para la cual la incerteza de la medida del DA(T) es aún relativamente baja.  
 
Describiremos un procedimiento sencillo para hallar una función de transferencia 

( ; , )bi b bH s q T  como la (2.52) con la cual aproximar la DEP del proceso bi(t) previamente 

caracterizado por su grafica DA(T). Elegimos primeramente un segmento [Tmin,Tmax] que 

contenga la zona plana de la Fig. 2.22 y llamamos min maxBIT T T  al centro geométrico 

de la misma. De la grafica del ( )DA   markoviano de la Fig. 2.21 extraemos τ* y 

definimos el intervalo [τmin,τmax]=[Tmin/τ*,Tmax/τ*] con centro geométrico en Tb=TBI/τ*. 
                                                
* Junto con una interesante descripción del ruido 1/f, Keshner, (1982) demuestra que la salida del modelo 
a parámetros distribuidos de una línea de transmisión excitado con ruido blanco es un proceso del tipo 1/f. 
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Tomando el valor medio de la imagen de ese intervalo sobre el eje de ordenadas, que 
llamamos ηDAmax con η~1, imponemos (ver Fig. 2.22): max0.66BI DA . Usando ahora 

1/2

max 0.437( )b bDA q T  de la 2ª col. Tabla 2.3 proponemos finalmente los siguinets 

parámetros para sintetizar la función de transferencia aproximante de la forma (2.52): 
 

2 2

1
;

1.89

1 0.66 1.89 0.66

0.437 0.437

b BI

b

b BI

T T

BI BI
q

T T 



   
    

   

   (2.53) 

 
El resultado es que la aproximación cubre la zona plana de la Fig. 2.22, en tanto que el 
decaimiento monótono y simétrico de ( )DA   respecto de le cumbre en τ* hace 

despreciables sus efectos para T alejados de TBI. 
 
Para el caso del ejemplo de la Fig. 2.23, se consideró la década en [60,600]T   con lo 

cual resultó 190segBIT  , 100segbT   y 0.95   con un error relativo máximo para 

DA en ese intervalo del 5%. Tomando de la Fig. 2.23 el valor 0.66 0.01BI  , a partir de 
las (2.53) se obtiene finalmente la DEP del ruido de excitación: 6 25.7 10 [º / ]bq seg  . 

 
Como se dijo, el ruido de medida de un sensor inercial es la superposición de los 
procesos estocásticos supuestos independientes entre sí: ( ) ( ) ( ) ( ) ( )t n t w t bi t t     . 
Salvo el ruido blanco, es posible afirmar que cada uno de estos procesos admite una 
representación markoviana, al menos aproximada .  
 
Finalmente el modelo markoviano del ruido   de un sensor de una unidad inercial 
resulta dado por el siguiente sistema de ecuaciones diferenciales lineales: 
 

1

1

; (0, ( ) )

; (0, ( ) )

; (0, ( ) )

; (0, ( ) )

w w w

b b b b

n n n

w n n N t q

bi T bi n n N t q

T n n N t q

w bi n n N t q
   




  
  







  

  
   

 
 
 



   (2.54) 

 
Donde , , ,w b nn n n n  son ruidos blancos independientes, ,b bq T  surgen de la aproximación 

markoviana de bi(t), en tanto que 2

wq K  y nq  están consignados en la Tabla 2.3. Para 

nn    , en términos de la (2.22), las (2.54) se escriben matricialmente 

estableciendo: 
 

 

1

1

0 0 0
; 0 0 ;

0 0

1 1 1 ; ( , , );

w

b b

w b

nw
bi Z T n

nT

diag q q q
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
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

    
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n

Q

    (2.55) 

 
Cada componente del ruido vectorial 6

mξ   en la Ec. (2.11) tiene un modelo 

markoviano como las (2.54) caracterizable mediante los métodos expuestos en este 
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párrafo. Como el lector advertirá, es posible agregar los vectores de estado de cada uno 
de ellos en un vector ζ  y representar al ruido ξ , a partir de un dado instante t0, 

mediante un modelo markoviano de estado tal como:  
 

0; (0, ( ) ); ( ) . .(0, )

; (0, ( ) )

N t t v a

N t   

   

   

ζ ζ ζ ζζ ζ n n Q ζ P

ξ ζ n n Q

  


   (2.56) 

 
Donde: (0, ( ) )t n Q  y (0, ( ) )ntνn Q  son ruidos blancos continuos diagonales, 

mientras que ζP  es la matriz de covariancia del estado inicial. 

2.8 Performance y categorías de instrumentos inerciales  

Las Ecs. (2.56) completan el modelo de la UMI representado por las Ecs. (2.13). Fijada 
a estructura del modelo, las incertezas del mismo se suponen concentradas en el 
desconocimiento de los parámetros de su parte determinista ( ; )iμ p

  y en las 

estadísticas de los procesos que componen el ruido ξ .  

 
Los valores nominales de las componentes de ip  pueden encontrarse en las hojas de 

datos provistas por el fabricante posiblemente acompañada de su dispersión 
poblacional. Cuando la precisión sea importante para la aplicación, estos parámetros 
deberán sin embargo determinarse unidad por unidad en un laboratorio de ensayos 
siguiendo protocolos estandarizados llamados de calibración tales como los que 
establece la norma IEEE (Std. 1554, (2005)). 
 
Sin embargo, la respuesta de una UMI suele no obedecer en forma sistemática a un 
modelo matemático con parámetros fijos, hecho que, casi por definición, es mucho más 
acentuado en instrumentos de baja calidad (y bajo costo). Tanto en el laboratorio como 
en la navegación lo que importa es la estabilidad y repetibilidad de los parámetros. La 
primera esta referida a su variabilidad a lo largo del ensayo o de la navegación y la 
segunda, a cambios entre encendidos consecutivos de la unidad. Así, la incertidumbre 
paramétrica queda determinada, por un lado, por la calidad de la instalación 
experimental y de los procedimientos usados en el laboratorio de ensayo y, por otro, por 
la calidad del instrumento reflejada en su inestabilidad paramétrica posiblemente 
provocada por variaciones térmicas, envejecimiento, el estado instantáneo de 
movimiento (aceleración y velocidad angular) u otros efectos no modelables.  
 
Como se verá en el Capítulo 10 y fuera explicado en el Capítulo 1, en navegación 
integrada la calibración y la estimación del estado cinemático forman parte del mismo 
proceso de estimación de las incertidumbres presentes. Para esto, los filtros de fusión de 
datos deben tener en cuenta la inestabilidad paramétrica cosa que se realiza modelando 
los parámetros no como constantes sino como procesos brownianos perturbados por 
ruidos de potencia tanto más grande cuanto peor sea la calidad del instrumento. Como 
se analiza en Carrizo y otros (2014), esto tiene fuertes implicancias sobre la 
estimabilidad (reconstructiblidad estocástica) tanto de los parámetros como del estado 
cinemático.  
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Para asegurar la calidad de la navegación, estas deficiencias de estimabilidad pueden 
requerir agregar instrumentos de navegación a bordo que provean nueva información 
correlacionada con el estado cinemático (ver, por ejemplo, Castillo y otros (2013) y 
Castillo (2012)).   
 
Los parámetros más usados para calificar la performance de una UMI son: 
 

 Rango dinámico de cada instrumento 
 No-linealidad del factor de escala en % del rango 
 Ancho de banda AB[Hz]  
 Sensibilidades del sesgo y del factor de escala con la temperatura 
 Sensibilidades del sesgo y del factor de escala con la aceleración 
 Aceleración de sobre vida al choque en [g] 
 Inestabilidad del factor de escala 
 Desconocimiento en la alineación  
 Inestabilidad del sesgo 
 Ruido blanco continuo 
 Resolución 

 
La inestabilidad del sesgo (rate/acceleration bias instability en ingles) es expresada 
para los giróscopos en [º/hr] o en [º/seg] y para los acelerómetros en [mg] o [g], según 
sea el nivel de calidad.  
 
La potencia del ruido blanco continuo (rate white noise o acceleration white noise), se 
especifica mediante su DEP. También denominado ARW (angle random walk) o VRW 
(velocity random walk) según se trate de giróscopos o de acelerómetros y expresado 
según las siguientes formas equivalentes: 
 

DEPARW: 1[°/seg]/ Hz=1[°/seg] = 60[°/hr], 

DEPVRW: 1[g]/Hz=9,8[m/seg]/[seg] = 588[m/s]/hr]. 

 
La resolución está ligada a la potencia del ruido blanco y al ancho de banda AB del 
instrumento lo que conduce a las siguientes relaciones entre la resolución y el ARW o el 
VRW:  
 
Resolución del giróscopo [°/seg](rms)=  

={DEP[°/seg]2/[Hz]*AB[Hz]}1/2=ARW([°/seg]/[Hz])*AB[Hz] 

 
Resolución del acelerómetro [g](rms)= 

={DEP[g]2/[Hz]*AB[Hz]}1/2=VRW([g]/[Hz])*AB[Hz] 

 
Los instrumentos inerciales se clasifican según su calidad según las siguientes clases:  
 

• Calidad “Navegación”: Horas de navegación sin ayuda. 
• Calidad “Aviación”: Pueden alcanzan calidad navegación con ayuda externa 
• Calidad “Táctico”: Navegación sin ayuda en segundos o pocos min. Pueden 

alcanzar calidad navegación con ayuda externa. 
• Calidad “Regular (o rate grade)”: Sólo útiles con ayuda externa. 
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En particular para los giróscopos se considera además un nivel de calidad llamada de 
aviación. Las Tablas 2.4 y 2.5 indican los rangos de performance usuales establecidos 
para estas denominaciones así como las tecnologías más usadas al presente. 

 

Tabla 2.4: Categorías de Giróscopos. 
 

Tabla 2.5: Categorías de Acelerómetros. 
 
 

 

Parámetro/calidad Rate grade 
MEMS 

Tácticos MEMS 
IFOG 

Aviación RLG 
IFOG 

Navegación 
RLG IFOG 

ARW [°/h] >0,5 0,5-0,05 <0.05 <0,001 

Inestab. sesgo [°/h] >10 1-10 <0.1 <0,01 (1nm/hr) 

Inestabilidad del f.e. 
% 

0,1-1 0,01-0,1 <0.01 <0,001 

Rango dinám. [°/seg] 50-1000 >500 50-300 >400 

Ancho de Banda [Hz] >70 ~500 ~100 100-500 

Costo UMI $US 500-5K 5K-20K 20K-50K 50-100K 

Parámetro/Calidad Regular MEMS Tácticos Navegación 

Vel. browniana (VRW) [g/h] 0.5-5mg/Hz (airbag) 50-500 [mg/ Hz] <10 [g/ Hz] 

Inestabilidad del sesgo [g] 10-100[mg] 0.2-1[mg] 10-100 g 

Inestabilidad factor escala %. >1% 100-1000 ppm <100ppm 

Rango dinámico [g] 2-50 (airbag) >50 2-50 

Ancho de Banda [Hz] DC-400 50-300 50-300 
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Capítulo 3  
Cinemática de la Orientación 

 
 
Al igual que su posición, la orientación de un cuerpo en el espacio es relativa al sistema 
de referencia elegido. Los sistemas de referencias considerados en navegación son bases 
ortonormales, o sea, ternas de vectores de módulo unitario (versores) mutuamente 

ortogonales en el espacio euclidiano de dimensión 3: 3.  Dadas tres direcciones 

ortogonales o ejes en el espacio 3 subsiste la ambigüedad de decidir el sentido del 

versor que “orienta” a cada eje.  Existen sólo dos maneras de asignar “flechas” a estos 
ejes sin que una asignación pueda obtenerse a partir de la otra mediante alguna rotación 
de los tres ejes en su conjunto. A cada una de estas maneras las llamamos “orientación 
de la terna” y por definición llamaremos a una positiva y a la otra negativa.  Aunque 
definiremos más precisamente este concepto, la orientación positiva suele llamarse “de 
la mano derecha” por que corresponde a cerrar el primer versor sobre el segundo como 
los dedos sobre la palma de la mano derecha mientras que el pulgar de la misma mano 
indica la dirección del tercer versor.  Para evitar ambigüedades, por convención se 
adopta entonces la orientación positiva para las ternas de referencia.  
 
Un objetivo primordial de la navegación consiste en conocer en todo instante tanto la 
orientación del vehículo respecto de las diversas ternas de referencia relevantes para la 
aplicación en curso, cuanto, las transformaciones de coordenadas que vinculan a dichas 
ternas. Para describir y caracterizar matemáticamente la orientación relativa entre ternas 
se utilizan ciertos conjuntos de parámetros, llamados parametrizaciones, cuyos valores 
numéricos son actualizados permanentemente por el algoritmo de navegación. En este 
Capítulo se introducen las parametrizaciones de la orientación de un cuerpo más usadas 
en la práctica.  

3.1 Parametrizaciones de la orientación de un cuerpo en el espacio  

La Fig. 3.1 muestra dos ternas de vectores ortonormales de orientación positiva donde 
una de ellas {a} es considerada la de referencia y la otra {b} la de un cuerpo rígido 
dado. La condición de orientación positiva es equivalente a decir que el producto triple 
de sus componentes satisface: 
 

1 2 3 1 2 3( ) 1; ( ) 1     a a a b b b     (3.1) 

 
Los ejes de la terna {b} apuntan normalmente según direcciones del cuerpo de interés 
para la aplicación. Por ejemplo, en un vehículo el eje x suele estar en el eje longitudinal, 
cercano a la dirección del desplazamiento y los otros dos en un plano ortogonal con uno 
de ellos paralelo a la vertical en condiciones nominales de movimiento.  Se supondrá 
que la terna {b} se obtiene trasladando la terna {a} paralela a sí misma al centro de 
coordenadas de la terna {b} (punto p de la localización del cuerpo) y aplicándole una 
rotación continua arbitraria en un intervalo de tiempo [to,t) tal que {b(to)}{a}.   
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Interesa definir un conjunto de parámetros que caractericen la orientación* de cualquier 
terna {b} respecto de otra {a}. Las parametrizaciones más usuales de la orientación de 
un cuerpo son: 
 

 La matriz de cosenos directores (MCD). 
 El eje y el ángulo de Euler.  
 Los ángulos de Euler.  
 Los parámetros simétricos de Euler o cuaterniones.  

 
El propósito de este Capítulo es introducir dichas parametrizaciones junto con las 
ecuaciones cinemáticas que describen su variación con el tiempo. No es de extrañar que 
estas parametrizaciones estén íntimamente relacionadas con un clásico teorema de Euler 
(1707-1783) sobre las rotaciones de un cuerpo con un punto fijo en el espacio.  Por esta 
razón, previo a introducir las parametrizaciones de la orientación, estudiaremos las 
rotaciones arbitrarias alrededor de un punto, lo cual nos conducirá a formular el 
mencionado teorema de Euler.  

3.2 Rotaciones en 3  

El vector velocidad lineal instantánea v(t)3 de un punto p3 en rotación alrededor 

de un eje, posiblemente variante en el tiempo, que contiene al origen de coordenadas O, 

fijo en el espacio euclidiano 3, está dada por el producto vectorial:   

 
( ) ( ) ( ) ( )t t t t  v p ω p    (3.2) 

 

Donde el vector (t)3 tiene la dirección del eje de rotación y la magnitud de la 

velocidad angular instantáneos (ver Fig. 3.2).  Denotando ax  al elemento de 3 

constituido por las coordenadas del vector x3 respecto de una dada terna ortonormal 

                                                
* En ingles “attitude” dio lugar al anglisismo “actitud”, usual en la jerga técnica en nuestro idioma.  

ba 

a1 

a3 

a2 

P 

b1 

b2 

b3 

a1 

a3 

a2 

Figura 3.1: Orientación relativa de dos ternas en el espacio 
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positiva {a} centrada en el origen O, la Ec. de rotación (3.2) se expresa en coordenadas 
de la terna {a} como: 
 

0 0( ) ( ) ( ) ( ( )) ( ); ( )a a a a a a at t t t t t   p ω p S ω p p p    (3.3) 

 

 
en la cual , ( ), ( )a a at tp p ω son vectores de 3  y se introdujo el operador matricial del 

producto-vectorial ( a ω ) expresado mediante la matriz anti-simétrica: 
 

3 2
3 3

3 1

2 1

0

( ) 0 ( ) ( ) ; , ; ,

0

a a

a a a a a a a a

a a

 
         
  

S ω ω p S ω p ω p ω p 
 

 
 

  (3.4) 

 
La siguiente propiedad del operador ( )S  puede probarse por simple sustitución y será 

de utilidad en el resto de este libro: Sean  yu v  dos vectores de 3  cualesquiera, 
entonces: 
 

( ) ( ) ( ) ( ) ( )  S u v S u S v S v S u     (3.5) 
 
La solución de una ecuación diferencial lineal variante en el tiempo como la (3.3) se 
obtiene mediante la matriz de transición de estado (o matriz fundamental) 0( , )a t tC  

como sigue (ver por ejemplo Zadeh/Desoer, 1963): 
 

0 0

0 0 0 0

( ) ( , ) ( );

( , ) ( ( )) ( , ); ( , )

a a a

a a a a

t t t t

t t t t t t t I



 

p C p

C S ω C C    (3.6) 

 
Las Ecs. de rotación (3.6) describen la evolución temporal a partir de t0 de las 
coordenadas del punto móvil p respecto de la terna fija {a}, cuando p es sometido a una 
rotación caracterizada por el vector velocidad angular instantáneo (t). 
 
Enunciamos dos propiedades importantes de la solución matricial 0( , )a t tC  de la (3.6) 

denominada en este contexto matriz de rotación. 
 

(t) 

p 

( )t p ω p  

O 

a3 

a2 a1 

Figura 3.2 



Martín España Comisión Nacional de Actividades Espaciales  

 64 

Propiedad 1:  

Para todo t y t0, la matriz de rotación a coeficientes reales 0( , )a t tC  solución de (3.6) es: 

 

0 0) Ortogonal (unitaria) :  ( , ) ( , )a T ai t t t t IC C       (3.7) 

1 2 3 0) Propia : ( ) ( ( ) ( )) det( ( , )) 1aii t t t t t    c c c C     (3.8) 

 
Donde 1 2 3( ), ( ), ( )t t tc c c  representan las columnas de 0( , )a t tC . 

 
Demostración: Usamos primeramente (3.6) y la definición (3.4) para obtener:  
 

0 0 0 0 0 0

0 0

( , ) ( , ) ( , ) ( ( )) ( , ) ( , ) ( ( )) ( , )

( , ) ( ( ( )) ( ( )) ( , ) 0

a T a a T a T a a T a a

a T a a a

d
t t t t t t t t t t t t t t

dt

t t t t t t

 

   

C C C S ω C C S ω C

C S ω S ω C

  

 
De la anterior surge que: 0 0 0 0 0 0( , ) ( , ) constante ( , ) ( , ) ;a T a a T at t t t = t t t t I t  C C C C  lo 

que prueba i).  Usando ahora la propiedad del determinante de un producto de matrices 
y la ortogonalidad de 0( , )a t tC  (Ec. (3.7)) se tiene:  
 

 2

0 0 0 0det( ( , ) ( , )) det( ( , )) 1 det( ( , )) 1a T a a at t t t t t t t t     C C C C  (3.9) 

 
Por la continuidad de la solución de la ecuación diferencial (3.6) respecto de sus 
condiciones iniciales y de la función determinante, dado que 0 0det( ( , )) 1a t t C , sólo 

puede ser 0 0det( ( , )) 1,a t t t t  C . Teniendo en cuenta que la primera igualdad de (3.8) 

surge de la definición de determinante, esto prueba finalmente ii).  
 

Como consecuencia de (3.7), 0( , )a t tC  preserva el producto escalar y en particular la 

norma del vector inicial 0( )a tp . En efecto, sean ( )a tp  y ( )a tq  dos soluciones de las 

Ecs. (3.6) con condiciones iniciales, respectivamente, 0( )a tp  y 0( )a tq , entonces: 

0 0 0 0 0 0( ) ( ) ( ) ( , ) ( , ) ( ) ( ) ( )a T a a T a T a a a T at t t t t t t t t t p q p C C q p q , t . 

 
Como 0 0det( ( , )) 1,a t t t t  C  la matriz 3 3

0( , )a xt t C   no tiene valores propios nulos, 

por lo tanto, si ( ( ), ( ))t t u  es un par valor/vector propios posiblemente complejos de 

0( , )a t tC , entonces de (3.7) se tiene que: 

 

0

2 2 2 2

0

( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( ) ( ) 1;

a

a

t t t t t

t t t t t t t t

 

    

C u u

C u u u



 
  (3.10) 

 
Como además sus valores propios cumplen que 1 2 3 0det( ( , )) 1a t t    C , siendo 

0( , )a t tC  real, por (3.10), al menos uno de ellos debe ser: 1( ) 1t   y los otros tales que 

2 3( ) ( )t t   con 2 3( ) ( ) 1t t    (esto incluye el caso 1 2 3( ) ( ) ( ) 1t t t      
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correspondiente a la “no rotación” 0( , )a t t IC , lo que ocurriría, por ejemplo, si (t)  

0).  La existencia de al menos un valor propio unitario de 0( , )a t tC  permite enunciar la: 

Propiedad 2:  
Toda matriz de rotación solución de la ecuación de rotación (3.6), admite en cada 

instante t un eje invariante ( )tθ
 * tal que †: 

 

0( ) ( , ) ( )at t t tθ C θ
 

  (3.11) 

 

3.3 Matriz de cosenos directores (MCD)  

Consideremos dos ternas ortonormales y propias {a} y {b} que comparten el mismo 
origen O en todo t (ver Fig. 3.3).  
 

 

Sea un vector fijo p3 expresado simultáneamente según ambas ternas como: 
a b
i i i i

i i

p p  p a b . Por ser {a} y {b} ortonormales se tiene que 

, ; ( ) ,a b
i i i ip p t     p a p b , donde ,   indica el producto escalar en 3, de modo que 

las coordenadas del mismo punto según ambas ternas quedan vinculadas por  
 

, , ( , )

; ( , )

a b b a b
j i i j j i i b ii i i

a a b a a
b b b

p p p c j i p

c j i

     

    

  b a a b

p C p C
 (3.12) 

 
Siendo a

bC  la matriz que transforma las coordenadas del vector p expresado, 

respectivamente, en las ternas {a} y {b} y cuyos elementos son los cosenos directores: 

,( , ) , cos( )a
b j i j ic j i     a b  (ver Fig. 3.4).  Así mismo intervirtiendo en las anteriores 

                                                
* En el caso trivial de no rotación todo eje es invariante; x


 denota al versor unitario de x. 

† En lo sucesivo denotamos con x


 al versor unitario correspondiente a un dado vector x. 

Figura 3.3: Rotación de una terna {b} respecto de una terna fija {a}. 

a3 

a2
 

a1 

b3 

b2 

b1(t) 

( )ab tω

• p 

O 
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los elementos de {a} y {b} llegaríamos a que b b a

ap C p  con ( , )b b
a ac j i   C  con 

( , )b
ac j i = , , ( , )a

j i i j bc i j b a a b  con lo cual se tiene que 1( ) ( )a a T

b b

 C C : 

 
( ) ;b b a a T a a

a b  p C p C p p    (3.13) 

 
Con lo cual una MCD es siempre una matriz ortogonal y unitaria (Propiedad 1) que 
transforma las coordenadas entre dos ternas ortonormales positivas. La composición de 
rotaciones o de cambios de coordenadas puede obtenerse mediante el simple producto 
usual entre matrices. Esta propiedad la convierte en una de las parametrizaciones 
fundamentales de la orientación de un cuerpo tanto desde el punto de vista práctico 
como teórico.  Destacamos, sin embargo, que la ortonormalidad de sus columnas 
impone las siguientes 6 condiciones entre ellas:  
 

0,

1,
T

i j

si i j

si i j


  

c c    (3.14) 

 
con lo cual, 6 de los 9 parámetros que caracterizan la MCD resultan redundantes aunque 
sea necesario actualizar a todos durante la navegación.  Más aun, en cada instante de 
actualización deben validarse numéricamente las condiciones (3.14) a riesgo de falsear 
resultados provenientes de suponer erróneamente que ( )a T b

b aC C . Esta desventaja tiene 

como lado positivo la posibilidad de usar la redundancia paramétrica precisamente para 
validar el cálculo y supervisar la propagación de errores. En ciertas aplicaciones las 
desventajas pueden hacer sin embargo preferible otras parametrizaciones como las que 
introduciremos más adelante. 

3.3.1 Propiedades de las MCD 
A continuación enunciamos algunas propiedades de las MCD, consecuencias directas de 
las Propiedades 1 y 2, que son de interés en el desarrollo de este libro. Las mismas se 
encuentran en textos básicos de álgebra de matrices por lo cual, dejamos al interés del 
lector las demostraciones de las mismas.  
 

Figura 3.4 

b3 

b2 

b1 

a2
 

a1 

2,3 

(2, 2)a
bC

(3,2)a
bC

a3
 



Martín España Comisión Nacional de Actividades Espaciales  

 67 

Sea b

aC  la MCD que transforma las coordenadas entre dos ternas arbitrarias 

ortonormales y propias {a} y {b} entonces se cumple que: 
 
MCD1: Toda MCD es autoadjunta  MCD=adj(MCD). 
MCD2: Sean au  y av  las coordenadas de un vector según la terna {a}, entonces: 

b

aC ( a au v )= b bu v . 

MCD3: ( ) ( ) ( ) ( ) ( )b b a b a a a b a a
a a b b b   S u S C u C S u C C S u S u C . 

3.3.2 Cinemática de la MCD 

Consideramos una rotación impulsada por la velocidad angular instantánea ( )ab tω  

desde la terna fija {a} a la terna "móvil" {b(t)} para 0t t  y tal {b(to)}={a}.  Ambas 

ternas comparten el mismo origen O en todo t. Dado que {a} es propia, por la 
Propiedad 1 también lo será {b(t)} para 0t t .  De acuerdo con la (3.6) los elementos de 

la terna {b(t)} expresados en {a} están dados por:  
 

   1 2 3 0 1 2 3 0

0 0 0 0

( ) ( ) ( ) ( , ) ;

( , ) ( ( )) ( , ); ( , )

a a a a a a a

a a a a

ab

t t t t t t t

t t t t t t t I

  

 

b b b C a a a

C S ω C C
  (3.15) 

 
Pero, cada componente ia  expresado en {a} es, claramente, a

i ia e , la i-ésima columna 

de la identidad matricial I3.  Si ahora a partir de (3.15) evaluamos los cosenos ( , ; )a
bc j i t  

obtenemos: 
 

0 0

0

( , ; ) , ( ) ( ) ( , ) ( , )( , )

( ) ( , )

a a T a a a
b j i j i

a a
b

c j i t t t t t t j i

t t t

     



a b a C a C

C C
  (3.16) 

 
Con lo cual, la matriz de cosenos directores (MCD) que transforma las coordenadas de 
un punto expresado en terna {b(t)} en las coordenadas del mismo punto expresado en 
terna {a} ( a a b

bp C p ) es la solución de la siguiente ecuación diferencial matricial. 

 

0( ( )) ; ( )a a a a

b ab b bt t I C S ω C C    (3.17) 

 
En forma más general, la condición inicial de la ecuación anterior podría ser 0( )a

b t IC  

indicando una rotación inicial no nula entre {b(t0)} y {a}, de esta forma formulamos la 
ecuación general de la cinemática de la MCD como:  
 

( , ) ( ( )) ( , ); ( , ) ( )a a a a a
b o ab b o b o o b ot t t t t t t t C S ω C C C    (3.18) 

 
Dado que ( )b a T

a bC C , la ecuación diferencial para b
aC  se obtiene trasponiendo al Ec. 

(3.18) y usando la propiedad de antisimetría de la matriz definida en (3.4):  
 

( , ) ( , ) ( ( )) ( , ) ( ( )) ( , ) ( ( ));b b T a b a b a
a o a o ab a o ab a o bat t t t t t t t t t t   C C S ω C S ω C S ω  (3.19) 
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De la (3.18) y (3.19) resulta que, según en que sistema de coordenadas esté expresada la 
velocidad angular ( )ab tω , la ecuación de propagación de la MCD a partir de la 

condición inicial arbitraria: ( , ) ( )a a
b o o b ot t tC C  (o su transpuesta según corresponda) se 

escribe: 
 

( , ) ( ( )) ( , ) ( , ) ( ( )) ( , )

( , ) ( , ) ( ( )) ( , ) ( , ) ( ( ))

a a a b b b
b o ab b o a o ba a o

a a b b b a
b o b o ab a o a o ba

t t t t t t t t t t

t t t t t t t t t t

  

  

C S ω C C S ω C

C C S ω C C S ω

 

 
 (3.20) 

 

3.4 Angulo vectorial de rotación o eje y ángulo de Euler  

De acuerdo con la Propiedad 2, el resultado final de una rotación arbitraria de un 
cuerpo alrededor de un punto fijo equivale a una rotación única alrededor de un eje 
invariante. El eje es la dirección propia de la matriz de rotación entre la terna inicial y la 
final y se corresponde con el único valor propio real y unitario de la MCD del cambio 
de coordenadas. La importancia de esta conclusión justifica estudiar más en detalle las:  

3.4.1. Rotaciones alrededor de un eje de dirección invariante  

Cuando la velocidad angular ( )ab tω  se mantiene paralela a sí misma (ver Fig. 3.5), el 

ángulo vectorial ( )ba tθ  rotado por la terna {b} desde {b(t0)}={a} hasta {b(t)}; 

( ( ) : } ( )})ba t t θ a b  es tal que ( )ba tθ  es paralelo a ( )ab tω  para todo t y entonces se 

expresa mediante la integral vectorial: 
 

( ) ( ) ;
o

t

ba abt
t d  θ ω    (3.21) 

 
Claramente, en este caso, la dirección del vector ( )ba tθ  coincide con la del eje 

invariante de la rotación llamado eje de Euler. El módulo ( ) ( )ba bat t  θ , llamado 

ángulo de Euler, es el ángulo efectivo rotado positivamente (en el sentido horario) 
alrededor del eje de Euler en el intervalo  0 ,t t  cuando el vector ( )ba tθ  es mirado desde 

el origen.  Por tratarse de un eje invariante, ( )ba tθ  tiene las mismas coordenadas tanto 

en {a} como en {b(t)}, lo que justifica suprimir el superíndice sin riesgo de ambigüedad 
en la notación, lo mismo ocurre en este caso con ( )ab tω . 

 

Figura 3.5: Rotación con eje invariante de {b} respecto de la {a}. 
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Es fácil demostrar que puesto que ( )ba tθ  y ( )ab tω  son paralelos, las siguientes matrices 

conmutan (de hecho en cualquier instante de tiempo ambas matrices son 
proporcionales). 

 

( ( )); ( ( )) ( ( ))
o

t

ab ba abt
t t d  S ω S θ S ω    (3.22) 

 
bajo estas condiciones, la ecuación diferencial (3.17) admite una solución explícita (ver 
por ejemplo Zadeh/Desoer 1963, pp. 340) para la matriz de rotación o MCD. El lector 
podrá verificar por simple sustitución en (3.17) la solución que escribimos a 
continuación. 
 

( ) exp ( ( )) exp( ( ( ));
o

ta
b ab bat

t d t      C S ω S θ    (3.23) 

 

3.4.2 Relación del ángulo vectorial de Euler con la MCD 
Claramente, siempre será posible rotar una terna respecto de otra un ángulo vectorial 

baθ  arbitrario mediante una velocidad angular paralela a dicho ángulo (incluso 

constante). Esto permite re-expresar la Ec (3.23) prescindiendo de la variable t y así 
obtener la MCD que transforma las coordenadas entre dos ternas en función del vector 
ángulo que transfiere una en la otra.  
 
Sea : } }ba  θ a b  y ( ) exp( ( ))a

b ba ba C C θ S θ . Usando la definición de la 

exponencial de una matriz (Zadeh/Desoer, 1963 o Titterton/Weston, 1997, pp. 296) y 
luego de manipular algunas series trigonométricas se obtiene la siguiente expresión para 
la MCD del cambio de coordenadas en función del ángulo vectorial baθ . 

 

2
2

sen (1 cos )
( ) exp( ( )) ( ) ( )a ba ba

b ba ba ba ba
ba ba

  
   

 
C C θ S θ I S θ S θ  (3.24) 

0

; ( ) 0 ;

0

x z y

ba y ba z x ba ba

z y x

-

-

-

     
         
        

θ S θ θ     (3.25) 

 
Puesto que 2( ) 0 ( )ba ba ba ba ba ba   S θ θ θ θ S θ θ , de la Ec. (3.24) resulta que 

a
b ab abC θ θ . Claramente y en concordancia con la Propiedad 2, baθ  es paralelo a una 

dirección propia de a
bC  con valor propio unitario.  

 
A partir de la representación eje y ángulo de Euler: ( , )ba ba ba θ θ


 e introduciendo el 

divisor ba  al interior de ( )baS θ , de la Ec. (3.24) se obtiene la fórmula de rotación de 

Rodrigues para la MCD: 
 

2exp( ( )) sen ( ) (1 cos ) ( )a
b ba ba ba ba ba-     C S θ I S θ S θ

 
  (3.26) 
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Destacamos que, por definición, el ángulo vectorial baθ  progresa en el sentido inverso al 

del operador matricial de cambio de coordenadas, es decir: mientras que baθ  denota el 

ángulo rotado desde la “terna inicial” {a} hasta la “terna final” {b}, a
bC  opera sobre las 

coordenadas en la “terna final” {b} para obtener las coordenadas en la “terna inicial” 
{a}.  También es posible expresar a

bC  en función del ángulo rotado abθ  invirtiendo el 

signo del argumento de la exponencial en la Ec. (3.26).  
 
De la Ec. (3.24) se obtiene la siguiente relación que permite calcular el ángulo de Euler 
a partir de la MCD. 
 

( ) 1
( ) ( ) 1 2cos cos( )=  

2

a
a b b
b a ba ba

traza
traza traza


     

C
C C   (3.27) 

 
Notar que la ( )a

btraza C  es sólo función del módulo del ángulo rotado y no de las 

coordenadas del eje de rotación.  A partir de las Ecs. (3.26), reexpresadas como sigue: 
 

2

2

2

exp( ( ))

cos (1 cos ) (1 cos ) sen (1 cos ) sen

(1 cos ) sen cos (1 cos ) (1 cos ) sen

(1 cos ) sen (1 cos ) sen cos (1 cos )

a
b ba

x x y z x z y

x y z y y z x

x z y y z x z



                   
                  

                  

C S θ
      

      
      


 
 
  

(3.28) 

 
surgen las siguientes relaciones que permiten calcular el eje de Euler a partir de la MCD 
cuando sen 0ba  :  

 

  ( (3, 2) (2,3)) / 2sen ;

( (1,3) (3,1)) / 2sen ;

( (2,1) (1,2)) / 2sen

a a
x b b ba

a a
y b b ba

a a
z b b ba

    

    

    

C C

C C

C C





   (3.29) 

 
Si bien la Ec. (3.29) es indeterminada cuando sen 0ba  , la Ec. (3.27) permite decidir 

previamente si no hay rotación alguna, en cuyo caso cos( )=1 =a
ba b I  C  o bien si 

cos( )= 1ba -  y en tal caso las coordenadas del versor baθ


 se obtienen usando: 

 

(2,1) (2,1) (1,3)
; ;

(2,3) (3,1) (2,3)
yx x

z z y

 
  
  

C C C

C C C

 
      (3.30) 

 
Cuando sen 0ba  , las dos soluciones de la Ec. (3.27) de signo opuesto para ba  se 

corresponden con dos soluciones de las Ecs. (3.29) con sentido opuesto para el eje de 

Euler. Esto refleja el hecho de que una rotación de un ángulo ba  alrededor de baθ


 es 

equivalente a una rotación de un ángulo ba  alrededor de baθ


.  

 
De las Ecs. (3.24) a (3.30) y la Propiedad 2 se concluye que: es posible asociar a cada 
MCD una rotación uniforme alrededor de un eje invariante. En otros términos el 
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resultado de cualquier rotación equivale a una única rotación descrita por un ángulo 

vectorial θ  de módulo   y eje θ


.  Este resultado es clásicamente expresado por el: 
 

Teorema de Euler  
El resultado final de cualquier movimiento de un cuerpo rígido con un punto fijo es 
indistinguible de una rotación alrededor de un único eje invariante: el eje de Euler.  

 

Entre las ventajas de la representación del ángulo vectorial de Euler destacamos la de 
requerir el número mínimo de parámetros (las 3 componentes de 3

ba θ   o dirección y 

módulo), además, su claro sentido geométrico resulta de interés en muchas aplicaciones. 
Sin embargo, como veremos, no posee una regla sencilla de composición. Además, la 
falta de redundancia de sus parámetros no permite supervisar errores numéricos como 
en el caso de la MCD o el cuaternión -que veremos más adelante. 

3.4.3 Composición de rotaciones 
El cambio en la orientación de un cuerpo sometido a una secuencia de rotaciones no es 
sólo función de las rotaciones individuales, sino también del orden en que estas son 
aplicadas. Matemáticamente esto se enuncia diciendo que “el grupo de las rotaciones no 
es conmutativo.”   
 
Sean las ternas {a} {b} y {c} en E3  ortonormales y positivas que comparten el origen O 
y sean 3

ba θ   y 3

cb θ   los ángulos de Euler tales que 

 
: } } ( ) exp( ( ))

: } } ( ) exp( ( ))

a

ba b ba ba

b

cb c cb cb

    

    

θ a b C C θ S θ

θ b c C C θ S θ
   (3.31) 

 
Denotamos la composición de ambas rotaciones como 
 

ca cb baθ θ θ   (3.32) 

 
es por definición, el único vector ángulo 3

ca θ   tal que:  

 
: } } ( ) exp( ( ))a

ca c ca ca    θ a c C C θ S θ    (3.33) 

Pero además:  
 

( ) ( ) ( ) ( )a a b

c b c ca cb ba ba cb   C C C C θ C θ θ C θ C θ   (3.34) 

 
Como se advierte fácilmente de la ley de composición (3.34), la no conmutatividad de 
las rotaciones es una consecuencia directa de la no conmutatividad del producto 
matricial ( a b b a

b c c bC C C C ).  

 
Usando, en primer lugar, el hecho de que la exponencial de una matriz preserva la 
relación de similitud, es decir: 1 1exp( ) exp( )     A A , y luego la propiedad MCD3: 

( ) ( )a b a b b
b b aS C u C S u C , a partir de la (3.34), luego de algunas manipulaciones, es posible 

demostrar que: 
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( ) exp( ( )) exp( ( )) ( ) ( )

exp( ( )) exp( ( )) ( ) ( )

a a a a

cb ba b cb b cb b b cb ba

b b c c

ba c c b ba cb b ba

S S

S S

  

  

C θ θ C θ C θ C C C θ C θ

θ C C C θ C θ C C θ


  (3.35) 

 
A partir de lo cual se obtienen las expresiones equivalentes: 
 

c a

cb ba b ba cb ba b cb θ θ C θ θ θ C θ      (3.36) 

3.5 Espacio vectorial de las pequeñas rotaciones 

Veremos, que cuando las rotaciones son lo suficientemente pequeñas, éstas no sólo 
conmutan, si no que además constituyen (son isomorfas con) un espacio vectorial. 
 

Sea θ θ


   un ángulo vectorial pequeño con   y θ


 versor de Para 0   es 
posible escribir: 
 

exp( ( )) ( ) ( )    S θ I S θ o    (3.37) 
 
Donde la matriz residual ( )o  es tal que*: 
 

2

0

( )
lim 0







o

   (3.38) 

 
De este modo la Ec. (3.37) justifica la siguiente aproximación de primer orden cuando 

0   
 

exp( ( )) ( )  S θ I S θ    (3.39) 
 
Sean ,    tal que max( , )    y dos versores no necesariamente colineales 

1 2yv v . Consideremos la composición de ángulos 2 1v v   cuya MCD es por 

definición: 
 

1 2 2 1 2 1

2 1

1 2 1 2

( ) ( ) ( ) exp( ( ))exp( ( ))

[ ( ) ( )][ ( ) ( )]

( ) ( ) ( ) ( ) ( )

o

 

    

       

C v v C v C v S v S v

I S v o I S v

I S v S v o I S v v o

     
   
     

 (3.40) 

 
De la última igualdad y la expresión (3.37) resulta trivialmente que para 0  : 
 

2 1 1 2 1 2( ) ( ) ( )C v v C v v C v v              (3.41) 

 
Lo que nos permite concluir que para ángulos suficientemente pequeños la composición 
de rotaciones es conmutativa y se corresponde con la composición vectorial de los 
ángulos involucrados.  

                                                
*

2
M  indica la norma euclidiana inducida de la matriz M  
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3.6 Diferencial de una MCD 

Sean, como se indica en la Fig. 3.6, la terna de “partida” {a} y la de “llegada” {b}, 
distantes de un ángulo vectorial baθ , las ternas nominales de la transformación de 

coordenadas a
bC  y sean { â } y { b̂ } posibles estimaciones de las ternas nominales, 

separadas, respectivamente de las primeras, por pequeños ángulos de "desalineamiento" 
vectoriales ˆa aa    en la terna de "partida" y 

b̂bb    en la terna de "llegada". 

 

 
A partir de la Fig. 3.6, se tiene ˆ ˆ ˆˆ ba aaba bb

θ θ θ θ  .  La ley de composición de rotaciones 

(3.32)-(3.34) permite escribir:  
 

ˆ ˆ

ˆ ˆ ( ) ( )a a a b a

a b a b bb b
   C C C C C θ C C θ     (3.42) 

 
Usando la (3.35) y (3.36), es posible demostrar las dos siguientes expresiones 
equivalentes de la (3.42): 
 

ˆ

ˆ ( ) ( ) ( )

( ) ( ) ( )

a a a a a

a b b b ba bb

a b a b

b a a b b ba

    

     

C C θ C C θ C C θ C

C C C θ C θ C C θ
    (3.43) 

 
en las cuales, invocando la ley de composición (3.34), se introdujeron las definiciones: 

( )b b

ba b a a   θ θ C θ   y ( )a a

ba b b a  θ C θ θ  . El mismo razonamiento que conduce a 

las (3.43), permite demostrar que: 
 

b b a

ba a baθ C θ    (3.44) 

 
de modo que se trata del mismo error angular vectorial expresado en ambas ternas de 
coordenadas. Geométricamente, el error angular baθ  es la composición del error 

angular en la terna de llegada con el error angular en la terna de partida cambiado de 
signo. Notar la imposibilidad de distinguir las contribuciones independientes de los 
desalineamientos ya b θ θ , respectivamente, en la terna de "partida" y en la terna de 

"llegada", sobre baθ  que por tanto es visto como el error en el ángulo vectorial baθ  

entre ambas ternas. 
 
Conocido ab ba θ θ   la MCD nominal podrá reconstruirse a partir de su estimación 

mediante cualquiera de las formas: 

Figura 3.6: Ternas a, b con sus aproximaciones. 

a
â

b

b̂ b

a

b
aC

baθ

ˆ ˆba
θ

O
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ˆ ˆ

ˆ ˆexp( ( )) exp( ( ))a a a a b

b ab abb b
   C S θ C C S θ     (3.45) 

 
Para ab   , la Ec. (3.37) junto con las Ecs. Ecs. (3.43) a (3.45) permiten calcular la 

variación ˆ
ˆ

a a a
b b b

 C C C  según las coordenadas en que esté expresada la diferencial 

angular abθ : 

 
ˆ
ˆ ( ) ( ) ( ) ( )a a a a b a a

b b b ab ab bb
S S         C C C C θ o θ C o   (3.46) 

 
Siempre que max( , ) / 2b a     y para   suficientemente pequeño la propiedad de 

espacio vectorial de las pequeñas rotaciones permite afirmar que b b

ab a a b   θ C θ θ  ó 
a a

ab a b b   θ θ C θ  y además ab   . Así, la parte lineal de la variación en las (3.46) 

para 0  establece las siguientes dos formas alternativas de la diferencial de una 
MCD 
 

( ) S( )

( ) S( )

a a b a b

b b ab b a b

a a a a a

b ab b a b b

    

    

C C S θ C θ θ

C S θ C θ θ C





    (3.47) 

 

3.7 Redefinición de la velocidad angular: significado geométrico  

 
Retomamos la representación de la velocidad angular entre dos ternas ortonormales 
positivas con origen común. De acuerdo con lo visto al final del párrafo anterior, 
supondremos, sin pérdida de generalidad, que la terna {a} es fija y que la terna {b(t)} 
rota diferenciablemente respecto de la primera a la velocidad angular abω  (ver Fig. 3.7). 

Sean: ( )ba tθ  y ( )a
b tC  el ángulo y la MCD que vinculan ambas ternas en el instante t, 

: ( )} ( )}
b b

t t
 θ b b  el ángulo rotado por la terna {b(t)} entre t y t+t y 

( )

( ) ( )
( ) ( )a a a b t

b bb t b t
t t t    C C C C  la MCD que vincula ambas ternas en t+t. 

Consideramos la variación: 
 

( )

( )
( ) ( ) ( )( ) ( )(exp( ( ) )a a a a b t a

b b b b bb t b b
t t t t I t I         C C C C C C S θ  (3.48) 

 
Por la diferenciabilidad de la rotación se tiene que 0 0

b b
t      . Usando la (3.37) 

calculamos el límite del cociente incremental:  
 

Figura 3.7: Rotación relativa entre 2 ternas. 

a

( )tb

( ) ( )t t t   b b

( )ba tθ
b̂b

θ
ab 

O 
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0 0 0
lim (lim ) (lim )

a
a a a ab b b b b
b b b bt t tt t t

 

     


  

  

θ θC
C C S S C C     (3.49) 

 
De este modo, comparando con (3.20) se tiene que: 
 

0
( ) lim ; ( ) ( )b a a bb b

ab ab b abt
t t t

t


 
 



θ
ω ω C ω     (3.50) 

 
Lo cual nos dice que ( )ab tω  resulta ser la velocidad angular vectorial instantánea con 

que la terna {b(t)} "se aleja" respecto de la terna de referencia {a}. 

3.8 Rotaciones alrededor de los ejes coordenados: Ángulos de Euler  

Particularizamos ahora las expresiones (3.24) a (3.26) para el caso de rotaciones 
alrededor de los ejes coordenados x, y, z (llamadas rotaciones elementales de Euler; ver 
Fig. 3.8).  

 
Ejemplificamos con una rotación positiva  alrededor del eje x, descrita en coordenadas 
como  φba 1e .  Calculamos primeramente los términos: 

 

2 2 2

2

0 0 0 0 0 0 0 0 0

( )= 0 0 ; ( )= 0 0 0 1 0 ;

0 0 0 0 0 0 1
1 1

     
               

           

S e S e  (3.51) 

 
que substituimos en la Ec. (3.24) para obtener la matriz de transformación de 
coordenadas (MCD) operando en el mismo sentido que la rotación:  
 

1 0 0

( ) exp( ( )) 0 cos sen

0 sen cos

 
        

    

C C φ Sb
a ba 1e    (3.52) 

 

1( )

1 0 0

0 cos sen

0 sen cos

b
a 

 
   

    

C C e
xa 

ya 

za 



yb zb 

2( )

cos 0 sen

0 1 0

sen 0 cos

b
a 

   
 
 

   

C C e

xa 
 



za 
 

ya 
 

3( )

cos sen 0

sen cos 0

0 0 1

b
a 

  
    
  

C C e



ya 
 

za 
 

xa 
 

Figura 3.8: Ángulos y rotaciones elementales de Euler. 
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Con un procedimiento similar se obtienen las respectivas MCD asociadas a las otras 
rotaciones elementales de Euler indicadas en la Fig. 3.8.  

3.8.1 Relación entre los ángulos de Euler y la MCD  
En la Fig. 3.9 se ejemplifica como una terna {b} de ejes xb, yb, zb, coincidente 
inicialmente con la terna de referencia {a} de ejes xa, ya, za, resulta de la secuencia de 
rotaciones elementales: (@xb)(@yb’)(@za) (léase: una rotación de un ángulo  
alrededor del eje zb, seguida de una rotación de un ángulo alrededor del eje yb’, 
seguida de una rotación de un ángulo  alrededor del eje xa) equivalente a la 
composición de los ángulos de 3 : '' '' ' ' 2 3   φ θ ψ   bb b b b a 1e e e .   

 

 
Componiendo matricialmente estas rotaciones se obtiene la MCD que transforma las 
coordenadas entre ambas ternas en función de los ángulos de Euler ,  y : 
 

1 2 3 bb'' b '' b ' b 'a( ) ( ) ( ) ( )

1 0 0 cos 0 sen cos sen 0

0 cos sen 0 1 0 sen cos 0

0 sen cos sen 0 cos 0 0 1

b b b'' b'
a b'' b' a     

         
               

              

C C C C C e C e C e C φ θ ψ 

   (3.53) 

 
cos cos cos sen sen

cos sen sen sen cos cos cos sen sen sen sen cos

sen sen cos sen cos sen cos cos sen sen cos cos

b
a

      
                 

                

C  (3.54) 

 
A partir de la (3.54), es fácil constatar la validez de las aproximaciones (3.40) y (3.41) 
aplicada reiteradamente para pequeños valores de , y   , en efecto, para 
max( , , ) 0    : 
 

'' '' ' ' 1 2 3

1

( ) 1 ( ) ( ) ( )

1
bb b b b a

  
          
   

C φ θ ψ I S e S e S e   (3.55) 

 

xa 

ya 

za=zb’ 

zb” 

yb’ 





xb’ 

xb”=xb 
 x’’’ 





 

 zb”’ 

yb”’ 

b= b”’ 

Figura 3.9: Composición de rotaciones elementales de Euler. 

b’ b” 

''
b
bC''

'
b
bC'b

aC

a 

''bbφ
'' 'b bθ'b aψ
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De la Ec. (3.54) se obtienen, asimismo, las siguientes relaciones inversas que permiten 
calcular los ángulos de Euler a partir de la MCD para la secuencia elegida. 
 

(2,3) / (3, 3))

(1, 2) / (1,1))

( (1,3))

arctan(

arctan(

arcsen

b b

a a

b b

a a

b

a

 

 

  

C C

C C

C

    (3.56) 

 
La última de las Ecs. (3.56) establece una ambigüedad para el valor de   que es 
subsanada imponiendo ( / 2, / 2]   . Sin embargo, cuando / 2   las 

expresiones para   y de las anteriores resultan indeterminadas.  En efecto, para cada 
uno de estos casos límites, la (3.54) se reescribe, respectivamente:  
 

0 0 1

: sen cos cos sen cos cos sen sen 0
2

sen sen cos cos cos sen sen cos 0

0 0 1

sen( ) cos( ) 0

cos( ) sen( ) 0

b
a

 
              

           
 

      
       

C

 (3.57) 

 
y análogamente: 
 

0 0 1

: sen cos cos sen cos cos sen sen 0
2

sen sen cos cos cos sen sen cos 0

0 0 1

sen( ) cos( ) 0

cos( ) sen( ) 0

b
a

 
                

            
 

       
         

C

 (3.58) 

 
Por lo que, según el caso, sólo será posible determinar la suma o la diferencia de los 
ángulos   y   Geométricamente lo anterior es consecuencia de que una rotación de 

90º del ángulo intermedio   hace que   y  devengan rotaciones alrededor de un 
mismo eje sumándose algebraicamente sus efectos. La indefinición de   y  , 

resultante del pasaje de   por las singularidades / 2 puede, sin ciertos recaudos, 
provocar la perdida definitiva del seguimiento del primer par de ángulos por parte de un 
algoritmo de navegación. Este fenómeno, observado inicialmente en plataformas 
estabilizadas, es denominado bloqueo de gimbal (gimbal lock en la literatura inglesa). 
 
Wertz, (1988, pp. 417) demuestra que cualquier rotación puede ser descompuesta en 
una secuencia de, a lo sumo, 3 rotaciones elementales de Euler no colineales. Esto 
equivale a afirmar que cualquier MCD puede expresarse como el producto de, a lo 
sumo, tres rotaciones elementales no colineales. Dados 3 ángulos de Euler , ,   es 
necesario aún especificar la secuencia i-j-k de los ejes alrededor de los cuales son 
aplicadas las rotaciones.  Una misma rotación resultante puede obtenerse usando 
cualquier secuencia de ejes siempre que no haya dos ejes consecutivos iguales (Wertz, 
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1988, Ap. E). Esto da lugar a 6 permutaciones con 3 ejes distintos (o de tipo I, tal como 
la secuencia 3-2-1 en el ejemplo (3.53)-(3.56)) más 6 secuencias con los ejes 1º y 3º 
coincidentes (ó de tipo II).  Así, 12 secuencias diferentes pueden dar lugar a una misma 
rotación resultante (y por consiguiente a una misma MCD) por lo que esta 
representación sólo resulta unívoca una vez especificada la secuencia de ejes elegida.  
Como el lector podrá advertir, las secuencias de tipo I conducirán siempre a 
singularidades para un valor del ángulo intermedio / 2    (ver Eqs. (3.56) a (3.58)). 
En cambio, para las secuencias del tipo II en que ik, la singularidad se presentará 
cuando el ángulo intermedio adopte el valor    condición, en este caso, para que 

y   constituyan rotaciones superpuestas alrededor de un mismo eje de la terna de 

referencia. Las ambigüedades de este caso son evitadas imponiendo (0, ]   
 
Su claro significado geométrico ha asegurado a esta parametrización una amplia 
difusión en aplicaciones tanto aeronáuticas, marítimas como espaciales.  Con el eje y 
ángulo de Euler esta representación comparte la ventaja de no poseer parámetros 
redundantes (dada la secuencia de ejes) aunque también la desventaja de una compleja 
regla de composición.  

3.8.2 Ecuación cinemática de los ángulos de Euler  
Como vimos, la triada de ángulos de Euler son rotaciones aplicadas en una dada 
secuencia alrededor de ejes preestablecidos de una terna {b} en rotación respecto de 
otra terna {a}. A continuación ilustramos el procedimiento para formular las ecuaciones 
cinemáticas para el caso desarrollado en el párrafo anterior, es decir, para la secuencia: 
(@x”)(@y’)(@z).  El lector podrá extender el procedimiento a otras secuencias de 
rotaciones.  Si la rotación fuese solamente, por ejemplo, alrededor de los ejes z ó x” la 
velocidad angular ab  entre las ternas sería, respectivamente: ab  z  ó ab " x . 

Cuando el cambio ocurre simultáneamente en los tres ángulos, la velocidad angular 
entre ambas ternas es la composición vectorial de las velocidades angulares en cada eje. 
Expresada en coordenadas de {b} dicha velocidad angular resulta. 
 

") ') )b b b b
ab    x y z    (3.59) 

 
Teniendo en cuenta la composición de MCD de la Ec. (3.53) y la Fig. 3.9, se determinan 
las coordenadas de b

ab  del siguiente modo: 

 
'

'") ')b b b b b b b b a
ab b aC C     x y z x y z      

 

'' 1
'' ' 321

1 0 0 1 0 sin
0 1 0 0 cos sin cos ( , )

0 sin cos cos0 0 1

b b b b
ab b b aC C C 

            
                    
                          

M
 

    
 

  (3.60) 

 
En la segunda de las (3.60) se usaron las relaciones: '

1 2 3; ;b b ae e e  x y z , donde ei es la 

i-ésima columna de la matriz identidad I3. La Matriz M321 convierte las derivadas de los 
ángulos de Euler para la secuencia elegida (321) en la velocidad angular.  Finalmente, la 
ecuación cinemática de los ángulos de Euler se escribe a partir de la Ec. (3.60), 
mediante: 
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321

1 sen tan cos tan
( , ) 0 cos sen

0 sen / cos cos / cos

b b
ab ab

      
        
         

M  




  (3.61) 

 
Ese importante destacar que las ecuaciones anteriores resultan singulares en el pasaje de 
 por /2 . Como se mostró en el párrafo anterior esta singularidad esta asociada a 
la abrupta indistinguibilidad entre los ángulos  y   y a la consiguiente indefinición 
de sus valores. Este hecho constituye una seria limitación para el uso de esta 
parametrización en la integración numérica de las ecuaciones cinemáticas de la 
orientación. 

3.9 Parámetros simétricos de Euler o cuaterniones  

Dada una rotación : } }ba  θ a b  con componentes del eje baθ


 (en cualquiera de 

ambas ternas): cosx  


, cosz  


, cosy  


 (ver Fig. 3.10); definimos el 

cuaternión 4( )a
b ba q q θ   y su conjugado *a

bq  asociados a la rotación como: 

 

4

*

4

sin( / 2)
( )

cos( / 2)

( )

a
b ba baa

ab ba
b ba

a
ba

ab ab
b

q

q

   
           

 
 

  

q θ
q q θ

q
q q θ







    (3.62) 

 
Donde: ba ba  θ ; 4 cos( / 2)a

b baq     es la “parte escalar” del cuaternión y 
3sin( / 2)a

b ba ba  θq
   la “parte vectorial”. También es usual la siguiente notación 

[vector, escalar]: 4[ , ]a a a
b b bq qq


, 1 2 3[ ]a T

b q q q q q
 

 

 
De la definición surge claramente que el cuaternión tiene norma unitaria, es decir: 

2b bT b
a a a q q q 12 2 2 2

1 2 3 4q + q + q + q  = . 

a1 

a2 

a3 

baθ








x


y


z


Figura 3.10: Representación del eje de Euler.  
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3.9.1 Dos cuaterniones para una misma rotación 

Dado un versor de dirección arbitraria θ


 en 3  (ver Fig. 3.11), consideramos los 

ángulos vectoriales:  θ θ


 y ' ' )  θ θ


 con ' (2    . Claramente, 

   0,2 ' 0,2      y ambos ángulos representan la misma rotación.  

 
Ahora bien, a partir de la definición (3.62) el cuaternión '( ')q θ  asociado a la rotación 

'θ  resulta ser: 
 

( )sin( / 2) sin( / 2)
'( ') ( )

cos( / 2) cos( / 2)




       
               

θ θ
q θ q θ

 
  (3.63) 

 
Con lo cual, en la esfera de los cuaterniones unitarios cada cuaternión es equivalente a 
su simétrico respecto del origen. La ambigüedad debida a la no-unicidad de la 
representación de las rotaciones mediante cuaterniones se evita limitando las rotaciones 
posibles al rango  ,  . Esto se logra evitando el cruce por cero de la componente 

escalar: 4 cos( / 2)q   .  

3.9.2 Relación entre cuaterniones y MCD 
Usando las definiciones anteriores y las siguientes relaciones trigonométricas:  
 

2sin ( 2sin cos ; 1 cos 2sin ;          

 
de las expresiones (3.26) surgen las siguientes expresiones que permiten calcular la 
MCD en función del cuaternión o su conjugado asociado a una misma rotación entre 
ternas: ( )a a

b bC q  

 
2

4

* 2
4

( ) 2 ( ) 2 ( )

( ) 2 ( ) 2 ( )

I q

I q

  

  

C q S q S q

C q S q S q

 
     (3.64) 

 
Sustituyendo en las anteriores las definiciones (3.62) y desarrollando (o bien usando 
directamente la (3.28)) se obtienen, respectivamente, las expresiones de la MCD en 
función de las componentes del cuaternión o su conjugado: 
 

-q

q

θ θ


'
(2 )( ) 

 

θ
θ
a1 

a2 

a3

Equivalentes sobre 
la esfera unitaria 

Figura 3.11: Dos cuaterniones para una rotación. 

θ


Misma 
rotación 
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2 2 2 2
4 1 2 3 1 2 3 4 1 3 2 4

2 2 2 2
1 2 3 4 4 2 1 3 2 3 1 4

2 2 2 2
1 3 2 4 2 3 1 4 4 3 1 2

2( ) 2( )

( ) 2( ) 2( )

2( ) 2( )

q q -q -q q q -q q q q q q

q q q q q q -q -q q q -q q

q q -q q q q q q q q -q -q

  
    
   

C q   (3.65) 

2 2 2 2
4 1 2 3 1 2 3 4 1 3 2 4

* 2 2 2 2
1 2 3 4 4 2 1 3 2 3 1 4

2 2 2 2
1 3 2 4 2 3 1 4 4 3 1 2

2( ) 2( )

( ) 2( ) 2( )

2( ) 2( )

q q -q -q q q q q q q -q q

q q -q q q q -q -q q q q q

q q q q q q -q q q q -q -q

  
    
   

C q
  (3.66) 

 

Inversamente, los componentes del cuaternión: 4,q q


 pueden calcularse en función de 

la MCD usando:  
 

2 2 2 2 2 1/2
4 1 2 3 4 4

1
( ) ( ) 3 4 1 ( ( ) 1)

2
traza traza q q q q q q traza          C C C  (3.67) 

 

 
4 1/2

1
4 ( ) ( )

2(1 )
T Tq q q

traza
     


C C S S C C

C

 
  (3.68) 

 
La ambigüedad de signo en las Ecs. (3.67) y (3.68) es sólo aparente ya que como es 
posible ver de las (3.65) y (3.66) un cambio de signo en todas las componentes del 
cuaternión produce la misma MCD y por tanto la misma rotación.  

3.9.3 Representación hipercompleja y álgebra de cuaterniones  
Algunas propiedades importantes de la representación de las rotaciones mediante 
cuaterniones surgen de la formulación hipercompleja introducida originalmente por W. 
Hamilton en 1866 y retomada más tarde por Whittaker en 1944:  
 

*
1 2 3 4 1 2 3 4;q i q j q k q q i q j q k q      q q    (3.69) 

 
Bajo las reglas de multiplicación:  
 

 (ciclicidad); (anticiclicidad) ; 1( )ij k ji k ii antinormalidad      (3.70) 
 
Se define el producto o composición de dos cuaterniones r y q como: 
 

1 2 3 4

1 2 3 4 1 2 3 4

4 1 3 2 2 3 1 4 3 1 4 2 1 3 2 4

2 1 1 2 4 3 3 4 1 1 2 2 3 3 4 4

( )( )

( ) ( )

( ) ( )

s i s j s k s

r i r j r k r q i q j q k q

i r q r q r q r q j r q r q r q r q

k r q r q r q r q rq r q r q r q

    

      

       

        

s rq

 (3.71) 

 
Lo que en notación matricial resulta: 
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4 3 2 1 1

3 4 1 2 2

2 1 4 3 3

1 2 3 4 4

r r r r q

r r r r q

r r r r q

r r r r q

   
          
           

rq    (3.72) 

 
Claramente, el producto (3.71) ó (3.72) no es conmutativo es decir: rq qr . Por otra 

parte, es fácil verificar que: * * *( ) rq q r  y además, que: 
* qq 2 2 2 2

1 2 3 40 0 0i j k q q q q      .  Por último es fácil comprobar que el elemento 

unitario del producto (3.71) es: qo 0i+ 0j+ 0k+1.  Utilizando la notación [vector, 

escalar] introducida después de la Ec. (3.62), el producto (3.71) o (3.72) se reescribe a 
su vez como: 
 

4

4 4 4 4 4 4
4 4

( )
[ , ][ , ] [ , ]T

r S
r q r q r q

r q

   
            

I r r q
rq r q q r r q r q

r

  
          (3.73) 

3.9.4 Transformación de vectores de 3 mediante cuaterniones  

Sean: una rotación : } }ba  θ a b , un vector va3 expresado en componentes de la 

terna {a} y el cuaternión 4( ) [ , ]ba qq θ q
 , definido en la Ec. (3.62). Definimos la 

“cuaternización” de av : [ , 0]a a
qv v  y, aplicando las reglas introducidas arriba, 

calculamos el producto:  
 

4 4* * *

4

* *

44 4

4

2
4 4

( ) ( )
( ) ( ) ( )

0

( )( ) ( )

( ) 2 (

a aa
b a b b b

T aa q a a a

a a a a
b

Ta aa

q S q S

q

q Sq S q S

q

q q S

     
            

          
                      

 


I q q v q vv
q v q q q

q q v

I q qv q v v q v
q

qq v q v

I q

  
 

  
  

  *
2) ( )

( )

T a

T a

S  
 

  

q qq v

q q v

  
 

 (3.74) 

 
Si en la anterior se usan la identidad matricial (que el lector podrá verificar): 

22 ( ) TS  q q I qq
   

, junto con las relaciones 
2

1a
b q  y (3.64), se obtiene la regla de 

transformación de coordenadas mediante cuaterniones.  
 

 

 2
4*

2 ( ) 2 ( ) ( )
( )

0 00

a b b a b
a ab a b b

a q a q

b b b a
q a a q

q S S      
       
         

 

I q q v C q v v
q v q v

v q q v

 

 (3.75) 
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Consideremos ahora las ternas {a}, {b} y {c}. Los ángulos vectoriales / /ab bc acθ θ θ  se 

corresponden, respectivamente, con las rotaciones “desde” las ternas {b}/{c}/{c} 
“hacia” las ternas {a}/{b}/{a}. Usando la definición (3.62) establecemos los 
respectivos cuaterniones: 
 

sin / 2 sin / 2 sin / 2
; ;

cos / 2 cos / 2 cos / 2
ab ab bc bc ac acb c c

a b a
ab bc ac

       
                   

θ θ θ
q q q

  
  (3.76) 

 
Sean ahora , ,a b c

q q qv v v  las cuaternizaciones de las representaciones en coordenadas de un 

dado vector v según las ternas arriba indicadas. Usando sucesivamente la regla (3.75), 
se tiene: 
 

*
* * * *

*

( )
( ) ( ) ( ) ( )

( )

b b a b
q a q a c c b a b c c b a c b c a c

q a q a a q a a q ab b b bc c b c
q qb b






   



v q v q
v q q v q q q q v q q q v q

v q v q
(3.77) 

 
Por lo que resulta que el producto obtenido a partir de la representación hipercompleja 
(3.71), (3.72) y (3.73) da la regla de composición de cuaterniones compatible con la 
transformación encadenada de coordenadas. Es decir: 
 

( ) ( ) ( )c c b
a a acb bc ab  q q q q θ q θ q θ     (3.78) 

 
Interesa destacar que la anterior define la misma ley de composición entre ángulos 
vectoriales (3.34) por lo cual resulta: 
 

( ) ( ) ( )c c c c b b
a a a ab bC q C q C q     (3.79) 

 
Lo que por otra parte puede verificarse directamente usando las definiciones (3.65) o 
(3.66). 

3.9.5 Relación entre cuaterniones y ángulos de Euler  
Consideramos ahora los cuaterniones asociados a las rotaciones elementales de Euler: 
 

 4( ) ( ) sin , cos ( ) ( ) ; 1,2,3
2 2i i i i

- ,q i
          

q q e e q
   (3.80) 

 
Donde los ángulos vectoriales ie ; i=1,2,3 representan rotaciones elementales positivas 

alrededor, respectivamente, de los ejes coordenados x, y, z.  Si el pasaje de la terna {a} 
a la {b} corresponde a una secuencia de rotaciones elementales de Euler tal que: 
{b}{@x’’}{@y’}{@z}{a} como en la Ec. (3.53), de acuerdo con la regla de 
composición (3.78).  
 

1 2 3( ) ( ) ( )b
a    q q q q      
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Una vez más la notación hipercompleja nos facilita el cálculo de estas composiciones 
elementales.  En efecto partiendo de la definición de productos hipercomplejos (3.71), 
el cuaternión resultante en notación se obtiene según:  
 

1 2 3( ) ( ) ( ) ( sin cos )( sin cos )( sin cos )
2 2 2 2 2 2

sin cos cos sin sin cos sin cos cos sin cos sin
2 2 2 2 2 2 2 2 2 2 2 2

sin cos cos cos sin sin cos cos cos
2 2 2 2 2 2 2 2

b
a -i -j -k

i - j - -

k -

     
       

                    
   

           
 

q q q q

sin sin sin
2 2 2 2

     
 

(3.81) 

 
Los cuaterniones ofrecen una parametrización muy eficaz de la orientación debido que 
sólo tienen un parámetro redundante comparado con 6 de las MCD lo que se refleja en 
importantes ventajas computacionales mientras que comparten con las MCD una ley 
sencilla de composición.  Esta última propiedad los hace preferibles en ciertos casos a 
otras parametrizaciones como los ángulos de Euler o el ángulo vectorial de rotación 
(eje y ángulo de Euler) que, aunque sin parámetros redundantes no poseen una ley de 
composición sencilla. Otra ventaja respecto de estas últimas parametrizaciones es la de 
no presentar singularidades o ambigüedades para ningún valor de sus parámetros que 
deba resolverse con información suplementaria. Cabe sin embargo señalar como 
desventaja cierta dificultad para interpretar geométricamente el sentido de sus 
parámetros.  

3.9.6 Diferencial y ecuación cinemática del cuaternión  
Tal como para la MCD, consideramos: dos ternas {a} y {b} distantes de un ángulo 

vectorial baθ ; dos ternas { â } y { b̂ } separadas de las primeras, respectivamente, por los 

pequeños ángulos vectoriales b  y a  (ver Fig. 3.6) y definimos: max( , )b a   . 

De la definición (3.62) y el desarrollo de 1º orden de las funciones seno y coseno, 
resultan las siguientes expresiones para los cuaterniones cuasi- identidades:  
 

b b b
ˆ 02

b

a a aˆ
02

a

1 1 12 2 2
1

4

1 1 12 2 2
1

4

( ) ( ) ( );
1 01

( ) ( ) ( )
1 01

b
b

a
a

o o o

o o o

                   
          
                      
          

θ θ θ

θ θ θ

q q

q q

(3.82) 

 

Donde se usó la definición del cuaternión identidad: 
0 1

TT   0q . Considerando ahora 

los cuaterniones cercanos ( )a
b baθq  y ˆ ˆ

ˆ ˆ ˆˆ
( ) =a a a b

a bb ba b
θq q q q , evaluamos la diferencia: 

 
ˆ ˆ
ˆ ˆ=a a a a a a b

b b b a bb b
  q q q q q q q ,    (3.83) 

 
Substituyendo las (3.82), la anterior puede rescribirse como: 
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b

b b

1 1
2 2 ( )

0 0

1 1
( ) ( )

0 02 2

aa a a
b b b

b a
a aa a

b b

o

o o

   
      

      
    

        
      

 

 

q q q

q q



 

 

   
   (3.84) 

 
Donde las 2ª y 3ª igualdades se obtienen usando la segunda de las Ecs. (3.75) y 
factorizando luego a

bq  a derecha o izquierda según corresponda.  Reutilizamos aquí los 

pequeños ángulos b b

ab a a b   θ C θ θ  y a a b

ab b abθ C θ  (introducidos en las Ecs. (3.46)) 

para escribir la parte lineal de diferencia (3.83) ó (3.84) con lo que resultan las dos 
formas alternativas de la diferencial del cuaternión que se corresponden con las (3.47) 
para la MCD. 
 

1
2

1
2

)
0

)
0

(

(

b

aba b a

b b

a

aba a a

b b

 
  

  
 

  
  

 

 

θ
θ

θ
θ

q q

q q

    (3.85) 

 
Para establecer las ecuaciones cinemáticas del cuaternión, nos referimos nuevamente a 
la Fig. 3.7 y las magnitudes allí definidas con : ( )} ( )}

b b
t t

 θ b b  el ángulo recorrido 

por la terna {b(t)} en rotación diferenciable entre t y t+t lo que implica que 

0 0
b b

t    θ . Consideramos la variación ( )( )

a a a

b b tb t
  q q q  con 

( )

( )( ) ( )

a a b t

b tb t b t q q q  evaluamos los siguientes límites de cociente incremental: 

 

( )
0( ) 0

lim

0 0

( )1 1 1
( )lim lim

2 2 0
0

( )1

2 0

ba b b
a a b t a a abb
b b b bb t

a
a aab
b b

t
t t

t
t

t t

t



  
   

                 
 

  
 

θ
ωq

q q q q q

ω
q q

q



 (3.86) 

 
Donde, la última igualdad resulta de la expresión para la velocidad angular vectorial 
instantánea dada por las Ecs. (3.50) (nótese que el ángulo 

b̂b
θ  tiene el mismo sentido 

positivo de rotación que ( )ab tω ). Las Ecs. diferenciales (3.86) describen la evolución 

temporal del cuaternión a
bq  función de la rotación “acumulada” baθ  desde la terna {a} 

hacia la terna {b} en el instante t.  La función forzante es la velocidad angular ( )ab tω  de 

la terna {b} respecto de {a}. 
 
Usando la propiedad del conjugado de una composición de cuaterniones, de la Ec. 
(3.86) se obtiene la ecuación diferencial para ( )b

a abq q θ . 
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*

* 1 1
( )

2 20 0

b b
a b b bab ba
b a a a

   
     

   

ω ω
q q q q       (3.87) 

 
Notar que la inversión del signo de la velocidad angular es consistente con el cambio de 
sentido de la rotación de baθ  a abθ .  Intercambiando los índices se obtienen las distintas 

versiones de las ecuaciones cinemáticas del cuaternión correspondientes a las Ecs. 
(3.20) para la MCD según sea el sistema de coordenadas al que esté referida la 
velocidad angular entre las ternas.  
 

1 1

2 20 0

1 1

2 20 0

a b
a a b bab ba
b b a a

b a
a a b bab ba
b b a a

   
     

   
   

     
   

ω ω
q q q q

ω ω
q q q q

 

 
     (3.88) 

 

3.10 Cinemática del ángulo vectorial de rotación: Ecuación del “coneo”  

Como vimos, el ángulo vectorial instantáneo entre dos ternas que giran relativamente 
queda asociado ya sea a la MCD mediante la Ec. (3.24) o al cuaternión definido por las 
Ecs. (3.62). Esto ofrece al menos dos vías para formular una ecuación diferencial para 

( )ba tθ : a) el desarrollo empleado por Bortz (1971) que consiste en reemplazar la (3.24) 

en cualquiera de las (3.20), o b) reemplazar la (3.62) en cualquiera de las (3.88) 
siguiendo a Savage (1997, 3.3.1 parte I ).  Los pasos algebraicos resultan un poco más 
sencillos en el segundo caso por lo que elegiremos ese camino para nuestro desarrollo. 
Tomamos por caso la última de las Ecs. (3.88) rescrita usando la expresión del producto 
(3.73) según la notación [vector, escalar]: 
 

1
sin , cos ,0

2 2 2

1 1 1
[cos sin , sin ]

2 2 2 2

a bba ba ba
b ab

ba

b b bba ba ba
ab ba ab ba ab

ba ba

         
  

   
 

θ
q ω

ω θ ω θ ω




  (3.89) 

 
Para simplificar la notación durante el desarrollo denotamos:  

 
; ; ;b a

ab ba b    ω ω θ θ q q θ      (3.90) 

 
e introducimos las siguientes funciones y sus derivadas:  
 

1 2

1
cos ; sin

2 2
f f

 


       (3.91) 
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1 2

2 1
2 2

2

1 1
sin ;

2 2 2

cos sin1 2 2 1
2 2

f f

f f
f

f


     

   
          

  

  
    (3.92) 

 
Substituyendo las Ecs. (3.91) y (3.92) en la Ec. (3.89) se obtiene:  
 

    2 1 2 1 2

1 1
, ,0 ,

2 2
f f f f f     q θ ω θ ω ω θ ω     (3.93) 

 
Mientras que por otra parte derivando el cuaternión respecto del tiempo resulta: 
 

 2 1 2 2 1, ,
d

f f f f f
dt

    q θ θ θ       (3.94) 

 
Igualando las partes escalar y vectorial de las (3.93) y (3.94) surgen las igualdades:  
 

2 1
1 2 2 22 2

2

1 1 1
1

2 2 2

f f
f f f f

f
   

 
                 

θ ω θ ω θ ω θ ω
    (3.95) 

 

  1 1
2 2 2 1 2

2 2

1 1 1 1
1 ( )

2 2 2 2

f f
f f f f

f f


 
            

θ θ θ ω ω θ ω θ ω θ ω θ    (3.96) 

 
De la Ec. (3.96) surge la ecuación de estado para el vector  después de sustituir las 
definiciones de f1 y f2.. Finalmente, usando las identidades:   
 

    2 1 cos( )
, tan( / 2)

sin( )
•u v u u u v u v

 
     


      

  (3.97) 

 
A partir de la (3.96) y retomando la notación original se obtiene la ecuación diferencial 
nolineal para el ángulo de rotación baθ  siguiente: 

 

  0
2

1 1 sin
1 ; ( )

2 2(1 cos )
b b b bba ba
ba ab ba ab ba ba ab ba o ba

ba ba

t
  

           
θ ω θ ω θ θ ω θ θ  (3.98) 

 
Cuando se substituye la solución de (3.98) en la Ec. (3.24) y en las Ecs. (3.62) se 

obtienen, respectivamente, las soluciones para tto de la ecuación cinemática de la 

MCD (3.18) y la correspondiente del cuaternión (3.88), de este modo, usando las (3.24)
y (3.62) se tiene:   
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2
2

sen ( ) (1 cos ( ))
( ) exp( ( )) ( ( )) ( ( ))

( ) ( )

( ) ( )
sin

( ) 2
( )

( )
cos

2

a ba ba
b ba ba ba

ba ba

ba ba

a ba
b

ba

t t
t t t t

t t

t t

t
t

t

  
   

 

 
  
 
 
 

C θ I S θ S θ

θ

q

 (3.99) 

 
De (3.98) se observa que sólo si ( )ba tθ  se mantiene paralela a ( )b

ab tω  resulta ser 
b

ba abθ ω . En este caso las rotaciones (alrededor de un eje invariante) son conmutativas, 

es decir no dependen del orden en que son ejecutadas. La composición no conmutativa 
de dos ángulos de rotación no paralelos, ej.: 1θ  seguido de 2θ , puede obtenerse 

mediante el artificio de hacer 0 1( )t θ θ  en la (3.98), expresar a 2 Tθ   como una 

rotación uniforme con velocidad angular constante durante un tiempo T y hallar la 
solución de la solución de la Ec. diferencial (3.98) en t=T.  Geométricamente, la no 
conmutatividad de las rotaciones es consecuencia de los dos últimos términos de la 
(3.98): 
 

 2

sin1 1
( ) 1

2 2(1 cos )
b bba ba

ba ab ba ba ab
ba ba

t
  

          
θ ω θ θ ω   (3.100) 

 
que resulta de la interacción entre el ángulo de rotación y la velocidad angular. Notar 
que   es ortogonal a ( )ba tθ  por lo cual, cuando 0  , genera en baθ  una componente 

ortogonal a ( )ba tθ  que provoca la rotación de éste último vector. 

 
La Ec. (3.98), introducida por Laning en 1949, recibe en la literatura el nombre de 
ecuación de “coneo” motivado por el movimiento de precesión, por ejemplo de un 
trompo, cuyo eje de rotación parece rotar alrededor de otro eje invariante generalmente 
vertical del piso. Esta ecuación fue utilizada por primera vez en navegación por Bortz 
(1971) en un algoritmo de alta velocidad para la integración de la orientación y, como 
veremos en el Capítulo 7, constituye la base del cálculo de la orientación de los 
algoritmos strapdown modernos.  
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Capítulo 4   
Geometría de la Tierra,  

Ternas de Referencia y Gravedad 

 

El propósito de un sistema de navegación es proveer en todo instante la posición, 
velocidad y orientación de un vehículo con referencia a uno o más sistemas de 
coordenadas de interés para la aplicación específica.  En las aplicaciones en un entorno 
cercano a la Tierra, ésta última es una referencia obligada para los sistemas de 
navegación. Distinguimos dos tipos de ternas de referencia o ternas de navegación 
vinculadas a nuestro planeta: a) Ternas centrales cuyo origen está en el centro de la 
Tierra y su orientación es independiente de la posición del vehículo y b) Ternas locales 
cuya orientación y/u origen dependen de la posición del vehículo. Para referir la 
posición y orientación del vehículo respecto de la terna de navegación, conviene definir 
la terna del cuerpo con origen a bordo del vehículo asociada a algún punto de interés 
del mismo, por ejemplo: su centro de gravedad, la unidad de mediciones inerciales 
(UMI) o algún otro instrumento transportado como, sensores remotos, antena GPS, etc. 
 
Dado que las ecuaciones de la mecánica se enuncian de modo diferente según estén o no 
referidas a un sistema inercial, resulta necesario, además, distinguir las ternas inerciales 
de las que no lo son.  Las primeras, idealmente “animadas de un movimiento lineal 
uniforme” o bien “fijas respecto de las estrellas”, son aquellas que, al menos desde un 
punto de vista práctico, verifican las leyes de Newton en su forma más simple.  
Contrariamente, las ternas no inerciales son solidarias a un objeto en rotación o en 
movimiento no uniforme (como la Tierra o el mismo vehículo). 
 
En la mayoría de las aplicaciones (excepto en vehículos extraplanetarios) la Tierra es el 
mayor objeto masivo cercano al vehículo y, por consiguiente, determina la componente 
más importante del campo gravitacional que lo afecta (en general los efectos de la Luna 
y del Sol pueden despreciarse en vehículos terrestres o atmosféricos pero no siempre en 
aplicaciones satelitales). Las fuerzas gravitacionales compuestas con las no 
gravitacionales, que impulsan o sustentan al vehículo, determinan su aceleración 
instantánea y, por consiguiente, su trayectoria.  Por lo tanto, dado que no es posible 
medir directamente la aceleración gravitacional a bordo de un vehículo (ver Capítulo 2), 
los algoritmos de navegación incorporan un modelo matemático de la gravitación que 
les permite calcular la aceleración instantánea resultante.  
 
Como veremos, la descripción gravitacional de la Tierra está íntimamente relacionada 
con su forma, la cual, a su vez, resulta crucial tanto para la definición de las ternas de 
referencia como para la determinación de las transformaciones de coordenadas que las 
vinculan.   
 
Son objeto de este Capítulo, algunos principios básicos de geodesia y gravitación que 
atañen a la navegación en la vecindad de la Tierra, así como la descripción de las 
principales ternas de referencia utilizadas en la práctica. 
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4.1 Geometría de la Tierra  

Siendo el objeto de la Geodesia el estudio de la forma terrestre, esta ciencia ofrece 
principios y resultados fundamentales para los fines de este Capítulo.  Tal vez el primer 
concepto que es dado introducir para describir la forma terrestre es el de “superficie 
equipotencial”, entendiéndose por tal a toda superficie sobre la cual un nivel de burbuja 
hipotético mantendría su indicación invariante.  Las superficies equipotenciales son 
cerradas sobre sí mismas y encastradas como las capas de una cebolla, cada una 
conteniendo al centro de masa de la Tierra.  Estas superficies pueden estar parcialmente 
(o aun totalmente) debajo de la superficie terrestre. En el último caso, su geometría 
quedará determinada tanto por la fuerza gravitacional ejercida por la masa terrestre 
encerrada por la superficie equipotencial como por la que ejerce la porción de masa 
terrestre al exterior de la misma.  De ser despreciables los efectos atmosféricos 
(distribución no uniforme de la presión atmosférica, presión del viento sobre su 
superficie, etc.) la superficie de un líquido en reposo sobre la Tierra constituye una 
porción de superficie equipotencial. Deberá notarse que, aún en ausencia de efectos 
atmosféricos, la superficie de un líquido en reposo no está determinada solamente por la 
fuerza gravitacional (principalmente terrestre pero también solar y lunar) sino también 
por la fuerza centrífuga originada por la rotación terrestre. Lo anterior justifica 
distinguir entre aceleración gravitacional aparente, que llamaremos gravedad, y la 
aceleración gravitacional a secas, que  llamaremos gravitación. La primera corresponde 
al vector gradiente del potencial gravitacional combinado con la centrífuga debida a la 
rotación terrestre, mientras la segunda es, exclusivamente, el gradiente del potencial 
gravitacional.  Claramente, la gravedad es en todo punto ortogonal a las superficies 
equipotenciales introducidas más arriba y co-lineal con la línea de la plomada local.  

4.1.1 El Geoide y Otras Superficies de Referencia  
Se define al Geoide terrestre como: La superficie equipotencial del campo de gravedad 
terrestre que mejor aproxima al nivel medio de los océanos en el sentido de los mínimos 
cuadrados. El Geoide ha sido usado tradicionalmente como referencia global para medir 
alturas. 
 
Las perturbaciones gravitacionales debidas a la Luna y al Sol producen movimientos 
periódicos sensibles tanto en la corteza terrestre (mareas sólidas) como en las masas 
oceánicas a los que se suman los movimientos debidos a fuerzas tectónicas.  En 
consecuencia, tanto la gravedad local como las superficies equipotenciales y la 
superficie del océano varían con el tiempo, de modo que, en rigor, la definición anterior 
de Geoide sólo tiene sentido en un instante dado.  Lo usual es entonces considerar 
superficies equipotenciales promediadas en un período de tiempo. En particular el 
Geoide es una superficie promediada sobre los ciclos de las mareas. Aún así, el Geoide 
promedio varía con el tiempo en función de cambios lentos en la distribución de masas 
en la Tierra producidos, entre otras, por fuerzas tectónicas.  Hechas estas salvedades, 
cuando se habla de la forma de la Tierra en realidad se alude a la forma del Geoide, 
principalmente debido a su casi superposición con la superficie oceánica que cubre gran 
parte del planeta.   
 
Lo irregular de la forma del Geoide y su compleja descripción matemática dificulta, sin 
embargo, su uso como superficie de referencia en problemas de navegación. 
Afortunadamente, el Geoide se asemeja a un elipsoide achatado en los polos con una 
descripción matemática relativamente sencilla. Esto motivó al Comité de Desarrollo del 
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World Geodetic System a adoptar en 1984 como superficie de referencia un elipsoide 
geocéntrico de revolución alrededor del eje de los polos terrestres con su diámetro 
mayor en el plano ecuatorial y su diámetro menor en el eje de rotación nominal.  
Sucesivas mejoras a este sistema introducidas más tarde concluyeron finalmente en el 
actual Elipsoide WGS 84 definido por la National Imagery and Mapping Agency 
(NIMA) que describimos más adelante y llamaremos en lo sucesivo el elipsoide normal.  
La excelente aproximación del Geoide por el elipsoide normal se traduce en diferencias 
de alturas entre ambos inferiores a los 100m en todo el planeta! Cabe destacar que el 
sistema WGS84 sirve actualmente como referencia para el sistema GPS y otros sistemas 
satelitales de navegación global (GNSS: Global Navigation Satellite System) a los que 
nos referiremos en los Capítulos 8 y 9. 

 
En la Fig. 4.1 se indican: la proyección S sobre el elipsoide normal del punto genérico P 
según la vertical geodésica; la altura geodésica h de P sobre el elipsoide normal; la 
ondulación o altura del Geoide sobre el elipsoide en un punto Q y la altura ortométrica 

de P sobre el Geoide dada por la longitud de la curva 0PP , colineal en todo punto a la 

dirección de la plomada.  

Figura 4.1: Superficies equipotenciales (e1, e2, e3 y e4) y alturas relativas. 
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Figura 4.2: Cuadrante de meridiano terrestre y definiciones de latitud. 
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En el cuadrante de meridiano representado en la Fig. 4.2 se comparan la superficie 
terrestre (y sub-oceánica) con el Geoide y el elipsoide normal. Se indican la superficie 
equipotencial que pasa por el punto P, la línea normal al elipsoide o vertical geodésica y 
la dirección del vector gravedad o dirección de la plomada.  Los ángulos a  c  y   
indicados en la figura, se denominan, respectivamente, latitud astronómica, latitud 
geocéntrica y latitud geodésica.  

4.1.2 Geometría del Elipsoide Normal  
Como se mencionó anteriormente, el elipsoide normal es un elipsoide de revolución 
geocéntrico con radio mayor a sobre el plano ecuatorial y radio menor b entre el centro 
de masa de la Tierra O y el Polo Convencional Terrestre (CTP)*. El vector O-CTP fue 
adoptado por el Bureau International de l’heure (BIH) como eje nominal inercial de 
rotación terrestre fijo en el espacio inercial ("respeto de las estrellas"). El plano 
meridiano de referencia del Elipsoide es el meridiano cero de la hora terrestre 
(meridiano BIH 0º) y pasa a unos 100mts al Este del meridiano de Greenwich.  El corte 
del elipsoide según el meridiano BIH 0º corresponde a una elipse como la indicada en la 
parte inferior de la Fig. 4.3.  Las ecuaciones en coordenadas cartesianas del elipsoide y 
de la elipse para y=0 son, respectivamente: 
 

 
 

2 2 2 2 2
0

2 2 2 2
0 0

: , , ; ( ) / / 1

: ( , , ) ; 0 / / 1

Elipsoide S x y z x y a z b

Elipse E x y z S y x a z b

   

     
   (4.1) 

 
Ambos objetos geométricos son usualmente caracterizados mediante los valores de a y 
del achatamiento: ( ) /f a b a . En ocasiones convendrá utilizar en lugar de f la 

excentricidad: 2 2( ) /a b a   (ó 2 (2 )f f   ).  La Tabla 4.1 del Párrafo 4.4.1 

consigna los valores normales para el elipsoide terrestre.  
 
El punto P de la Fig. 4.3 representa la posición de un vehículo hipotético y el punto S su 
proyección normal sobre el elipsoide. De la expresión de la tangente a la elipse (4.1) en 
el punto S y de la definición de la latitud geodésica  surge la siguiente relación entre 
esta última y las coordenadas de S: 
 

 

2

2
( , ) tan

2 2

0,
2

S

S

S S

z adx

dz x b

x z b

 
      


      

   (4.2) 

 
Combinando la anterior con la ecuación (4.1) se obtiene la ecuación de la elipse 
parametrizada por :  
 

                                                
* Dirección astronómica media del polo terrestre entre 1900-1905, fija inercialmente. 
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1
2

2 2

2

2 2

cos

(1 sen )
; [ , ]

2 2(1 ) sen

(1 sen )

S

S

a
x

b
z

        
      

    (4.3) 

 
Las ecuaciones paramétricas (4.3) permiten, a su vez, relacionar las latitudes  y c 
sobre el elipsoide (ver Fig. 4.3) mediante la ecuación (notar el rol de la excentricidad  
 

2s

s

( , ) tan( ( )) (1 ) tan( ( ))
2 2

2

c

c

z
S S

x
       

    

 


  (4.4) 
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Figura 4.3: Geometría del elipsoide normal. 
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En los Capítulos siguientes necesitaremos conocer los radios de curvatura según las 
direcciones del paralelo y del meridiano locales en función de la latitud  de cada punto 
del elipsoide de referencia.  Introducimos primeramente el Radio normal Rn (ver Fig. 
4.3): 
 

 s
2 2 1/ 2

( )
cos( ) (1 sin ( ))n

x a
R  

  
    (4.5) 

 
El Radio de curvatura paralelo, Rp(h), corresponde a la distancia del punto P al eje z 
y se determina en función de la altura geodésica h y la latitud  usando la definición 
(4.5) y la primera de las Ecs. (4.3), según:  
 

( , ) ( ) cos( ) ( ( ) ) cos( )p s nR h x h R h            (4.6) 

 
Del mismo modo, la coordenada zs del punto S se calcula a partir de la (4.3) y la 
definición de Rn: 
 

1
22 2( ) ( ) (1 ) sen( ) ( )(1 )sen( )S n n

b
z R R

a
           (4.7) 

 
Además, como surge de la Fig. 4.3, la coordenada zp  del punto P resulta:   
 

2( , ) ( ) sen( ) ((1 ) )sen( )p s nz h z h R h            (4.8) 

 
El Radio de curvatura meridiano en un punto S sobre la elipse, surge de evaluar la 
conocida fórmula del radio de curvatura de una curva plana definida paramétricamente 
según las Ecs. (4.3): 
 

2

2

2 3/ 2 2

2 2 3/ 2

(1 ( ) ) (1 )
( )

(1 sin ( ))

dz
dx

m d z
dx

a
R

  
  

  
   (4.9) 

 
De las Ecs. (4.5) y (4.9) surge la siguiente relación entre los radios nR  y mR  sobre la 
elipse normal: 
 

2 2
2

2

(1 sin ( ))
( ) ( ) ( )(1 ( )) ( )

(1 )n m m mR R R O R
  

        


  (4.10) 

 
Para alturas moderadas el radio de curvatura meridiano en un punto P a una altura 
geodésica h sobre el elipsoide normal se aproxima muy bien mediante la expresión: 
 

 ( , ) ( )m mR h R h        (4.11) 

4.2 Ternas de referencia  

A continuación describimos los sistemas de coordenadas de referencia más usados en 
navegación y las transformaciones de coordenadas que los vinculan.  
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4.2.1 Ternas Centrada Terrestre (ECEF) e Inercial Centrada Terrestre (ECI) 
Ambas ternas tienen su origen en el centro de masa nominal de la Tierra, su eje “z” es 
paralelo al eje nominal terrestre y sus ejes “x” e “y” están contenidos en el plano 
(ecuatorial) ortogonal a “z” (ver Fig. 4.4). La terna centrada terrestre {e} (ECEF: Earth 
Centered-Earth Fixed) es solidaria a la Tierra, su eje “x” pasa por el meridiano 0º BHI y 
su eje “y” completa la terna ortonormal positiva. La terna inercial centrada terrestre {i} 
(ECI: Earth Centered Inertial) conserva su orientación invariante en el espacio inercial. 
Se tendrá en cuenta que esta terna no se mueve a una velocidad uniforme en el espacio 
por lo que en rigor sólo podrá ser considerada inercial en la medida que sean 
despreciables los efectos de su movimiento de rotación alrededor del Sol. Sus ejes “x” e 
“y” están contenidos en el plano ecuatorial terrestre. Para vehículos extraplanetarios, el 
eje “x” suele ser elegido en la dirección del punto vernal  correspondiente a la dirección 
casi invariante (inercialmente) de la posición del Sol en el instante del equinoccio de la 
primavera boreal. De otro modo, es usual elegir sus ejes “x” e “y” coincidentes con los 
de la terna ECEF en el instante inicial de la navegación.  Por definición, la terna ECEF 

rota (junto con la Tierra) a la velocidad angular terrestre eΩ  respecto de la ECI 

alrededor del eje “z” común a ambas ternas (eje invariante de la rotación). 

 
De acuerdo con las definiciones anteriores, lo visto en el Capítulo precedente y 

denotando e e Ω , es fácil comprobar, usando los resultados del Párrafo 3.8 del 

Capítulo 3, que la MCD correspondiente al cambio de coordenadas entre ambas ternas 
en un instante dado t desde el inicio de la navegación es: 
 

3

cos( ) sin( ) 0

( ) sin( ) cos( ) 0

0 0 1

e e
e
i e e e

t t

t t t

  
       
  

C C e    (4.12) 
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Las coordenadas cartesianas de un punto genérico P según las ternas ECEF y ECI se 
denotan respectivamente:  
 

    ;
T Te e e e i i i ix y z x y z P P    (4.13) 

4.2.2 Terna Vertical Geocéntrica Local (LGCV)  
La terna LGCV (Local Geocentric Vertical), también llamada geocéntrica y que 
denotaremos con el superíndice “c”, está centrada en el centro de gravedad de la Tierra, 

su eje zc es colineal a la vertical geocéntrica local que contiene al radio vector OP


 entre 
el origen O y el punto P representativo del vehículo, usualmente el centro de masa de la 
unidad de medidas inerciales (ver Fig. 4.5).   
 

 

Sus ejes xc e yc yacen sobre el plano ortogonal a OP


. Cuando el eje zc tiene el sentido 

OP


 es denotado U (up) y D (down) cuando tiene el sentido contrario.  Los ejes xc e yc 
suelen estar orientados según las direcciones cardinales geocéntricas: N/S, intersección 
del plano meridano local con el plano tangente geocéntrico o E/O, dirección 
simultáneamente ortogonal a las direcciones N/S y U/D. Las ternas geocéntricas más 
utilizadas son las LGCV-ENU y LGCV-NED, respectivamente, con los ejes (xcE, 
ycN, zcU) y (xcN, ycE, zcD). En la Fig. 4.5 se ejemplifica una terna LGCV-ENU 
en el punto P de latitud geocéntrica c y longitud .  Como es fácil comprobar, la terna 
LGCV-ENU se obtiene a partir de la terna ECEF mediante la secuencia de rotaciones 
elementales de Euler: ()@ze (que ubica al eje xe en la dirección E) seguida de 
(c)@xc (que coloca al eje ze en la dirección del eje U).  En consecuencia, y de 
acuerdo con lo visto en Párrafo 3.8.1 del Capítulo 3, la matriz de cambio de base que 
vincula la LGCV-ENU con la ECEF se determina según: 
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Figura 4.5: Representación de las ternas ECEF y LGCV-ENU. 
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 

  (4.14) 

 
Las siguientes ecuaciones permiten relacionar las coordenadas ECEF con las 
coordenadas curvilíneas polares (c, r) del punto P: 
 

cos cos

cos sen

sen

e

c

e e

c

e

c

x r

y r

z r

    
         
      

P    (4.15) 

 
2 2 2 ; sen( ) / ; tan( ) ( / )e e e e e e e

cr x y z z r x y      P    (4.16) 

 
Aplicando la transformación de coordenadas (4.14) a la expresión (4.15) se obtienen las 
coordenadas LGCV del punto P: 
 

0

0c

r

 
   
  

P   (4.17) 

 

4.2.3 Terna Vertical Geodésica Local (LGV)  
Las ternas LGV (Local Geodetic Vertical), que llamaremos geodésicas, están centradas 
en el centro de gravedad de la Tierra, su eje z es paralelo a la vertical geodésica local 
(con sentido U ó D) y sus ejes horizontales, x e y, son paralelos al plano tangente al 
elipsoide WGS84 en la proyección sobre éste del punto P (S en la Fig. 4.6).  Cuando los 
ejes x e y son paralelos a las direcciones cardinales (E/O ó N/S) la salida del sistema de 
navegación queda automáticamente referida a estos ejes lo que resulta muy conveniente 
en muchas aplicaciones (p.e.: el rumbo de un vehículo o la orientación de un objeto a 
bordo del mismo).   

 
La denominación de la terna depende de la orientación elegida para sus ejes 
horizontales. Entre las ternas “cardinales” distinguimos la terna geográfica {g}: (xg ,yg, 
zg)  (E, N, U) y la terna de nivel {l}: (xl ,yl, zl)  (N, E, D) esta última, usada 
principalmente en aeronavegación, se obtiene de la primera invirtiendo el sentido del eje 
z e intervirtiendo sus ejes x e y.  En la Fig. 4.6 se ejemplifica la terna geográfica (LGV-
ENU) para un punto P caracterizado por su latitud geodésica , su longitud  y su 
altura geodésica h, llamadas coordenadas curvilíneas geodésicas.  
 
Para mantener en todo momento su orientación cardinal se requiere rotar la terna 
geodésica en función del desplazamiento en longitud (E-O) del vehículo. Este 
procedimiento es particularmente crítico en las vecindades de los polos donde pequeños 



Martín España Comisión Nacional de Actividades Espaciales  

 98 

desplazamientos en la dirección E-O inducen grandes cambios en la dirección N-S.  
Esto se traduce, como veremos en el próximo capítulo, en dificultades numéricas 
importantes en los algoritmos de navegación inercial. Lo anterior motiva el uso de 
ternas geodésicas “no-cardinales” obtenidas a partir de las cardinales mediante la 
rotación de un ángulo positivo  alrededor de su eje z llamado ángulo de deriva 
(“wander angle” en inglés).  Por abuso de lenguaje, estas ternas son comúnmente 
llamadas ternas de navegación y denotadas con “n”. Existen diversas estrategias para 
definir la rotación (t)@z y algunas de ellas serán descritas en el Capítulo 5.  
 

 
Las siguientes MCD corresponden a las transformaciones de coordenadas entre las 
ternas {n}, {l} y {g}: 
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 
    (4.18) 

 
Tal como la terna geocéntrica, la terna geodésica rota respecto de la terna ECEF a 
medida que el vehículo se desplaza respecto de la Tierra. La MCD del cambio de 
coordenadas entre la terna geográfica y la ECEF se obtiene en función de  y  de 
modo similar a la Ec. (4.14):  
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   (4.19) 

 
En virtud de la definición (4.5) y las Ecs. (4.6) y (4.8), las coordenadas cartesianas en 
terna {e} del punto P se expresan en función de sus coordenadas geodésicas (,h) 
según:  

xe 

ye 

ze 

E 

yg||N 

U 





 

P 

xg||E 

N 

O 

zg||U 

h 

S 

Figura 4.6: Representación de las ternas ECEF y LGV-ENU. 
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P    (4.20) 

 
Inversamente, a partir de las coordenadas cartesianas de Pe y usando las (4.5), (4.6) y 
(4.8) se obtienen las relaciones  
 

2

tan( ) ( / )

( , ) ( ( ) ) cos( )
,

((1 ) ( ) )sen( )

e e

e

xy p n

e

n

y x

r R h R h
h

z R h

   

      


      

  (4.21) 

 

Donde se usó la definición 2 2e e e
xyr x y .  Con la primera ecuación se determina la 

longitud  mientras que el último par de ecuaciones no lineales permite calcular la 
latitud  y la altura h sobre el elipsoide normal. Normalmente se recurre a un algoritmo 
iterativo para resolver este último par de ecuaciones implícitas (véase también el 
procedimiento expuesto en Chatfield, (1997), Cap. 8.I) 
 
Aplicando la transformación de coordenadas (4.19) a la (4.20) se obtienen las 
coordenadas geográficas del punto P en coordenadas geográficas:  
 

2

2 2

0

sin( )cos( )

( ) sin ( )

g

g g
n

g
n n

x
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z R h R

   
          
        

P     (4.22) 

 
Comparando la anterior con la Ec. (4.17), se advierte la componente en yg inducida por 
Por otra parte, junto con la (4.5) se observa que: 

0
lim g c


P P . 

Ternas {n} y rumbos geográfico y de navegación 
En el diagrama de la Fig. 4.7 se representan los ejes horizontales xn e yn

 de la terna {n} 
definida a partir de una terna geográfica (ENU) y el eje xb del vehículo proyectado sobre 
el plano tangente local. Se indican además el rumbo geográfico g y el rumbo de 
navegación g del vehículo. 
 

Figura 4.7: Rumbos geográficos y de navegación. 
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Las coordenadas en terna {n} de un punto P se determinan a partir de la (4.22) y la 
primera de la (4.18), o bien, a partir de la (4.20) y usando además la (4.19) como: 
 

n n g n g e n e
g g e e  P C P C C P C P    (4.23) 

 

De las Ecs. (4.19) y (4.18) resulta la MCD n
eC  en función de  y  

 

n n g
e g e

C S S S C C C S S S S C

S S C S C S C C S S C C

C C C S S

        
        

 

      
         
    

C C C  (4.24) 

 

4.2.4 Terna Vertical Astronómica Local (LAV)  
La dirección vertical de la terna LAV es paralela a la vertical astronómica (dirección de 
la plomada local). En la Fig. 4.8 a) se indican para el punto P las direcciones: vertical 
astronómica (va), vertical geodésica (vg), N y O geodésicos locales y el módulo v de la 
rotación vectorial v que vincula va con vg. El vector deflexión vertical v tiene por 
componentes según los eje xg (E) y yg (N), respectivamente, -y indicados también 
en la Fig. 4.8 a) (el primero es negativo en la dirección E y el segundo positivo según el 
eje N). Consistente con esta convención, de las Figs. 4.2 y 4.8, llamando, 
respectivamente, a  y a  a la latitud y longitud astronómicas* del punto P y usando: 

a      y a    , se tienen las siguientes relaciones entre las coordenadas 

angulares geodésicas y astronómicas:  
 

; cos          (4.25) 

 
Así mismo, se advertirá de la Fig. 4.8 b) que la componente de v en la dirección U (zg) 
resulta ser sin tan     . Combinando los resultados anteriores el ángulo vectorial 

g

vδ  se escribe: 

 

                                                
* Observadas respecto del vector gravedad local. 

Figura 4.8: Componentes de la deflexión vertical.  
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tan

tan

g

v v

-

-

 
           
   

δ E N U δ    (4.26) 

 
Dado que 50g

v arcsegδ , la MCD que expresa el cambio de coordenadas de la terna 

LGV {g} a la LAV {a} puede obtenerse como la composición de pequeñas rotaciones 
de Euler alrededor de los ejes de la terna {g} (ver Párrafo 3.8.1 del Capítulo 3) de donde 
resulta:  
 

1 tan( )

tan( ) 1

1

a
g

  
    
  

C 
 

 
 

   (4.27) 

 
Por otra parte, la MCD correspondiente al cambio de coordenadas entre la terna {e} y la 
terna {a} resulta de un modo análogo a la (4.19):  
 

sen cos 0

sen cos sen sen cos

cos cos cos sen sen

a a
a
e a a a a a

a a a a a

C

 
       
    

 
 
 

   (4.28) 

4.2.5 Ternas del cuerpo y de los instrumentos 
La terna, que denotamos con el superíndice “b” (body),  asociada al cuerpo del 
vehículopermite describir la orientación de éste respecto de la terna de navegación. El 
origen de la terna del cuerpo (P en las Figs. 4.1 a 4.6) es un punto característico del 
vehículo, usualmente su centro de masa, cuya posición y velocidad respecto de la terna 
de navegación de referencia interesa conocer en todo instante. Si bien los ejes de la 
terna del cuerpo pueden ser arbitrarios, estos suelen ser elegidos conforme a los planos 
de simetría del vehículo y/o a sus condiciones de desplazamiento nominal.  
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Figura 4.9: Ternas del Cuerpo (b), de mediciones (m) y de “nivel” (l  g-NED). 
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Muy frecuentemente (y regularmente en aeronavegación), el eje xb (de guiñada o roll) 
apunta en la dirección de avance del vehículo (o su “nariz”), el eje yb (de cabeceo o 
pitch) apunta en la dirección del ala derecha y el eje zb (de rumbo o yaw) completa la 
terna positiva (ver Fig. 4.9).   
 
Con la definición anterior de los ejes, la orientación del vehículo respecto de la terna 
geodésica {l} queda determinada por los 3 ángulos de Euler: g(yaw o rumbo 
geográfico según la Fig. 4.7), (pitch) y roll) (ver Fig. 4.9) aplicados en la secuencia 
3-2-1. La MCD del cambio de coordenadas correspondiente a la composición de 
rotaciones: '( @ )( @ )( @ )b b g l  x y z  resulta, de acuerdo con la Ec. (3.53) del 
Capítulo 3 y usando la notación empleada en la Fig. 3.9 *: 
 

1 2 3( ) ( ) ( )b g
l

g g

g g g g

g g g g

C C C S S

C S S S C C C S S S S C

S S C S C S C C S S C C

  

      
                
                





C C e C e C e

 (4.29) 

 
En función de los mismos ángulos pero respecto de la terna geodésica {g} la orientación 
del vehículo queda definida por la secuencia de rotaciones:  
 

'(( )@ )( @ )(( / 2 )@ )b b g g     x y z      
 

1 2 3( ( ) ) ( ) (( / 2 ) )b g
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g g

g g g g

g g g g
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C C S S S C S S S C S C

S C C S S S S C S C C C

       

     
                  
                 

C C e C e C e

 (4.30) 

 
Por último, la MCD que vincula la terna del cuerpo {b} con la terna {n} se obtiene 
desarrollando la anterior después de sustituir g  por g      y resulta: 
 

'(( )@ )( @ )(( / 2 )@ )b b b n
n

C S C C S

C C S S S C S S S C S C

S C C S S S S C S C C C

      

     
                  
                 

C x y z

  (4.31) 

 
En los sistemas de navegación strapdown la unidad de mediciones inerciales (UMI) está 
fijada a la estructura del vehículo en una posición y orientación no necesariamente 
coincidentes con la terna de éste (esta libertad para posicionar la UMI es una de las 
mayores ventajas de la tecnología strapdown respecto de la navegación con plataforma 
inercial).  En consecuencia, para referir los datos inerciales provistos por la UMI en la 
terna {m} a la terna del cuerpo {b} se requerirá conocer el vector desplazamiento OmOb 
(“brazo de palanca”) entre los centros de coordenadas de ambas ternas y la matriz de 

                                                
* Cuando convenga por razones de espacio se utilizará la notación: sen()=S, cos()=C 
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transformación de coordenadas m

bC  (ver Fig. 4.9). Ambas magnitudes están 

determinadas por la implementación física del sistema de navegación a bordo. 

4.3 Modelos Globales de Gravitación y Gravedad  

El potencial gravitacional V(P), resultado de la atracción de las masas terrestres sobre 
un cuerpo en un punto P exterior al volumen terrestre, puede expresarse mediante un 
desarrollo en serie de funciones armónicas esféricas de las coordenadas esféricas ( c, 
r) del punto P con r OP a   (ver apéndice A): 
 




,0 ,0 c

2

, , ,
2

( , , ) 1 (sen( ))

(sen ) cos( ) sen( )

n

T
c n n

n

n

n m c n m n m
m

GM a
V r C P

r r

P C m S m







          

       

 (4.32) 

 
Donde a es el radio de una esfera que contiene al volumen terrestre* y GMT es la 
constante gravitacional terrestre (producto de la constante de gravitación universal G y 
la masa terrestre MT). Definimos el término armónico esférico genérico del desarrollo 
anterior como:  
 

 , , , ,( , ) (sen ) cos senn m c n m c n m n mH P C m S m       (4.33) 

 
Los coeficientes armónicos esféricos normalizados (Spherical Harmonic Coefficients 
(SHC)) o coeficientes gravitacionales, , ,,n m n mC S  (n=2,…; m= 2,…n) condensan toda la 

información física del modelo. Las variaciones angulares (en latitud y longitud) están 
expresadas por las funciones generalizadas normalizadas de Legendre ,n mP  de grado n y 

orden m con argumento sen( c ) y por cos(m ) y sen(m ) (para m=0, ,0n nP P  

coincide con el polinomio de Legendre de orden n, ver Apéndice A).  Destacamos que 
la serie no incluye términos de grado n=1 ni de orden m=1 por lo que a grandes 
distancias predomina el término esférico del desarrollo: GMT/r. 
 
En la práctica, los modelos globales del potencial gravitacional terrestre son descritos 
por truncamientos de la serie (4.32). Los mejores modelos disponibles actualmente son: 
el GRIM 5 (colaboración entre: el Geodetic Research Institute de Munich y el Groupe 
de Recherches de Geodesie Spatiale, Francia) y el EGM2008 (colaboración entre: 
NASA-GSFC, National Imaging and Mapping Agency (NIMA) y Ohio State Univ. orden 
y grado: 2159) y utilizan un orden máximo mayor o igual a n=360.  Los coeficientes 
gravitacionales son determinados combinando modelos analíticos de las perturbaciones 
(mareas, presión atmosférica y otros) y observaciones que incluyen gravimetría 
superficial y satelital†, monitoreo de órbitas satelitales, altimetría satelital por laser y 
radar, redes geodésicas GPS, etc.  

                                                
*En la practica, el semieje mayor del elipsoide normal cumple esta condición con un alto grado de 
aproximación.  
†Los datos aportados por la misión satelital “Gravity Recovery and Climate Experinent (GRACE)” desde 
2002 combinados con otras fuentes permitirán mejorar la estimación de los coeficientes gravitacionales y 
seguir su evolución. 
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A continuación enunciamos algunas propiedades de los términos ,n mH  que permiten 

visualizar sus características geométricas:  
 

 Cada término se anula en 2m longitudes (planos meridianos). 
 Cuando m=0, los ,0nH  son independientes de la longitud. Sus coeficientes 

asociados ,0 , 2,...nC n   son los dominantes de cada grupo n. 

 Cuando m=0, las ,0 c(sen( ))nP   alcanzan su valor máximo (+1) o mínimo (-1) 

en los polos.  
 Las funciones , c(sen( ))n mP   son simétricas respecto del Ecuador cuando n+m 

es par y antisimétricas cuando n+m es impar.  
 Cuando m≠0 las funciones , c(sen( ))n mP   se anulan en los polos y en n-m 

latitudes.  Cuando n=m, sólo se anulan en los polos. 
 
De las propiedades anteriores surge la siguiente clasificación de los términos armónicos 

nmH  del potencial gravitacional: 

 
Armónicos zonales:{m=0}, son superficies de revolución alrededor del eje z, se anulan 
en n latitudes pero no en los polos.  
Armónicos sectoriales {m=n}, se cancelan en 2n meridianos correspondientes a los 
ceros de , ,cos senn m n mC m S m  . 

Armónicos “teserales”*:{m≠0}{m≠n}, dividen la esfera en forma de “mosaico” con 

protuberancias y depresiones alternadas tanto en latitud como en longitud.   
 

 
 
El potencial gravitatorio U(P) terrestre resulta de la superposición del potencial 
gravitacional V(P) y del “potencial centrífugo” W(P) provocado por la fuerza centrífuga 
debida a la velocidad angular terrestre  : 
 

 
2 2 2 21 1

( ) cos
2 2

( ) ( )+ ( )

cW P P r

U P V P W P

   




   (4.34) 

 

                                                
*  De tessera, en latín, mosaico. 

Zonal H5 Sectorial H5,5 

Figura 4.10: Términos armónicos esféricos. 

Teseral H5,3 
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Las superficies equipotenciales mencionadas en el Párrafo 4.1.1, perpendiculares a la 
línea de la plomada local, corresponden a valores constantes del potencial gravitatorio 
U. 

4.3.1 Aceleraciones Gravitacional y Gravitatoria 
A partir del potencial gravitacional expresado en armónicos esféricos (4.32) es posible 
obtener el vector gravitación expresado en la Terna Vertical Geocéntrica Local (LGCV) 
(E-N-U) mediante las relaciones: 
 

( , , )

1 1
; ; ,

cos

Tc c c c
g c c g E g N gU

c c c
g E g N gU

c c

r V g g g
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g g g

r r r
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  

  
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g 



  (4.35) 

 
de las cuales surgen: 
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(4.36) 
 
Aplicando las mismas expresiones (4.35) al potencial W(P), dado por la primera de las 
(4.34), se obtiene la expresión para la gravedad centrifuga: w Wg   en terna (LGCV) 

(E-N-U), de donde, junto con la 2ª de las (4.34), resulta la gravedad actuando sobre una 
masa solidaria a la Tierra: 
 

2

0

( , , ) cos sen

cos

c c c c c
c g w g c c

c

r U r

 
            
   

g g g g   (4.37) 

 
Notar que c

wg  no tiene componente E (normal al meridiano).  Tanto la gravedad como la 

gravitación terrestres pueden expresarse en otros sistemas de coordenadas usando las 
transformaciones introducidas previamente en este Capítulo.  

4.4 Aproximaciones del Potencial Gravitacional Terrestre  

Dado que ,n mP  se anula en n-m latitudes mientras que cos(m ) y sen(m ) lo hacen en a 

lo sumo 2n longitudes, el índice n define la resolución angular del armónico sobre la 
esfera (longitud de onda espacial) es decir, la escala de la información que contiene.  
Por otra parte, la simetría casi esférica de la Tierra hace que con alturas crecientes el 
factor (a/r)n suavice rápidamente las altas frecuencias espaciales presentes en los 
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armónicos superiores. Esto adquiere particular relevancia en ciertas aplicaciones 

satelitales. Así, sobre órbitas de alturas bajas (Low Earth Orbits 1000 Km de altura) y 

medias (Middle Earth Orbits a 20.000 Km) resoluciones, respectivamente, de 10º 

(n=36) y de 30º (n= 12) se traducen en aproximaciones de una muy aceptable precisión.  
Más aún, para estas órbitas, la fuerte simetría axial y el efecto de promediado del campo 
gravitatorio debido a la Tierra girando debajo de la órbita, permiten descartar los 
términos no zonales del desarrollo (4.32) lo cual conduce a la siguiente aproximación en 
términos puramente zonales (Wertz-1978): 
 

,0 ,0
2 2

( , , ) 1 (sen ) 1 (sen )
n n

T T
c n n c n n c

n n

GM GMa a
V r C P J P

r r r r

 

 

                  
         

 

(4.38) 
 
En la expresión anterior se usó la convención habitual consistente en definir los 
coeficientes armónicos zonales según: (sen )n n cJ P  = ,0 ,0 (sen )n n cC P   donde ( )nP   es 

el polinomio de Legendre no normalizado (ver normalizaciones en el Apéndice A). En 
satélites geoestacionarios, a pesar de que el diámetro orbital es considerablemente 
mayor que en los casos mencionados, la aproximación (4.38) no es aplicable debido a 
que, en este caso, por tratarse de una posición fija respecto de la superficie terrestre, los 
armónicos no zonales no resultan promediados a lo largo de la órbita induciéndose así 
efectos longitudinales sensibles.  

4.4.1 Gravedad Normal  
Los modelos globales basados en el desarrollo (4.32) resultan inadecuados para la 
navegación a alturas medias o bajas. En efecto, aún un desarrollo de alta complejidad 
con nmax=360 (que requiere usar 130.000 armónicos!) tiene una resolución de 1º, que 
cerca de la superficie terrestre equivale a unos 110Km. Esto puede resultar insuficiente 
para captar los componentes de alta frecuencia espacial del campo gravitacional debidos 
a la distribución irregular de masas sub-superficiales o a la proximidad de cadenas de 
montañas.  
 
La complejidad del campo gravitatorio y la dificultad para describirlo a bajas alturas 
condujo a descomponer los campos gravitacionales y gravitatorios según 2 
componentes: a) una componente principal, llamada gravedad normal, descrita, como 
veremos, por una expresión analítica cerrada (sin desarrollos en serie mediante) que 
reproduce en forma global las bajas frecuencias del campo gravitatorio y b) una 
componente residual de alta frecuencia espacial, llamada perturbación de la gravedad 
de un orden de magnitud sensiblemente menor a la primera que representa los 
apartamientos locales respecto del campo normal.  
 
La excelente aproximación geométrica del Geoide por el elipsoide normal motiva el uso 
de este último también como referencia gravitatoria. Así, por definición, el elipsoide 
normal posee una masa igual a la masa terrestre total, rota a la velocidad angular 
terrestre nominal e  y genera un hipotético potencial gravitatorio normal Un(P)del 

cual su propia superficie So es equipotencial. Un(P) es la superposición del potencial 
gravitacional normal Vn(P) y el potencial centrífugo definido mediante la (4.34). De 
acuerdo con el Teorema de Stokes-Poincaré (Torge 2001) Un(P) queda unívocamente 
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definido sobre y al exterior de So, por la solución del siguiente problema laplaciano con 
condiciones de contorno: 
 

2
0

0 0

 exterior a ( ) 0;

( ) ( );

( ) /

n

n

n T

P S V P

P S V P U W P

r P V P GM r

 

   

   

    (4.39) 

 
Donde, la segunda de las (4.39) es la condición para que S0 sea una superficie de 
potencial constante igual a U0 y la tercera, la condición para que, a grandes distancias, el 
potencial gravitacional normal resulte indistinguible del potencial gravitacional terrestre 
lejano.  
 

 Tabla 4.1: Constantes del sistema WGS 84.   
 
Hofmann/Moritz-2006 demuestran que el potencial con simetría axial solución de las 
(4.39) es tal que: a) la solución Vn( h) es una fórmula exacta cerrada función de las 

coordenadas geodésicas  h del punto P en { [0, 2 ]  }{h0} independientemente 

de la longitud  ; b) que el potencial gravitatorio sobre So adopta el valor:  
 

2 2

arctan( / )
3

T
o

GM a
U E b

E


      (4.40) 

 

Donde 2 2E a b  es la excentricidad lineal.  La expresión general del potencial 
gravitatorio normal en puntos no interiores al elipsoide de referencia se obtiene 
reemplazando en las Ecs. (4.34) el potencial gravitacional normal Vn( h) obtenido 
mediante la (4.39): 
 

( , ) ( , ) ( , )n nU h V h W h         (4.41) 

 

CONSTANTE VALOR 

a: Radio ecuatorial 6.378.137.0 m 

GMT: Constante gravitacional 3,986004418x1014m3s-2 

Velocidad angular 7,292115x10-5rad/seg. 

f : Achatamiento 298,257223563-1 

Excentricidad 0,08181919084 

0:  Gravedad normal ecuatorial 9.7803253359 m/s2 

p: Gravedad normal polar 9.8321849378 m/s2 
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La gravedad y la gravitación normales, ( )Pγ  y ( )g Pγ  se calculan a partir de los 

respectivos potenciales, mediante: 
 

( ) ( ); ( ) ( )n g nP U P P V P   γ γ     (4.42) 

 
Destacamos que tanto el elipsoide como el potencial y la gravedad normales quedan 
definidos por los 4 parámetros independientes: a, f, GMT y   cuyos valores, provistos 
por NIMA (ver: WGS84 NIMA-Technical Report TR8350-2), son consignados en la 
Tabla 4.1.  
 
Vista la simetría axial del potencial normal y la condición de que el elipsoide normal es 
una superficie equipotencial, la gravedad normal ( )Pγ  expresada en coordenadas 
geodésicas (LGV-ENU) sobre y fuera del elipsoide normal adopta la forma: 
 

 0 ( , ) 0 ( , ) ( , )
Tg

N Uh h h h       γ    (4.43) 

 
Donde N  h) y ( , )U h   son funciones cerradas (exactas) de sus argumentos cuyas 

expresiones pueden consultarse en NIMA-TR8350-2, 2004 o en Hofmann/Moritz, 2006. 
Cuando el punto P( , , h  ) no pertenece al interior de S0, por definición, ( )Pγ es 
ortogonal al elipsoide geocéntrico equipotencial con-focal con S0 de potencial igual a 

( )nU P  (Hofmann/Moritz, 2006), pero no necesariamente es ortogonal a S0, salvo, claro 
está, si h=0.  Esto, junto con la simetría axial del potencial normal explica la ausencia de 
la componente E de ( , )g hγ  y la existencia de la componente residual N-S en la Ec. 
(4.43) para h>0. Cuando h=0 resulta la Fórmula de Somigliana (Hofmann/Moritz, 
2006): 
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    (4.44) 

 
Donde: o=9.7803253359 m/s2 es la gravedad normal ecuatorial y p=9.8321849378 

m/s2 es la gravedad normal polar. Para alturas geodésicas h20Km resulta 

arctan( ( , )N h  / ( , )U h  ) < 4arcseg, lo que equivale a ( , )N h  <2g.  Esto 

determina la cota de error de la aproximación usual para alturas atmosféricas: 0N   y 

( , )U h   calculado mediante la siguiente expansión de Taylor de 2º orden en h: 
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 (4.45) 
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El error de la aproximación (4.45) es inferior a 0.15g para h20Km (Hofmann/Moritz 

2006). Los mismos autores proponen la siguiente aproximación de la componente Norte 

( N


) con un error inferior a 0.1g para h20Km: 

 
6 2( , ) ( , ) 8.08 10 [ ]sen(2 ) /N Nh h h Km m seg          (4.46) 

 
Hsu (1998) propone una aproximación polinomial global aun más precisa con errores 

<0.01g para h30Km para ( , )U h  . 

4.4.2 Gravedad normal en coordenadas terrestres (ECEF)  
A diferencia de su expresión en coordenadas geodésicas (geográficas), la solución del 
problema (4.39) no tiene una expresión compacta exacta en coordenadas geocéntricas o 
cartesianas terrestres ECEF del punto P. Al respecto, Hofmann/Moritz, 2006 (pp 75 y 
76) demuestran que el potencial gravitacional normal queda expresado por la siguiente 
expansión en términos armónicos en función de las coordenadas cartesianas de 

[ ]e e e e Tx y zP : 
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n e

e T
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V J P
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
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     
   

P     (4.47) 

 
Donde, J2n son los coeficientes pares de la expansión (4.38), sen /e

c z r   y 
2 2 2e e er x y z   .  Usando la expresión anterior junto con la segunda de las Ecs. 

(4.34) la gravedad normal en coordenadas cartesianas terrestres se obtiene diferenciando 
la serie infinita (4.47) y el potencial centrífugo respecto de las componentes , ,e e ex y z . 
Wei y Schwarz, (1990) demuestran que el resultado es una serie que aproxima la 
gravedad normal con un grado arbitrario de precisión con la forma general:   
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  (4.48) 

 
Con: 

( ) ( ); ( ) ( )e e e e e e

g e n c eV W   γ P P γ P P     (4.49) 

 
Donde el operador e  denota el operador gradiente según las coordenadas ECEF, 

/es z r  los coeficientes ci y di son funciones de los primeros coeficientes J2, J4, J6… y 
de las primeras potencias pares de (a/r).  Los mismos autores verifican numéricamente 
que truncando las series en (4.48) en k=3 los errores respecto del valor exacto de eγ  son 

inferiores a 0,05g.   
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4.4.3 Aproximación J2  
Dado que los coeficientes gravitacionales decrecen rápidamente con el índice n el 
término dominante de la serie (4.47) (también de las (4.32) y (4.38)) corresponde al 
coeficiente zonal J2 (1.082x10-03). En efecto, J2 supera casi en 3 órdenes de magnitud a 
cualquier otro coeficiente gravitacional y refleja el abultamiento ecuatorial y 
consiguiente achatamiento en los polos del Geoide. Para ciertas aplicaciones, esto 
justifica truncar la serie (4.47) en el primer término lo que conduce a la siguiente 
aproximación del potencial gravitacional normal. 
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    (4.50) 

 
La aproximación de la gravedad normal que surge de la Ec. (4.50) equivale a truncar la 
(4.48) en el termino k=1. El resultado es la aproximación denominada “J2” de la 
gravedad normal en coordenadas ECEF (ver también Hsu, 1998):     
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Con: 
 

2 2
( ) ( );e e e

gJ e JV γ P P    (4.52) 

 
Hsu (1998) compara 

2

e

Jγ  con el valor exacto de la gravedad normal y demuestra 

numéricamente que, hasta los 700Km de altura, las diferencias en la componente según 
la vertical geodésica es inferior a 12g mientras que la diferencia en la dirección N-S se 
mantiene inferior a 6,3g. 

4.4.2 Perturbaciones de la Gravedad  
El modelo normal aproxima globalmente la gravedad terrestre con errores promedio de 
40 a 50g llegando a unos 100g cerca o sobre las grandes cadenas de montañas 
(Jekeli 1997). Un tal modelo implementado en un sistema integrado INS/GPS de alta 
calidad permite obtener precisiones de actitud del orden de los 30 arc-seg. 
(Schwarz/Wei, 1995) y 10 a 20 cm. en posición en 3D (Hutton et al, 1997).  Esta 
aproximación ha resultado históricamente suficiente en muchas aplicaciones de interés. 
Sin embargo, la mejora en la tecnología de los instrumentos inerciales ha motivado una 
demanda creciente de precisión de la navegación para la cual la limitante principal 
resulta ser cada vez más el modelo matemático de la gravedad (Jekeli et al 2007).  Entre 
las aplicaciones que requieren y requerirán cada vez más precisión citamos: el 
relevamiento geofísico aéreo, la georreferenciación automática de imágenes ópticas o de 
radar y los vuelos prolongados en navegación inercial libre. Como se demuestra en 
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Jekeli, (1997) la fuente más significativa de error del modelo de gravedad corresponde a 
la estimación de la componente horizontal no tenida en cuenta por el modelo normal, de 
allí la importancia del modelado de la deflexión vertical introducida en el Párrafo 4.3.4.     
 
Con referencia a las expresiones (4.41) y (4.42) se definen la perturbación del potencial 
gravitatorio (escalar) ( )T P  y la perturbación de la gravedad (vector) ( )Pδg  en un 
punto cualquiera P como:  
 

( ) ( ) ( )

( ) ( ) ( ) ( )
nT P U P U P

P P P T P



  δg g γ




    (4.53) 

 
Teniendo en cuenta la transformación (4.27), es usual aproximar gg como: 
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δg C γ     (4.54) 

 
Donde: g  g , U   γ  y g g    es la perturbación escalar de la gravedad. Se 

advierte de la anterior, que las componentes  y  de la deflexión vertical determinan la 
componente horizontal de la perturbación gδg .  A partir de las Ecs. (4.43) y (4.54) se 
obtiene la siguiente expresión de la gravedad normal corregida: 
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g γ    (4.55) 

 
Asociadas con las definiciones anteriores, en Geodesia se definen las anomalías 
vectorial y escalar de gravedad sobre un punto PG sobre el Geoide como 
(Hofmann/Moritz 2006): 
 

( ) ( ) ( )

( ) ( ) ( )
G G E

G G E

P P Q

g P g P Q

 
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g g γ


    (4.56) 

 
Donde EQ  es un punto sobre el elipsoide normal en la vertical geodésica de GP , 

( ) ( )G Gg P P g  y ( ) ( )E EQ Q  γ . Dado que ( )GPg  es raramente accesible directamente 

a la medida, su valor se obtiene a partir de datos gravimétricos superficiales que luego 
son reducidos al geoide suprimiendo los efectos de la altura y de la topografía locales 
mediante un procedimiento llamado “de continuación hacia abajo” (downward 
continuation, Hofmann/Moritz, 2006)) en el que intervienen modelos de la densidad y 
de la topografía locales.  El interés de reducir g(P) al geoide es que esta superficie es 
mucho más suave que la superficie terrestre y por lo tanto más tratable 
matemáticamente.  Los mapas digitales de las anomalías de gravedad (ya sea puntuales 
o promediadas sobre áreas) constituyen el formato usual en que es provista la 
información de la gravedad local por parte de las instituciones nacionales o regionales 
encargadas de gestionar los datos geofísicos y geodésicos.  Por lo tanto estos mapas 
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suelen ser la única información de base con que se cuenta para la determinación de las 
perturbaciones de gravedad ya sea en altura o sobre la superficie terrestre.   
 
Casi todos los métodos, para obtener las perturbaciones de la gravedad g fuera del 
Geoide a partir de las anomalías de gravedad se basan en la solución del problema de 
valores en la frontera de un potencial newtoniano (problema de Dirichlet). La mayoría 
de ellos usan al Geoide como superficie equipotencial teórica de frontera y se inspiran 
en el hecho de que U y Un tienen la misma componente centrífuga (comparar (4.34) con 
(4.41)) por lo que T(P) en (4.53) es puramente “gravitacional” y por lo tanto armónico 
( 2 0T  ) por encima de la topografía terrestre.  El resultado surge de una 
aproximación de la solución de 2 0T   con valores de T estimados sobre el Geoide en 
base a datos digitalizados de las anomalías de gravedad.  Un interesante estudio sobre 
estos métodos, denominados de “continuación hacia arriba” (upward continuation 
Hofmann/Moritz, 2006) publicado recientemente por Jekeli et al. (2007), concluye que 
la principal fuente de error es la discretización espacial de los datos de anomalía y el 
truncamiento de la integral de Stokes que resuelve el problema armónico.  Grejner-
Brzezinska/Wang, (1998) reportan el diseño de un sistema de navegación integrado 
INS/GPS de alta precisión (con errores <5 cm. en posición y <10 arc-seg. en 
orientación), como componente de un sistema de mapeo mediante georreferenciación 
automática de imágenes aéreas. El modelo de gravedad del sistema de navegación 
incorpora una grilla de valores de la deflexión de la vertical en altura obtenida mediante 
un método de alta fidelidad de la continuación hacia arriba de la anomalía de gravedad 
como los descritos por Jekeli et al. (2007). 
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Capítulo 5   
Ecuaciones Cinemáticas y de Navegación 

 
Las ecuaciones cinemáticas son las ecuaciones diferenciales que describen los 
movimientos traslacional y rotacional de un móvil respecto de un dado sistema de 
coordenadas de referencia. Si P  es la posición de un vehículo en una dada terna de 
referencia o de navegación {} y la orientación (posición angular) de la terna del cuerpo 
del vehículo {b} respecto de {} está caracterizada, por ejemplo, por la MCD b

C , las 

ecuaciones cinemáticas determinan la evolución temporal de P  y b
C .  Las funciones 

forzantes de las ecuaciones cinemáticas son: el vector de la aceleración lineal y el vector 
de la velocidad angular del móvil, ambos relativos al sistema de referencia elegido. En 
presencia de un campo gravitacional como el terrestre la aceleración lineal es la 
composición de la aceleración gravitacional y la aceleración inercial o fuerza específica 
provocada por fuerzas inerciales tales como la propulsión, la resistencia aerodinámica o 
la sustentación.    
 
En un sistema de navegación inercial, la distinción entre fuerza específica y aceleración 
gravitacional es fundamental.  En efecto, el principio de relatividad nos advierte que sin 
mediciones relativas a algún objeto externo, es imposible determinar el estado de 
movimiento de un vehículo moviéndose libremente en un campo gravitacional.  Más 
específicamente, en este caso, un acelerómetro a bordo del vehículo que mida 
desplazamientos relativos de una masa de prueba respecto de su carcasa solidaria al 
móvil, indicará aceleración nula dado que, tanto la masa de pruebas como la carcasa 
están sometidas al mismo campo gravitacional.  Así, sólo cuando exista aceleración 
inercial un acelerómetro vectorial a bordo registrará su propia aceleración trasmitida a 
través de la estructura mecánica del vehículo respecto de un sistema inercial. Del mismo 
modo, los giróscopos a bordo del vehículo medirán su propia velocidad angular también 
referida a un sistema inercial.  
 
Los sistemas de navegación inercial son por definición aquellos que utilizan 
exclusivamente acelerómetros y giróscopos como instrumentos de medida.  Por lo 
expuesto, dado que la aceleración gravitacional no puede ser medida por instrumentos 
inerciales un sistema de navegación inercial requiere necesariamente de un modelo 
matemático de la gravitación en función de las coordenadas del vehículo.  
 
Cuando la terna de referencia es inercial, el modelo gravitacional y los instrumentos 
inerciales proveen toda la información requerida para integrar las ecuaciones 
cinemáticas.  Sin embargo, para cualquier otra terna de referencia será necesario 
transformar las mediciones inerciales (y la gravitación) según la formulación elegida. 
Llamaremos ecuaciones de navegación a las ecuaciones cinemáticas transformadas de 
modo tal que sus funciones de entrada sean las magnitudes efectivamente medidas por 
los instrumentos inerciales.   
 
Entre las primeras decisiones a tomar en el diseño de un sistema de navegación están la 
terna de referencia y el modelo de la gravedad (ver Capítulo 4). Ambas quedan 
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fuertemente condicionadas por el tipo de vehículo considerado. En general, se podrá 
decir que la terna ECI no es adecuada para vehículos sub-atmosféricos por tratarse 
mayormente de aplicaciones que requieren ser referidas a la superficie terrestre. En 
vehículos espaciales la decisión entre ECEF y ECI está muy condicionada a la misión y 
es por tanto menos tajante. En efecto, las misiones de observación terrestre y aún de 
comunicaciones podrán tener requerimientos de provisión de datos referidos a ECEF. 
Esta condición puede verse reforzada por el hecho de que una terna fija a la Tierra se 
adapta mejor a un modelo de gravedad por expansión trunca en armónicos esféricos. 
 
La terna LGV es tradicionalmente empleada en aeronáutica, navegación marina, 
terrestre y subacuática. El motivo es doble, por un lado es la mejor adaptada al modelo 
de la gravedad normal que es la aproximación más sencilla de usar, por otro, responde a 
una demanda usual en este tipo de aplicaciones cual es el de expresar la velocidad de 
desplazamiento en coordenadas cardinales (ENU).  
 
Sin embargo, como se verá en el Capítulo 7, esta opción conduce a algoritmos strap-
down mucho más complejos que los referidos a una terna ECEF y menos precisos en 
altas velocidades. La referencia a una terna ECEF facilita además la fusión de datos 
GNSS (Capítulo 8) normalmente referidos a dicha terna y de uso tan generalizado en 
todo sistema de navegación. Para vehículos con desplazamientos limitados a pocas 
decenas de Km. con posibilidad de despreciar la curvatura terrestre, es usual una terna 
LGV (posiblemente GEO) fija a algún punto a la Tierra a lo que podrá agregarse la 
hipótesis de gravedad constante, posiblemente con un sesgo que estimaría el propio 
sistema de navegación integrada.  
 
En los primeros 3 párrafos de este capítulo se deducen las ecuaciones de navegación 
para los tres sistemas de referencia mas utilizados, a saber: ECI, ECEF y LGV. El lector 
podrá extender el procedimiento expuesto a otros sistemas de referencia que puedan ser 
de su interés.  En el Párrafo 5.4 se analizan aspectos dinámicos de las ecuaciones de 
navegación. En particular se describen dinámicas inestables inherentes a estas 
ecuaciones y un método clásico usado en aeronavegación para paliar estos efectos. 

5.1 Ecuaciones de Navegación en Coordenadas ECI. 

En este caso el sistema de referencia es inercial y las ecuaciones de Newton proveen 
directamente las ecuaciones cinemáticas que determinan la evolución de las 
coordenadas Pi de la posición de un móvil: 
 

i i i
gm m P g F    (5.1) 

 
Siendo m la masa del móvil, i

gmg  la fuerza gravitacional en coordenadas inerciales y Fi 

la fuerza no gravitacional o inercial resultante actuando sobre el vehículo.  

Introduciendo en (5.1) la definición de la fuerza específica: fiFi/m, resulta la ecuación 

fundamental de la navegación inercial en coordenadas inerciales: 
 

i i i b
g b P g C f    (5.2) 
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Puesto que la fuerza específica efectivamente medida por los acelerómetros a bordo del 
vehículo es fb y no fi, es necesario conocer en todo momento la MCD* i

bC  que 
transforma las coordenadas referidas a la terna de la unidad de mediciones inerciales 
(UMI)† a las coordenadas en la terna inercial. Agrupando la ecuación cinemática (5.2), 
la Ec. (3.20) adaptada a la evolución de i

bC  y la ecuación de la velocidad: i iV P , se 

obtienen las ecuaciones de navegación o del estado cinemático del móvil en 
coordenadas inerciales:  
 

0

0

,0

; (0)

( ) ; (0)

( ); (0)

i i i i

i i i i b i i
g b

i i b i i
b b ib b b

 

  

 

P V P P

V g P C f V V

C C S ω C C





    (5.3) 

 
Donde los vectores velocidad angular b

ibω  y fuerza específica bf respecto del sistema 

inercial medidos por la UMI resultan las funciones forzantes de las ecuaciones de 
navegación con 0

iP , 0
iV  y ,0

i
bC  la posición, la velocidad y la orientación iniciales. 

 
Cuando, como es usual en la práctica, la terna ECI se hace coincidir con la ECEF en el 
instante inicial (0) (0)i eP P . En caso de que la posición inicial del móvil esté 
expresada en coordenadas curvilíneas geodésicas ( , , h ), de acuerdo con la (4.20) se 
usará: 
 

2

( ) cos( )cos( )

(0) (0) ( )sin( )cos( )

( (1 ) )sin( )

e
n

i e e
n

e
n

x R h

y R h

z R h

     
           
        

P P     (5.4) 

 
Aunque la terna ECI es más frecuentemente utilizada en vehículos espaciales, cuando el 
punto de partida de la navegación está sobre la superficie terrestre o referido a un punto 
sobre ésta, la orientación inicial se calcula mediante la composición 

(0) (0) (0) (0)i i e g
b e g bC C C C  con (0)i

e IC , donde: (0) (0)g g l
b l bC C C  resulta de 

componer la 2ª de las Ecs. (4.18) con la transpuesta de la (4.29) y se expresa en función 
de los ángulos de Euler: (yaw) (azimut geográfico medido desde el Norte al Este), 
(pitch o elevación) y rolido), según: 
 

φ φ φ φ

φ φ φ φ

φ φ

g
b

C S S S S C C C S S S C

C C S S C C S C S C S S

S S C C C

          
            
      

C   (5.5) 

 
(0)e

gC  se obtiene a partir de la latitud y la longitud geodésicas locales ,   (ver Ec. 

(4.19)):  

                                                
* Usamos la MCD con fines ilustrativos pero es válida cualquier otra representación de la orientación 
vista en el Capítulo 3. 
† Salvo indicación expresa, consideramos la UMI alineada con la terna del vehículo (b) o en su defecto 
conocida la MCD que relaciona a ambas.  
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sen( ) sen( ) cos ( ) cos ( )cos ( )

cos( ) sen( )sen( ) cos ( )sen( )

0 cos ( ) sen( )

e
g

    
     
   

C

  
      (5.6) 

 
Por otra parte, si la velocidad inicial está expresada en coordenadas geográficas, 
entonces: 
 

(0) (0) (0)i e e g
g V V C V     (5.7) 

 
Dependiendo de las aplicaciones (ver discusión al respecto en el Capítulo 4), el modelo 
de gravitación, requerido en las Ecs. (5.3), podrá basarse en: a) la expansión en 
armónicos esféricos (4.36) para ( , , )c

g c r g  calculada en función de las coordenadas 

esféricas del vehículo o b) en la gravitación normal expresada en función de las 
coordenadas cartesianas terrestres del vehículo. En ambos casos, los desarrollos son 
truncados a un orden n=nmax compatible con la precisión requerida. En el primer caso, 
se usará la siguiente secuencia de transformaciones para obtener las coordenadas 
esféricas del punto P:  
 

 1) ;i e e i

ir  P P C P        (5.8) 

 2) arcsen( / ); arctan( / )e e e

c z r x y        (5.9) 

 
Con e

iC  calculada mediante la (4.12). Para calcular luego ( , , )i i c
g c g c r  g C g  se deberá 

actualizar i i e

c e cC C C  mediante las Ec. (4.12) y (4.14). 

 
En el segundo caso, se podrá usar la siguiente expresión de la gravitación normal 
expresada en coordenadas terrestres {e} y en función también de las coordenadas 
terrestres del punto P (ver Ec. (4.48)): 
 

 
 
 

2 4 6 2

0 1 2 3

2 4 6 2

0 1 2 33

2 4 6 2

0 1 2 3

.. ..

( ) .. ..

.. ..

k e

k

e e k eT
g k

k e

k

c c s c s c s c s x
GM

c c s c s c s c s y
r

d d s d s d s d s z

    
 

      
     

γ P    (5.10) 

 
En caso de requerirse las coordenadas curvilíneas geodésicas de la posición del vehículo 
se usarán las relaciones (4.21) para la transformación Pe→(,h). 
 
En la Fig. 5.1 se resume la mecanización de las ecuaciones de navegación en 
coordenadas ECI (Ecs. (5.3)) ejemplificadas para el modelo de gravitación normal en 
coordenadas terrestres.  
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La orientación del vehículo respecto de la terna de navegación queda determinada por 

i
bC . En la práctica, en lugar de integrar la ecuación diferencial matricial no lineal (5.3) 

que requeriría actualizar 9 parámetros redundantes (ver Capítulo 3), como se verá en el 
Capítulo 7, se procede a integrar numéricamente la ecuación del coneo (3.98) de 
dimensión 3 que da el ángulo vectorial de rotación instantáneo entre ambas ternas. Con 
base en este ángulo, la MCD y el cuaternión correspondientes pueden luego ser 
calculados, respectivamente, mediante las (3.24) y (3.62).   

5.2 Ecuaciones de Navegación en Coordenadas ECEF. 

Derivando dos veces respecto del tiempo la relación: i i e
eP C P  y recordando que 

e e
ie eω Ω = constante, se obtienen sucesivamente: 

 
  ( ) +  

 ( ) ( ) +  ( ) ( )

i i e i e i e e i e
e e e ie e

i i e e e i e e i e e i e
e e e e e e e e

  

  

P C P C P C S ω P C P

P C S Ω S Ω P C S Ω P C S Ω P C P

  
     (5.11) 

 
Usando la notación producto vectorial y después de reordenar términos, se obtiene el 
vector aceleración inercial en coordenadas terrestres: 
 

 [ ] ( ) 2( )i e e i e e e e e e
i e e e      P C P Ω Ω P Ω P P        (5.12) 

 
Substituyendo en la ecuación de Newton (5.2) re-expresada en coordenadas terrestres, 
se obtiene: 
 

 [ ] ( ) 2( )i e e e e e e e e e
e e e g       P Ω Ω P Ω P P g f      (5.13) 

 
De la cual, después de introducir la velocidad del vehículo relativa a la Tierra definida 
como: e eV P  y la expresión de la gravedad en coordenadas terrestres:  
 

( , ) ( )  ( )e e e e e e e e
g e e   g Ω P g P Ω Ω P     (5.14) 

Aceleró- 
metros 

bf f i iP
0( )e tP0( )e tV

b
ibωGirós- 

copos 

Figura 5.1: Mecanización de las ecuaciones de navegación en coordenadas ECI. 
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se obtiene la correspondiente ecuación fundamental de la navegación en coordenadas 
ECEF: 
 

( , ) 2( )e e e b e e e e e
b e    P V C f g Ω P Ω V     (5.15) 

 
El último término de la (5.15) se denomina aceleración de Coriolis en honor a su 
descubridor. Una vez más es necesario completar la Ec. (5.15) con la cinemática de la 
orientación:  
 

( ) ( ) ( ) ( )e e b e b b e b e e
b b eb b ib e b ib e bS    C C S ω C S ω Ω C S ω Ω C   (5.16) 

 
En la anterior se usó: b b b

eb ib e ω ω Ω , la linealidad del operador S(.) y las relaciones 

(3.20).  Resumimos las anteriores en las siguientes ecuaciones del estado cinemático o 
de navegación en coordenadas ECEF representadas en el diagrama de la Fig. 5.2. 
 

0

0

,0

; (0)

( , ) 2( ) ; (0)

( ) ( ) ; (0)

e e e e

e e b e e e e e e e
b e e

e e b e e e e
b b ib e b b bS

 

    

  

P V P P

V C f g Ω P Ω V V V

C C S ω Ω C C C





  (5.17) 

 
Las condiciones iniciales de posición y velocidad son similares a las determinadas para 
la terna ECI (ver Ecs. (5.4) y (5.7)), mientras que para el cálculo de la orientación inicial 
son útiles las ecuaciones (5.5) y (5.6).  Respecto del cálculo de la orientación, es válido 
nuevamente el comentario al final del Párrafo 5.1.  

 
Como fuera señalado en el Capítulo 4, en la mayoría de las aplicaciones atmosféricas y 
suborbitales, la gravedad normal γ  es una aproximación suficientemente precisa de la 
gravedad. Vista la formulación cartesiana terrestre de la (5.15) resulta muy conveniente 
en este caso el uso de alguna de las aproximaciones de e(Pe) estudiadas en el Capítulo 
anterior representadas por las Ecs. (4.48) ó (4.51). En efecto, estas expresiones permiten 
calcular directamente la gravedad en función de las coordenadas del vehículo según la 
terna de navegación elegida  
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bf ef
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Figura 5.2: Mecanización de las ecuaciones de navegación en coordenadas 
ECEF. 
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Para alturas orbitales, podrá usarse la expansión de la gravitación en armónicos 
esféricos expresada en coordenadas geocéntricas mediante las Ecs. (4.36) y (4.37) o 
bien la obtenida a partir de la aproximación del potencial gravitatorio con simetría axial 
(4.38) hasta un orden máximo n=nmax.  En este caso se deberá actualizar la MCD 

( , )e

c c C  mediante las Ec. (4.12) y (4.14) previa conversión de coordenadas mediante 

las (5.8) y (5.9).  
 
En coordenadas LGV, el uso de la gravedad normal tiene el interés de que ésta pude 
calcularse en forma cerrada en función de las coordenadas de la posición. En la práctica 
se utilizan las siguientes aproximaciones de γ  con grado decreciente de exactitud y 
expresadas en función de las coordenadas geodésicas del punto P: 
 

0 0 0

0 ( , ) ( , ) ( , ) 0

( , ) ( , ) ( , )

g

N N

U U U

h h h h

h h h

     
                   
               

γ

 

  (5.18) 

 
Donde ( , ), ( , )N Uh h     son expresiones exactas publicadas en el informe NIMA-

TR8350-2 (2004) mientras que ( , ), ( , )N Uh h    
 son las aproximaciones dadas por las 

Ecs. (4.44), (4.45) y (4.46).  La formulación (5.18) tiene particular interés para la 
navegación de precisión en alturas atmosféricas ya que permite ser corregida usando la 
Ec. (4.55) que reproducimos a continuación: 
 

( )

( , , ; , ) ( ) ( )

1

g N
corr N

U

g

h g g

g

                              
      

 

γ    (5.19) 

en función de la perturbación de la gravedad y de la deflexión vertical locales 
expresadas en coordenadas geográficas, tal como se discutió al final del Capítulo 4.  El 
uso del modelo (5.19) de la gravedad normal requiere, por una parte, implementar la 
transformación Pe→(,h) mediante las relaciones (4.21) y por otra actualizar la MCD 

e
gC  usando la expresión (5.6) para obtener:  

 
( , , ) ( , , ) ( , , )e e g e g

g gh h h       g C g C γ    (5.20) 

 
El diagrama de la la Fig. 5.2 resume la mecanización de las ecuaciones de navegación 
en coordenadas ECEF (Ecs.(5.17)) ejemplificada para el modelo de gravedad normal 
dado por las Ecs. (4.48) ó (4.51). 

5.3 Ecuaciones de Navegación en Coordenadas LGV. 

La mayoría de las aplicaciones aeroespaciales o terrestres y aún ciertas satelitales, 
utilizan necesariamente como referencia de posición alguna terna fija a la Tierra, en 
particular la terna ECEF. Las ecuaciones de navegación en coordenadas LGV describen 
la orientación del vehículo respecto de esta última terna, en tanto que, como veremos su 
velocidad y posición referidas a la terna ECEF aunque expresadas en coordenadas LGV.  
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Partiendo de la relación entre las coordenadas terrestres y las coordenadas geodésicas de 

un punto P para ≠0 en (4.23) y de la velocidad terrestre e eV P  y definimos:  

 

   ("Ground Speed")n n e n e
e eV C V C P    (5.21) 

 
Notar que Vn es la velocidad del vehículo respecto de la Tierra expresada en 
coordenadas "n". Por definición la velocidad del vehículo respecto de la terna LGV es 
nula. Derivando ahora Vn respecto del tiempo se tiene:  
 

   ( ) +     = ( ) = ( )  n n e e n e e e n e e e n e e
e ne e n ne n en   V C S ω P C P P C V S ω P C V S ω P         (5.22) 

 

Sustituyendo en la (5.12) después de usar la relación: ( ) ( )e e n n
en n en eS ω C S ω C  y de pre-

multiplicar por n
eC , se obtiene el vector aceleración inercial en coordenadas LGV: 

 

[ ]   ( ) 2( )i n n n n n n n n n
en e e e       P V ω V Ω Ω P Ω V    (5.23) 

 

Comparando con la (5.12), nótese el término suplementario  n n
en ω V  de tipo Coriolis 

provocado por la traslación del vehículo “arrastrando” consigo la terna de referencia. 
Como se verá en el párrafo siguiente la velocidad angular n

enω , denominada rotación 

por transporte (craft rate en inglés) y denotada de ahora en más n , cumple un rol 
crucial en la mecanización de las ecuaciones de navegación en coordenadas LGV. 
 
A partir de la ecuación de Newton (5.2) rescrita en coordenadas geodésicas {n} como: 
 

[ ]i n n n
g P g f   (5.24) 

 

y usando la (5.23) despejamos nV  para obtener la ecuación de traslación en 
coordenadas {n}:  
 

(2 )  ( )

(2 )  

n n n n n n n n n
e en e e g

n b n n e n n
b e e en

        

    

V Ω ω V Ω Ω P g f

C f g C Ω ω V


  (5.25) 

 
La actualización de la MCD n

eC , requerida en la Ec. (5.25), se obtiene mediante la 

ecuación de la cinemática de orientación: 
 

( )n n n
e en e C S ω C    (5.26) 

 
A partir de n

eC , de acuerdo con la Ec. (4.24), es posible calcular la longitud, la latitud y 

el ángulo , del vehículo mediante: 
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arcsen( (3,3));

arctan( (3,2) / (3,1));

arctan( (1,3) / (2,3))

n
e

n n
e e

n n
e e





 





C

C C

C C

   (5.27) 

 
Las dos primeras de las Ecs. (5.27), junto con la altura geodésica h, calculada mediante:  
 

0 0; ( )n
zh V h t h  ,    (5.28) 

 
determinan la posición del vehículo en coordenadas geodésicas.  
 
La proyección instantánea de la fuerza específica medida por los acelerómetros según la 
terna {n} requiere actualizar la MCD n

bC  mediante su correspondiente ecuación 

cinemática:  
 

( ) ( ) ( ) ( ) ( )n n b n b n n n b n n n
b b nb b ib in b b ib e b      C C S ω C S ω S ω C C S ω S Ω C  (5.29) 

 
Donde, en la última igualdad se usó la relación:  
 

 n n n e n n
in e e e   ω ρ C Ω ρ Ω    (5.30) 

 
Como se mencionó en los párrafos anteriores, la integración de n

bC  y n
eC  es sustituida 

en la práctica por la integración de las ecuaciones de coneo asociadas a los respectivos 
ángulos vectoriales de rotación. Esto resulta en una importante reducción de la 
dimensionalidad del problema a la vez que evita se asegura verificar automáticamente 
las condiciones de ortonormalidad de las MCD.  
 
A partir de n

bC  y, de acuerdo con la Ec. (4.31), pueden calcularse los ángulos de Euler 

de la orientación del vehículo mediante (ver Fig. 5.3): 
 

arctan ( (1,1) / (1, 2)) ;

arcsen( (1,3));

arctan ( (2,3) / (3,3))

b b

n n

b

n

b b

n n

g  

 

 

C C

C

C C

    (5.31) 

xb 
yn

xn 

E 

N 

ψ

gψα

α

yb 

Figura 5.3: Relación entre las ternas del cuerpo, de navegación y geográfica en 
el plano horizontal. 
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Dado que las coordenadas LGV son predominantemente utilizadas en alturas 

atmosféricas, la gravedad ng  es usualmente aproximada por la gravedad normal nγ  en 

este caso (ver discusión relativa en el Capítulo 4). Más aún, en la mayoría de las 
aplicaciones es suficiente la última de las aproximaciones (5.18) lo que resulta 
particularmente adaptado a esta representación:  
 

0

0

( , )

n g

U h

 
    
   

g γ


   (5.32) 

 
En caso de que la aproximación resultare insuficiente podrá usarse alguna versión mas 
precisa de las (5.18) o recurrir a las correcciones (5.19). 
 
Las ecuaciones de navegación en coordenadas LGV se resumen en el siguiente sistema 
no lineal en forma de ecuaciones de estado con b

ibω  y bf  como funciones forzantes de 

entrada:  
 

0

0 0

,0

,0

( ) (2 )  ; (0)

; ( )

( ) ( ) ; (0)

( ) ; (0)

n n b n e n n n n n
b e

n
z

n n b n n n n n
b b ib e b b b

n n n n n
e e e e

h V h t h

     

 

   

  

V C f g P Ω ρ V V V

C C S ω S ρ Ω C C C

C S ρ C C C







  (5.33) 

 

5.3.1 Rotación por transporte  

Como ya se indicó, el vehículo “arrastra” consigo la terna LGV pudiendo alterar en el 
camino su orientación respecto de la terna terrestre ECEF. Sólo los desplazamientos 
verticales (en dirección U-D) mantienen invariante la orientación de la terna LGV 
relativa a la ECEF. En cambio, los desplazamientos contenidos en el plano cardinal 
local (N-S, E-O) varían la orientación relativa entre ambas ternas a la velocidad angular 

xe 

E 

N 

ze 

ye 



 P 

U 

 

(Rn+h)cos 

Rn+h= radio 
“normal” 

Figura 5.4: Definición de la rotación por transporte. 


Meridiano de 
Greenwich 
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ρ  (rotación por transporte) proporcional a la proyección de la velocidad del vehículo 

sobre dicho plano. En efecto, los cambios en latitud  , longitud  y en el ángulo de 
deriva   producen una rotación por transporte que expresada en la terna geográfica {g} 
resulta (ver Fig. 5.4):  
 

cos( ) ( sen( ) )g
E g N g U g g g g           ρ x z x z  y y  (5.34) 

 
El signo opuesto entre   y E  es consistente con las definiciones de ambas 

magnitudes.  
 
Para un punto genérico expresado en coordenadas curvilíneas geodésicas según 
P(,h) y usando los radios de curvatura paralelo (4.6) y meridiano (4.11), del 
elipsoide normal definidos en el Capítulo 4, se obtiene: 
 

( )

cos( )
( )

sen( ) tan( )
( )

N
E

m

E
N

n

E
U

n

V

R h

V

R h

V

R h

    
 

    
 

       
 





  

   (5.35) 

 
Rescrita matricialmente, la Ec. (5.35) adquiere la forma: 
 

1
0 0

( )

1
; 0 0

( )

0 0 0

m

g g g g
g U

n

R h

R h

   
 
      
 
  

ρ V z K K  (5.36) 

 
Donde Kg es el tensor de curvatura local del elipsoide expresado en coordenadas 
geográficas. Re-expresando la anterior en coordenadas (no cardinales) {n} se tiene:  
 

; sen( )n n g g n g n n n n n
g n g n z n z U z             ρ C C C V z V z  K K  (5.37) 

 

Notar que, bajo el cambio de coordenadas n
gC , K se transforma como un tensor, e.d: 

n n g g
g n C CK K  y además que, dado que la transformación n

gC  (Ec. (4.18)) deja 

invariante al eje z, se conserva la componente “U” o “z” del vector   
 
Como es fácil mostrar mediante las definiciones:  
 

22 221 1 1
; ;

R R T mmn n nm

C SC

x y

C SS C S

R h R h R hR h R h R h

      


    

    
             

    (5.38) 
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resulta: 
 

/ T / R1/ T 1/ R 0

1/ R 1/ T 0 / R / T

0 0 0 sen( )

x yy

n n
x x y

y

x

V V

V V

   
  

      
        

ρ

 
K   (5.39) 

 
De la última de las Ecs. (5.35), cuando 0   la componente E de la velocidad induce 
una componente vertical U cuya magnitud crece sin límites en altas latitudes 

(→/2).  Con el fin de asegurar la integrabilidad de la Ec. (5.26) cerca de los polos, 

es necesario, entonces, introducir una derivada temporal 0   del ángulo de deriva lo 
que se traduce en cambios en azimut respecto del Norte geográfico de la terna geodésica 
no-cardinal {n} (ver inciso 4.3.3 del Capítulo anterior).   
 
Las mecanizaciones que usan 0   son denominadas “de deriva de azimut” (wander 

azimuth en inglés). Para la selección sen( )     resulta 0n
z   y la mecanización 

recibe el nombre de azimut libre aludiendo al hecho de que el sistema equivalente de 
navegación con plataforma no es actualizado en azimut con los desplazamientos en 
longitud.  Notar que en este caso 0   en vehículos estacionarios o moviéndose sobre 
un meridiano.  Es fácil imaginar diversos caminos cerrados sobre la superficie terrestre 
que produzcan distintos incrementos de  al final del circuito por lo que en general  no 
dependerá de la posición sino del camino recorrido desde el inicio de la navegación. Si, 

en cambio, se elije ( ) sine      , lo que equivale a n n
z z   , la componente 

vertical local de la velocidad angular de la terna de navegación respecto de la terna 

inercial es tal que , 0n n n
in z z z     . A esta mecanización se la denomina de Foucault 

ya que reproduce el comportamiento de una terna sobre el conocido péndulo que lleva 

su nombre. También en este caso n
z  es finita en latitudes polares: ( )2

n
z e

      .  

 

Mecanización n
z    

Rot. inercial 

vertical ,
n
in z  

Rot. inercial 
vertical en los 

polos 

Apuntamiento 
al Norte sin   0      ( )sine    

e    

VE0 

Azimut Libre =0 sin     sine   e  

Foucault sine   ( )sine        0  0  

Unipolar 
Hemisf. Norte 

(sen 1)  
     

(sin 1)

sine

   
 


 e  ( )2

    

Unipolar 
Hemisf. Sur 

(sin 1)        
(sin 1)

sine

  
 


  e ( )2

    

Tabla: 5.1: Selecciones usuales de n
z . 
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La tabla 5.1 resume las características de las selecciones de n
z  más utilizadas en la 

práctica, mientras que la Fig. 5.5 muestra esquemáticamente la mecanización de las 
ecuaciones de navegación en coordenadas LGV.  El recuadro indicado en la figura 
como plataforma analítica concentra el cálculo de la transformación de coordenadas 
entre la terna del cuerpo y la terna {n}.  Su nombre ese motivado por los sistemas 
clásicos de navegación que utilizan como referencia una plataforma estabilizada 
respecto de esta última terna.  
 

5.4 Dinámica Inestable de las Ecuaciones de Navegación  

Las ecuaciones de navegación poseen, como veremos, dinámicas inestables que si no 
son debidamente tenidas en cuentas se traducen en divergencias numéricas en los 
sistemas de navegación “strap-down”. El sistema de coordenadas más apto para estudiar 
esta dinámica es el LGV por lo que en lo que sigue adoptamos esta terna de referencia 
para describirlas. Consideremos la componente z (vertical geodésica local) de la 
ecuación diferencial (5.25), llamada del “canal vertical”, con condiciones iniciales 

respecto del elipsoide normal: 0 0 0( ) y ( ) ( )zh t h t V t .  

 

( , ) ( , )

( , ) ( 2 ) ( 2 ) ( 2 )

n n n n
z z x y z z

n n n n n n
z x y e x y y y x xz

V h c V V h f

c V V V V

     

            ρ Ω V




 (5.40) 

 
junto con la aproximación lineal de la gravedad normal (ver Ec. (4.45)):  
 

 
2

2

2

( , ) ( ) 1 2 1 2 sin ( ) 3

( ) 1 2 ( ) ( )

n
z

h h
h f m f

a a

h
A O h

a

                 
        

  (5.41) 
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bf nf h

0( )h t

0( )n tV

b
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copos 
( ) ( )n b

b nbtC S ω

Figura 5.5: Mecanización de las ecuaciones de navegación en coordenadas LGV. 
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Denotando con ^ los valores correspondientes a las estimaciones de las magnitudes 
reales, estudiamos ahora los efectos sobre la solución de las (5.40) y (5.41) de un error 
en las condiciones iniciales: 
 

0
0 0 0

0
0 0 0

ˆ( ) ( ) ( )

ˆ( ) ( ) ( )z z z

h h t h t h t

V h t V t V t

   

  


 

   (5.42) 

 

Como es fácil advertir, la componente n
zc  del término aditivo de Coriolis es 

independiente de h y zV . Esto permite, en primera aproximación, aislar la dinámica del 

canal vertical de la del canal horizontal (componentes sobre el plano horizontal local). 

Suponiendo conocida la componente de la fuerza específica n
zf , la parte lineal de la 

propagación en el tiempo de los errores iniciales (5.42) queda descrita por la siguiente 
ecuación diferencial lineal:  
 

2ˆ ˆ( ) ( ) ( ) ( , ) ( , ) 2 ( )n n
z z sh t h t h t h h h t                (5.43) 

 

Donde 1( ) ( ) ( )s A a      es la llamada “frecuencia de Schuller”. La ecuación 

característica: 2 22 0s     tiene como raíces en latitudes medias:  
 

 1
1,2 2 ( ) 0.0012 2 secs

          (5.44) 

 
La raíz positiva origina una dinámica inestable resultando en un crecimiento 
exponencial de ( )h t  y ( )zV t  para cualquier error inicial distinto de cero.  A modo de 

ejemplo, un error inicial: 0 0( ) 0; ( ) 1 /zh t V t m s     producirá al cabo de 15min un 

error en la posición vertical de 1300m! Este mecanismo es consecuencia de la doble 
integración realimentada con el modelo de la gravedad (ver las Figs. 5.1, 5.2 y 5.5) y, 
por tanto, resulta inherente a las ecuaciones de navegación.  Claramente, las 
consecuencias negativas de la inestabilidad vertical serán más acentuadas mientras más 
prolongada sea la navegación. Para evitar sus efectos se requiere poder actualizar 
periódicamente el estado de la navegación utilizando alguna medición independiente de 
las medidas inerciales.  La introducción de filtros de fusión de datos que da lugar a la 
técnica de navegación integrada desarrollada en el Capítulo 10 es la manera natural de 
subsanar este problema. A continuación presentamos una solución ad hoc comúnmente 
utilizada en la aeronavegación.  

5.4.1 Filtro Estabilizador del Canal Vertical  
En aeronavegación es común usar la medición independiente de la altura provista por un 
baro-altímetro.  Esta medición se caracteriza por ser estable en periodos prolongados 
aunque adolece de ruido de medida y retardos propios de los fenómenos aerodinámicos 
involucrados. El filtro estabilizador del canal vertical combina la medición del baro-
altímetro con las de la unidad inercial y permite medir en forma estable tanto la altura 
como la velocidad vertical sin alterar mayormente el ancho de banda de la medición 
inercial.  El resultado es también conocido en la literatura como altímetro “baro-
inercial” (Kayton/ Fried, 1997).   
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Supondremos la medición del baro-altímetro h


 afectada por un error lo que conduce al 
modelo: 
 

hh h  


  (5.45) 

 
Reescribimos la Ec. (5.40) en forma de ecuación de estado: 
 

0 0

0

; ( )

( , ) ( , ) ; ( )

z

n n n o
z z x y z z z z

h V h t h

V c V V h f V t V

 

     


    (5.46) 

 
Si bien las causas de las divergencias del modelo (5.46) respecto de la realidad pueden 
ser muy variadas, para demostrar los efectos del filtro estabilizador sobre la 
inestabilidad del canal vertical bastará suponer solamente desconocimiento en la 
posición y la velocidad iniciales y un error de medición en la fuerza específica. Para 
ilustrar el concepto se supondrá además que el canal horizontal provee sin errores los 
valores de Vx y Vy.  Denotando con 1y 2, respectivamente, a la altura y la velocidad 
vertical provista por la mecanización numérica del modelo (5.46) perturbado por los 
errores de medida y afectado por señales de compensación 1u  y 2u , dicha mecanización 
es describe mediante:  
 

1 2 1 1 0 0

2 1 2 2 0 0

ˆ; ( ) ( )

ˆ( , ) ( , ) ; ( ) ( )n n n
z x y z z z

u t h t

c V V f u t V t

     

         


   (5.47) 

 

Donde n n n
z z zf f b

  es la medida acelerométrica de la fuerza específica afectada por un 

sesgo desconocido n
zb  posiblemente "lentamente" variable. Definimos además: 3

ˆn
zb   

a la estimación disponible de n
zb  y agregamos a las Ecs. (5.47) la ecuación: 

 

3 3u    (5.48) 
 
A continuación imponemos la ley que genera las señales de compensación con k1, k2 y 
k3 a determinar: 
 

1 1 1

2 2 1 3

3 3 1

( )

( )

( )

u k h

u k h

u k h

   

     

   





   (5.49) 

 
Las (5.47) realimentadas con las (5.48)/(5.49) conforman el filtro de estabilización del 
canal vertical representado en el diagrama de la Fig. 5.6.  Para analizar su 
comportamiento definimos el vector error de estimación:  
 

1

2

3

z z
n n
z z

h h

V V

b b

     
         
       

e     (5.50) 
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Restando las (5.47) de la (5.46) luego de introducir la ley de realimentación (5.48)-
(5.49) y teniendo en cuenta la (5.45), se obtienen las ecuaciones de estado que 
satisfacen las componentes del error definido en la (5.50): 
 

1 2 1 1 2 1 1

2
2 1 2 1 3 1 2 1 3

3 3 3 1 3 1

( ) ( )

( , ) ( , ) ( ) 2 ( )

( ) ( )

h

n n
z z s h

h

e e k h e k e

e h k h e e k e e

e k h k e

       

                

         








 (5.51) 

 
Las cuales son rescritas matricialmente como  
 

1 1 0
2

2 2 0 0

3 3

1 ( )

2 0 1 ; ( ) ( )

0 0
s h z

n
z

k 0 k h t

k k t V t

k k b

    
                
         

e e e   (5.52) 

 
con condiciones iniciales 0( )te  desconocidas.  Como es sabido (véase por ejemplo Kuo, 

1995), el sistema (5.52) es exponencialmente estable para valores k1, k2, k3 tales que las 
raíces del polinomio característico de la matriz de la dinámica tienen parte real negativa 
 

3 2 2
1 2 3( ) ( 2 ) 0sp k k k              (5.53) 

 
Esta condición asegura que ( )te  tiende exponencialmente a cero, con lo cual, en estado 

estacionario, ( ( ) 0t e  en (5.52)) si h   0( ) ,t t t   e  lo que garantiza errores 

acotados en altura para cualquier error inicial aun con sesgos acelerométricos.  En 
particular, si 0 ( ) 0,h t t    e .  Del mismo análisis en estado estacionario se 

advierte que para h  lentamente variable, independientemente del valor desconocido 

del sesgo n
zb , resulta hh    (el error en altura esta acotado por el error del 

baroaltímetro) y el error en la velocidad vertical es tal que 2 0ze V   . Más aún, el 

filtro provee una estimación asintótica del sesgo: ˆ ( )n
zb   con error de estimación 

independiente de los valores de ki dado por (ver (5.44)):  
 

2

2 6
3( ) ( ) 2 3 10n

z s h h
m

e b x
seg

            
 

    (5.54) 

 
Debe contrastarse este resultado con los errores linealmente creciente en velocidad y 
cuadráticamente creciente en altura que producen los sesgos en los acelerómetros al 
integrar las ecuaciones de navegación.  
 
A continuación ilustramos un diseño posible del filtro estabilizador.  Para una dada 
constante de tiempo T>0 elegimos las raíces del polinomio (5.53) tales que  
 

1 2,3
1 1 1, jT T T          (5.55) 
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Lo cual corresponde a un coeficiente de amortiguamiento de los polos complejos de 

0cos(45 ) 0.707   . De las condiciones anteriores y del polinomio (5.53) surgen los 
siguientes valores de ki: 
 

2
2 31 2 3

3 4 2; 2 ;sk k kT T T
        (5.56) 

 
Para el diseño debe tenerse en cuenta que si se desea seguir cambios rápidos de altura se 
deberá aumentar el ancho de banda lo que redundará en un empeoramiento de los 
efectos del ruido en la medición barométrica.  Por otra parte, una dinámica lenta 
atenuará los efectos del ruido de medida pero acentuará los efectos de los errores de los 
acelerómetros y de las condiciones iniciales.  Cuando las estadísticas del ruido h  y del 

error en los acelerómetros son conocidas es posible estimar óptimamente tanto las 
variables 1 y2 cuanto el sesgo acelerométrico 3 y el error del baro-altímetro 
mediante el Filtro de Kalman. Esto será objeto de Capítulo 10. 
 
Para el diseño determinista las constantes de tiempo usuales van entre 40seg a 400seg. 
Adoptando un valor de T=100seg, las constantes resultan: 
 

2 1 4 2 6 3
1 2 33.0 10 seg ; 4.0 10 seg 2.0 10 segk x k x k x          (5.57) 

 
Como se advierte, el filtro goza de múltiples ventajas: a) hereda la estabilidad propia del 
baró-altímetro, b) tiene una respuesta en frecuencia mucho más alta que éste y definible 
por diseño, c) permite medir la velocidad vertical y d) goza de cierta insensibilidad en 
baja frecuencia a los errores acelerométricos y del modelo de gravedad. 

 
ĥ1

1( , )n
z  

+ 
n

zf

- 
0

ˆ( )h t
0

ˆ( )h t

+ 

3k 

+ 
- 

k2 k1 

h


n
zb

+ 

h

h

- - - 

3
ˆ( )n

z
b 

122

(2 )n n n

z
   Ω ρ V

Figura 5.6: Mecanización del filtro estabilizador vertical. 

ẑV
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Capítulo 6  
Modelos y Dinámicas  

de los Errores de Navegación  

 
Los parámetros de navegación de un vehículo evolucionan según las soluciones de las 
ecuaciones cinemáticas a partir de las condiciones iniciales reales y en función de las 
magnitudes, también reales, de la fuerza específica y de la velocidad angular inercial. 
Aunque pueda decirse que las ecuaciones cinemáticas sean las más exactas que se 
conocen, el estado real x y el calculado x̂  difieren por 3 razones:  
 

a) Errores entre las magnitudes inerciales calculadas con el modelo y los valores 
reales (t) que impulsan al vehículo debido al ruido y a errores paramétricos.  

b) Diferencias entre la condición inicial real 0( )tx  y su estimación 0ˆ ( )tx ,  

c) Errores en el modelo de gravedad.  
 

Como consecuencia de lo anterior, también se apartan de sus valores reales las salidas 
modeladas que denotamos en general con y(t). Los aspectos generales del problema 
pueden describirse mediante el esquema de la Fig. 6.1. 
 

 
En este Capítulo se describe la dinámica de los errores en los parámetros de navegación 
y en otras variables calculadas por un sistema de navegación inercial de tipo 
"strapdown" para las diferentes mecanizaciones estudiadas en el Capítulo 5. El interés 
de un tal modelo diferencial es múltiple. Por un lado permite evaluar la sensibilidad del 
error del estado cinemático respecto de las distintas fuentes de incertidumbre presentes, 
lo que hace posible determinar, a priori, el "presupuesto" de errores del sistema de 
navegación en función de la calidad de la instrumentación, de la precisión del modelo 
de gravedad y de la incerteza de las condiciones iniciales. Por otro lado, el modelo de la 
sensibilidad será usado para propagar la matriz de covariancia del estado cinemático 
requerido por los algoritmos de navegación integrada basados en el Filtro de Kalman 
Extendido, objeto del Capítulo 10. Como aplicación práctica de esta herramienta 

Mecanización de 
navegación: x̂  

Vehículo, real  
x=? μ  

ξ  

ŷ  

y  

y    

  

  

  

0( )tx  

0ˆ ( )tx  

Figura 6.1: Comportamiento diferencial entre el vehículo real y la 
mecanización de navegación. 

-Parámetros de los sensores  
-Modelo de gravedad 
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presentamos en este Capítulo un análisis del comportamiento de la función girocompás 
de un sistema de navegación usado para alinear un vehículo en reposo.  

6.1 Dinámica de las pequeñas perturbaciones  

El método que usaremos para describir la dinámica de los errores del algoritmo inercial 
es el llamado de las pequeñas perturbaciones. Para una dada variable v  de valor 
posiblemente desconocido y dada su estimación v̂ , definimos la desviación de la 
primera respecto de su valor estimado como:  
 

ˆ v v v    (6.1) 
 
Consideramos la siguiente ecuación del estado xn con función forzante um, 
vector de salidas ys y condición inicial x0 en t=to.: 
 

0

0( ; ( ), )

( , )

t 



x f x xx u

y h x u


   (6.2) 

 
Denotamos con 0

ˆ ˆ( ), ( );t t t tx y  a la solución del sistema (6.2) cuando las condiciones 

iniciales y la función forzante se reemplazan por valores estimados o medidos.  
 

0

0
ˆ ˆ ˆ ˆ ˆ( , ); ( )

ˆ ˆ ˆ( , )

t 



x f x u x x

y h x u


   (6.3) 

 
En un sistema de navegación inercial, las ecuaciones (6.2) o (6.3) son las ecuaciones 
cinemáticas.  Las soluciones de la primera representan, en teoría, la evolución real del 
estado cinemático mientras que las de la segunda corresponden a la evolución de la 
solución calculada en base a valores estimados, ya sea de las magnitudes inerciales o de 
las condiciones iniciales.  
 
Suponiendo continuidad en la derivada primera de las funciones f y h respecto de sus 
argumentos, después de sustraer (6.3) de (6.2) y junto con la definición (6.1) se tiene: 
 

0 0

0
ˆ ˆ ˆ( , ) ( , ); ( )

ˆ ˆ ˆ ˆ( , ) ( , ) ( , )

ˆ ˆ ˆ ˆ( , ) ( , ) ( , )
x u

x u

t

o

o

     

      

       

x f x u f x u x x x

f x u x f x u u x u

y h x u x h x u u x u


   (6.4) 

 
Donde gv es la matriz jacobiana de una función vectorial g respecto de su argumento y 

( , )x uo   es tal que: 
 

2 2 1 / 20
0

( , )
lim 0

( )x
u

o






 


  

x u

x u
 

 
El método de las pequeñas perturbaciones consiste en despreciar los términos no 
lineales en la Ec. (6.4) y describir la evolución temporal de las desviaciones mediante 
las ecuaciones de perturbación lineales:  



Martín España Comisión Nacional de Actividades Espaciales  

 133 

 
0

0
ˆ ˆ ˆ ˆ( ( ), ( )) ( ( ), ( )) ; ( )

ˆ ˆ ˆ ˆ( ( ), ( )) ( ( ), ( ))
x u

x u

t t t t t

t t t t

      

    

x f x u x f x u u x x

y h x u x h x u u


  (6.5) 

 
Las soluciones de las ecuaciones lineales variantes con el tiempo (6.5), llamadas 
funciones de sensibilidad en un contexto más general, describen la evolución temporal 
de la parte lineal del error de la solución de (6.3). Las funciones forzantes de estas 
ecuaciones son los errores de estimación o de medida de las funciones forzantes reales 
desconocidas y sus condiciones iniciales el error en la estimación del estado inicial.  
 
Por el principio de superposición (válido para sistemas lineales) es posible calcular, a 
partir de estas ecuaciones, los efectos individuales de las perturbaciones ya sea, sobre 
las condiciones iniciales o sobre las funciones forzantes. Esto permite establecer el 
presupuesto de errores que consiste en distribuir el error total según cada una de sus 
causas.  Volvemos ahora a las ecuaciones cinemáticas formuladas en Capítulo 5. 

6.2 Dinámica del error en la MCD  

Como se mostró en el Capítulo anterior, las ecuaciones de navegación requieren 
proyectar la fuerza específica, medida en la terna del cuerpo {b}, sobre la terna de 
navegación elegida que denotamos genéricamente como {}. Cuando {b} rota respecto 
de {} a la velocidad angular bω  (como se muestra en la Fig. 6.2), dicha proyección se 

calcula mediante la MCD b
C , solución de la ecuación cinemática (ver Párrafo 3.3.2 del 

Capítulo 3):  
 

0 ,0

( ) ( ) ( )

( ) ( ) ; ( )

b b b
b b b b ib b i

b
b ib i b b bt

   
 

    


  

  

C C S ω C S ω C S ω

C S ω S ω C C C


    (6.6) 

 
En la cual se usó la relación: b b b

b ib i  ω ω ω .  

 
Si en un dado instante t0, la terna "de llegada" { } de la transformación de coordenadas 

b
C  difiriese de la terna estimada { ̂ } en un ángulo suficientemente pequeño 

0
θ  (en 

el sentido positivo indicado en la figura), a partir de t0, la derivada temporal de la 
diferencial de la MCD ˆ , para 1b b b v

     C C C θ  , definida al final del párrafo 3.6, 

resulta de perturbar diferencialmente la Ec. (6.6): 
 


ˆ v  θ θ

b

̂

bω

Figura 6.2: Dinámica del error de la MCD.  

b
C

vbθ
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0 ,0( ) ( ) ( ) ( ) ; ( )b b
b b ib b ib i b i b b bt        

            C C S ω C S ω S ω C S ω C C C  (6.7) 

 

De acuerdo con la Ec. (3.47) del Capítulo 3, la diferencial vbθ  (que para simplificar 

denotamos vθ ) del ángulo vbθ  entre las ternas {b} y {  } se corresponde con la 

diferencial de la MCD: ( )v v v
b v b  C S θ C . Sustituyendo en la anterior: 

 
( ) ( ) ( ) ( ) ( ) ( )v v b v v b

b v b ib i v b b ib i b
    

         C S θ C S ω S ω S θ C C S ω S ω C   (6.8) 

 

con condición inicial: 
0,0 ,0( )v v v

b v b  C S θ C . Por su parte, derivando ( )v v v
b v b  C S θ C  

respecto del tiempo resulta: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )v v v v v v b v v v
b v b v b v b ib v i b v b

  
          C S θ C S θ C S θ C S ω S θ S ω C S θ C     (6.9) 

 
Igualando ambas expresiones y luego de pre-multiplicar por b

vC  se obtiene:  

 
( ) ( ) ( ) ( ) ( ) ( ) ( )v v v

i i ib i
   

             S θ S θ S ω S ω S θ S ω S ω    (6.10) 

 

Luego de usar la identidad (3.5) del Capítulo 3, despejamos v
θ  para obtener la 

ecuación para la diferencial angular 
 

v v v b
i b ib i
 

           θ θ ω C ω ω     (6.11) 

 
Un procedimiento similar, pero partiendo de la diferencial ( )v v b

b b   C C S θ , 

correspondiente a la primera de las Ecs. (3.47), conduce a la ecuación alternativa de la 
anterior: 
 

b b b b b v
ib ib i          θ θ ω ω C ω     (6.12) 

 
que, como el lector podrá verificar, pudo obtenerse directamente transformado la Ec. 
(6.11) mediante el cambio de coordenadas: b v b

    C θ θ  (Ec.(3.44)).  

 
Notar que se supuso al error angular concentrado en la terna de llegada. Esta 
convención, que se adopta en lo que sigue mientras no se advierta lo contrario, es 
justificada por el hecho de que, como se vio al final del Párrafo 3.6 del Capítulo 3, es 
imposible distinguir la contribución al error angular total de las desviaciones angulares 
en las ternas de partida o de llegada.  
 
Los casos más usuales de propagación del error angular considerados a continuación 
resultan casos particulares de las Ecs. (6.11) y (6.12). 

6.3 Dinámica del error de navegación en coordenadas ECI  

Aplicando el método de las pequeñas perturbaciones a la Ec. (5.3) se obtienen las 
ecuaciones del error de traslación: 
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0

0

; (0)

( ) ; (0)

i i i i

i i i i b i b i i
g b b

     

         

P V P P

V g P C f C f V V


    (6.13) 

 

Para este caso {}{}, por lo que 0i i
 
   ω ω .  Denotando la diferencial ib θ ψ , 

de las (6.11) y (6.12) se obtienen las expresiones alternativas para la ecuación de 
propagación del error angular inercial:  
 

0 0

0 0

( ) ; ( )

( ) ; ( )

i i b b b b b b b
b b ib ib

i i i i i b i i
b b b ib

t

t

       

     

C C S ψ ψ ψ ω ω ψ ψ

C S ψ C ψ C ω ψ ψ




 (6.14) 

 
Las funciones forzantes de las ecuaciones dinámicas del error ((6.13) y (6.14)) son los 
errores en las mediciones inerciales: ,b b

ib f ω  agrupados en el vector μ  y cuya 

expresión en función de los errores paramétricos 
TTT

i
     p σ b  y del ruido 

,
TT T

f    ξ ξ ξ  se obtiene perturbando la Ec. (2.13): 

 

( ) ( )

( ) 0 0
( )

0 ( ) 0

i

i

b
ib

p ib

b
ib

bp

L I

L I

 

 
          

 
  
  

ω
μ μ σ b ξ B μ p ξ

f

ω
B μ

f

 


 



   (6.15) 

 

Definimos las dos formas alternativas de los errores de navegación en 9: 

 

;

ψ ψ

x V x V

P P

b i

i i i i

b i

i i

   
         
       

       (6.16) 

 
Combinando las expresiones (6.13) y (6.14), las ecuaciones de estado lineal variante en 
el tiempo que modelan la propagación de las dos versiones del error de navegación 
(6.16) resultan: 
 

3

( ) 0 0 0
ˆ ( ) 0 / 0

0 00 0

i

b b
ib

i i b i i i i i i
b b g b b b

i

     
                               

P

S ω ψ I

x C S f g P V I μ F x B μ

PI

  (6.17) 

3

0 0 0 0
ˆ ˆ( ) 0 / 0

0 00 0

i

i

i i b i i i i i i i
i b g i i i

i

     
                     
         

bP

ψ I

x S C f g P V I C μ F x B μ

PI

  (6.18) 
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Donde, /
P

g P
i

i i

g   es el jacobiano de la gravitación en coordenadas inerciales evaluado 

en ˆ iP  cuya expresión depende del modelo de gravedad utilizado. Para una discusión 
sobre opciones y expresiones de la gravedad se remite al lector al Párrafo 5.1 del 
Capítulo anterior, Ecs.(5.8) a (5.10). 

6.4 Dinámica del error de navegación en coordenadas ECEF  

En este caso {}{e} y v e
iv eω Ω . Aplicando pequeñas perturbaciones a las ecuaciones 

de navegación (5.17), suponiendo e
eΩ  conocida (e.d.: 0e

ie ω ) y el modelo de 

gravedad normal, las ecuaciones del error de traslación resultan:  
 

0

0

; (0)

2( ) ( ) ; (0)

e e e e

e e b e b e e e e e e
b b e

     

            

P V P P

V C f C f Ω V γ P V V


   (6.19) 

 
De las Ecs. (6.11) y (6.12) surgen las dos expresiones alternativas para las ecuaciones 
de propagación del error angular que denotamos eb θ φ :  

 

0 0

0 0

( ) ; ( )

( ) ; ( )

e e b b b b b b b
b b ib ib

e e e e e e e b i i
b b ie b ib

t

t

       

       

C C S φ φ φ ω ω φ φ

C S φ C φ φ ω C ω φ φ




   (6.20) 

 
Adviértase la coincidencia de la ecuaciones dinámicas de φb  y bψ . En este caso, las dos 

versiones alternativas de los errores de navegación en 9 son:  

 

;

φ φ

x V x V

P P

b e

e e e e
b e

e e

   
         
       

      (6.21) 

 
Combinando las ecuaciones (6.19) y (6.20) se obtienen las siguientes ecuaciones de 
propagación de los errores de navegación en coordenadas ECEF:  
 

3

( ) 0 0 0

ˆ ˆ( ) 2 ( ) 0

0 0 0 0

e

b b
ib

e e b e e e e e
b b e b b bP

e

e
PS

    
                  
         

e
b

S ω Iφ

x C S f Ω γ V C μ F x B μ

I P

  (6.22) 

3

ˆ( ) 0 0 0

ˆ ˆ( ) 2 ( ) 0

0 0 0 0

e

e e
e

e b e e e e e
e e e e eP

e

e
P

    
                  
           

e
b

e e
b b

S Ω Cφ

x S C f S Ω γ V C μ F x B μ

I P

  (6.23) 

 
Donde eP

e
Pγ  es el jacobiano respecto de la posición de la expresión de la gravedad 

normal en terna {e}. 
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6.5 Dinámica del error de navegación en coordenadas LGV  

Siguiendo el procedimiento ilustrado en los casos anteriores, se perturban las 
ecuaciones de navegación en coordenadas LGV (5.33) del Capítulo 5. Teniendo en 
cuenta que e

eΩ  es conocida se usa n n e
e e e  Ω C Ω  para obtener: 

 
(2 )  (2 )

( ) ( ) ( ) ( )

( ) ( )

n n b n b n n e n n n e n n
b b e e e

n
z

n n b n b n n n n
b b ib b ib in b in b

n n n n n
e e e

n n n n n n n n e
in e in e e e

h V

              

  

        

     

           

V C f C f g C Ω ρ V C Ω ρ V

C C S ω C S ω S ω C S ω C

C S ρ C S ρ C

ω ρ Ω ω ρ Ω ρ C Ω






 (6.24) 

 
Las (6.24) requieren las diferenciales n

bC  y n
eC  cada una asociada a un error angular 

propio aunque para ambas la terna de llegada es {}{n}. En el primer caso, el error 

angular es el error de orientación del vehículo respecto de la terna de navegación. En el 
segundo se trata del error angular de la terna de navegación respecto de la terna terrestre 
(ECEF) llamado error angular de posición dado que, como se vio en el Párrafo 5.3, {n} 
está determinada por la posición del vehículo sobre la Tierra.  

6.5.1 Error angular de posición en terna LGV.  

La notación usual para el error angular de posición es θ ( )ne θ  de donde la 

diferencial de la MCD resulta: ( )n n n
e e C S θ C . Derivando esta expresión respecto del 

tiempo se obtiene:  
 

( ) ( ) ( ) ( ) ( )n n n n n n n n n n
e e e e e        C S θ C S θ C S θ C S θ S ρ C     (6.25) 

 
Por otro lado, a partir de las Ecs. (6.24), escribimos: 
 

( ) ( ) ( )n n n n n n
e e e     C S ρ C S ρ S θ C      (6.26) 

 
Igualando las Ecs. (6.25) y (6.26), post-multiplicando por n

eC  luego de agrupar términos 

se obtiene: 
 

( ) ( ) ( ) ( ) ( ) ( )n n n n n n      S θ S θ S ρ S ρ S θ S ρ     (6.27) 
 
Usando la identidad (3.5) del Capítulo 3 se obtiene la ecuación de propagación del error 
angular de posición: 
 

( )n n n n n n n
e e         C S θ C θ θ ρ ρ     (6.28) 

 
El lector podrá verificar que la definición alternativa: ( )n n e

e e C C S θ  conduce a la 

ecuación del error angular de posición en terna {e}:  
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( )n n e e e n
e e n       C C S θ θ C ρ      (6.29) 

 
que puede obtenerse de la (6.27) transformando θ C θe e n

n   . 

Geometría del error angular de posición. 
Consideraremos, por un momento, las coordenadas curvilíneas de latitud y longitud de 
la posición del vehículo sin contemplar su altura geodésica h. De este modo, será 
suficiente considerar la proyección de la posición del vehículo sobre el elipsoide 
normal.  
 
En la Fig. 6.3 se indican: la posición real (desconocida) P que ocupa el vehículo en un 

dado instante, la posición P̂  estimada (calculada) por el sistema de navegación y las 
ternas de navegación real y calculadas {n} y { n̂}.  El error de la posición se expresa 
mediante los ángulos   y   cuyas representaciones vectoriales, también exhibidos 
en la figura, apuntan, respectivamente, en la dirección positiva del eje terrestre y en la 
dirección –E (O) local.  La figura muestra también el error en el ángulo de deriva   
entre ambas ternas que dependerá de la mecanización elegida (ver Tabla 5.1). 
Suponemos {n} y { n̂ } distantes de un pequeño ángulo vectorial ˆ ,θ θn

n n  .  

 

 
De la geometría de la Fig. 6.3 resulta la siguiente relación entre (  , ,) y las 
coordenadas {g-ENU} de θg : 
 

0 1 0

cos cos 0 0

sin sin 0 1

E

g
N

U

                                                   

θ   (6.30) 

 
Como las ternas {g-ENU} y { }n  difieren en el ángulo ez , de la anterior resulta:  

 
cos sen 0 0 1 0 cos sen cos 0

sen cos 0 cos 0 0 cos cos sen 0

0 0 1 sin 0 1 sin 0 1

θn

                 
                             
                     

(6.31) 

Φ





λ





ˆ ˆ,P n

,P n
ye 

ze 

xe 

Figura 6.3 

α
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Conocido (o estimado) θn  se podrán calcular las correcciones en las coordenadas 
curvilíneas   y   y en el ángulo de deriva   por simple inversión de la Ec. (6.31). 
 

 
/sen cos cos cos

cos sen
sen tg cos

/ 0
0
1

n

tg

   
 

   

   
      
        

θ    (6.32) 

 
El diagrama de la Fig. 6.4 muestra las 3 ternas en juego del problema: la ECEF {e}, la 

LGV {n} y la terna de navegación calculada ˆ{ } { }n c . La MCD (calculada) n
eĈ  es la 

estimación de la MCD n
eC . La primera vincula las ternas {e} y ˆ{ } { }n c  y la segunda 

{e} y {n}. Los errores  ,   y   determinan el error angular de posición ˆ ,θ θn
n n   

que vincula las ternas {n} y ˆ{ } { }n c . En función de nθ  se obtiene: 
 

ˆ
ˆ( ) exp( ( ) )n n e n n n

e n n c     C θ C C C C S θ    (6.33) 

 

 

6.5.2 Error de orientación o error angular de plataforma. 

En este caso usamos la notación nb θ  . Sustituyendo la diferencial ( )n n n
b bC S C   

en la 3ª ecuación de las (6.24) se obtiene: 
 

( ) ( ) ( ) ( ) ( ) ( )n n n b n b n n n n n
b b ib b ib in b in b      C S C S ω C S ω S ω C S ω S C     (6.34) 

 
Por otra parte, de la definición del error de plataforma, surge: 
 

( ) ( )n n n n n
b b b  C S C S C       (6.35) 

 

Igualando (6.34) y (6.35) luego de agrupar términos pos-multiplicar por b
nC  e introducir 

la identidad (3.5) del Capítulo 3, resulta: 

xc 

yc 
zc 

yn 
zn 

xn 

ye 

ze 

xe 

n c
e e

ˆ ( , , )   C C
n
e ( , , )C   

n
c,nθ θ

( )n n
c C θ C

Figura 6.4: Geometría del error de posición angular.  

 n    n̂ c

 e
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

n n n n n n n b b
in in in b ib n

n n n n
in in ib

     

     

S S S ω S ω S S ω C S ω C

S ω S ω S ω

  


  (6.36) 

 
n
inω  se obtiene de la última de las (6.24) introduciendo ( )C S θ Cn n n

e e   :  

 

( )n n n n n n e n n n
in e e e e            ω ρ Ω ρ S C Ω ρ Ωθ θ    (6.37) 

 
Sustituyendo (6.37) en (6.36) y reagrupando términos, se obtiene la ecuación para el 
error de plataforma.  
 

( )

ω ω ω ρ Ω ω

Ω ρ Ω ρ C ω

θ

θ

n n n n n n n n n n n
in in in e ib

n n n n n n n b
e e b ib

  



             

         


  (6.38) 

 
El lector podrá verificar que, el uso de la definición alternativa de la diferencial: 

( )C C Sn n b
b b    conduce a la siguiente expresión equivalente que también puede 

obtenerse a partir de la (6.38) usando la transformación: Cn n b
b   

 

( ) ( )n n b b b b b n n b
b b ib n e ib          C C S ω C Ω ρ ω      (6.39) 

 

Geometría del error angular de plataforma. 
Como fuera mencionado en el Capítulo 5, la transformación de coordenadas 

caracterizada por ˆ n
bC  (o ˆ n

bq ) calculada por el algoritmo de navegación “strap-down” 

refiere la terna del cuerpo a la plataforma analítica (ver Fig. 5.5). Los errores de 
cómputo hacen sin embargo que esta última difiera de la terna de navegación local en 
coordenadas LGV. Por esta razón distinguimos la terna “de llegada” de la 

transformación estimada ˆ n
bC  de la terna “de llegada” de la transformación ˆ n

eC , 

denotando a la primera terna {p}.   
 
Dado que es usual en la práctica, que la orientación del vehículo sea caracterizada por 
los ángulos de Euler:  (rumbo), (pitch) y roll) (definidos en el Párrafo 4.2.5 del 
Capítulo 4), interesa relacionar al error de orientación de plataforma   con las 
desviaciones de esos ángulos. Para esto partimos de la transpuesta de la matriz en la Ec. 
(4.31) que reescribimos transponiendo cada uno de sus términos, según: 
 

'(( / 2 )@ )( @ ) ( ( )@ )n b b         

C C

C C C


n n b'
b b' b

n b'
b' b

z y x    (6.40) 

 
Con:  
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cos sen cos sen sen 1 0 0

cos cos sen sen cos 0 cos sen

sen 0 cos 0 sen cos

n n b'
b b' b

C S C C S S S S C C S S

C C C S S S C S S C S C

S S C C C

         
                

          
               

                 
        

C C C

 (6.41) 

 
Por la propiedad de aditividad de las pequeñas rotaciones, las desviaciones angulares 
diferenciales y, respectivamente alrededor de los ejes xb, yb’, zn, se traducen 
en un error angular vectorial de plataforma: 
 

   b b' nx y z    (6.42) 
 
Teniendo en cuenta que Cei es la i-esima columna de C, rescrita en coordenadas {n}, la 
anterior resulta: 
 

1 ' 2 3

cos sen cos 0
cos cos sen 0

sen 0 1

sen /cos cos /cos 0
cos sen 0

sen tan cos tan 1

n n n
b b

n

e e e
        

           
        

         
        

           

C C I



 (6.43) 

 

 
En el diagrama de la Fig. 6.5 se representan las ternas {b}, {n} y {p} y las MCD que 
vinculan las coordenadas entre cada una de ellas. El error angular n , correspondiente al 
desalineamiento (“tilt”) entre la terna {n} y la plataforma analítica {p} determina la 
MCD entre ambas:  
 

 n n b n n
b n p

ˆ( ) exp( ( ))  C C C C S      (6.44) 

 

Se indica además la MCD estimada (calculada) n p
b b

ˆ C C  función de los errores  ,  

y   relacionados con n  mediante la Ec. (6.43).  

yn 

xp 

yp zp 
zn 

xn 
yb zb 

xb 

 n    n̂ p

 b

n n
p,n 

n
b ( , , )C   

n n
p( )C C 

n̂ p
b b( , , )   C C

Figura 6.5: Geometría del error de plataforma  
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6.5.3 Relación entre los errores de posición y de plataforma 
Consideremos la diferencial de la siguiente composición de MCDs: 
 

i i e n i i e n i e n i e n
b e n b b e n b e n b e n b        C C C C C C C C C C C C C C  (6.45) 

 
Suponiendo sin error la MCD e

iC  y substituyendo las diferenciales ( )e e n
n n   C C S θ  y 

b( )n n
b b C C S   en la anterior, calculamos: 

 
b

b

b

( ) ( )

( ) ( )

( ) ( )

i i e n n i e n
b e n b e n b

i i e n n
b e n b

i b i b
b b

    

  

  

C C C S θ C C C C S

C S C C S θ C

C S θ C S ψ







   (6.46) 

 
En la última igualdad se introdujo la definición de llamado error angular inercial 

( )ib  ψ ψ θ  . Para describir la dinámica de éste último, en primer lugar 

transformamos la Ec. (6.27) mediante b b n
n  θ C θ , usando n n n n

bn ie ib   ω ω ω . 

 
b b b b
n n n n

b b b
n n n

( ) ( )

( ) ( )

b n n n n n n n n
bn bn

n n n n b b n n n
ie ib ib ie

             

             

θ C S ω θ C θ C θ ω C θ ρ ρ

C θ ω ω C ρ θ ω C ω θ ρ

 
 (6.47) 

 
Luego, restando la anterior de la (6.39) reencontramos la ecuación del error angular 
inercial (6.14):  
 

b b b b
ib ib   ψ ψ ω ω    (6.48) 

 
Lo que resulta natural vista la definición dada en (6.46).   
 

Geometría del error angular inercial 

El error angular inercial nψ  tiene un claro el sentido geométrico que se advierte al 

calcular la MCD c
pC  a partir de las definiciones (6.33) y (6.44): 

 

yn 
zn 

xn 
c,nθ p,c

xp 

yp zp 

xc 

yc zc 

p
nC

c
nC

p
cC

Figura 6.6: Geometría del error angular inercial. 

p,n
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n n nexp( ( exp( ( )) exp( ( )) exp( ( ))))c c n n n
p n p      C C C S θ S S θ S ψ   (6.49) 

 
Donde la aproximación es justificada por la aditividad de los pequeños ángulos de 
rotación.  De la anterior resulta que nψ  corresponde al ángulo de desalineamiento 
relativo ente la plataforma analítica {p} y la terna de navegación calculada {c}. La Fig. 
6.6 resume las relaciones geométricas entre las ternas {p}, {c} y {n}. 

6.5.4 Propagación del error de velocidad 

Sustituyendo las diferenciales n
bC  y n

eC  en la 1ª Ec. (6.24) se obtiene la ecuación de 

propagación de la perturbación en la velocidad: 
 

( 2 ) 2( )V f ρ Ω V ρ V θ Ω V C f gn n n n n n n n n n n b n
e e b                   n  (6.50) 

 
Salvo ng  y nρ  el resto de los términos ya fueron explicitados con anterioridad.   

Diferencial de la rotación por transporte  
La diferencial de la rotación por transporte se calcula a partir de la Ec. (5.39) que 
reproducimos por conveniencia:  
 

( ) ( ) ( sin )
y yn x x

y x

V VV V

T R R T
       n n nρ x y z    (6.51) 

 
2 22

y x

21 cos 1 1 coscos cos
; ;

T R Rn n nR h R hm m m

sen sensen sen
R h R hR h R h


    

    
          

          (6.52) 

 
La siguiente aproximación se justifica para el uso que se hará de la diferencial nρ  y 

para el valor nominal de la excentricidad del elipsoide normal  
 

2 1 1
( ) ( )(1 ( ))n m

n m

R S R S O
R h R h

   
 

      

 
Sustituyendo la anterior en las (6.52) y luego en la (6.51) resultan 
 

2

2 2 2

y x

2

1 cos cos ( )
0

T

1 cos 1 cos 1

R R

n m

n n n

m

R h R hm m

sen sen O

R h R h R h

sen sen

R h R h R h

 


   

 
     

   
           



 

    

   
   

 

( sin )n n nρ x y z

x y

yn x

n n

V V

R h R h

  

     
 

 
 

      (6.53) 

 
De donde se obtienen las componentes según los ejes x e y de la terna {n}:  
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 

 

2
n nn

2
n nn

R RR

R RR

y y y x
x

x yx x
y

V V h V h

h hh

V hV V h

h hh

     
     

 

    
    

 

    (6.54) 

 

La componente z  depende de la mecanización adoptada para n
z  (ver Tabla 5.1). 

Consideramos 3 casos: 
 
1. Azimut libre: 

0 0z z          (6.55) 

 
2. Foucault:  

sen

( ) ( )

n n e
z e n e n e e

n e n n e n n
z n e e n e e n e   

        

     

z Ω z C Ω

z C Ω z S θ C Ω z S Ω θ

 
  

  (6.56) 

 
3. Apuntamiento al Norte ({n}={g}): 
 

2

tan
0 tan

1

tan

0
1 1

0

tan sec

ρ

ρ ρ

E
U

N
g

E
n

E

N
g g

E
n n n

E E

E
n

E

V
usando

R h

V

V
R h

V

V
h

V
R h R h R h

V V

            


 
   
  

   
             

      

 
 



 

  (6.57) 

 

Diferencial de la gravedad  
La configuración: “terna LGV + gravedad normal” es la más adaptada a vehículos sub-
atmosféricos tanto por su precisión como por su sencillez matemática.  Como se mostró 
en el Capítulo 4, en la gran mayoría de estas aplicaciones resulta suficiente la siguiente 
aproximación de 2º orden (en la altura geodésica h) de la gravedad normal en terna g-
LGV (ver Ecs. (4.44) y (4.45)): 
 

   0 0 0 ( , )
T Tg g

N U h      g γ     (6.58) 

 

 
2

2

2 22

2 2

( , ) ( ) 1 2 1 2 sin ( ) 3

1 sin
0,001931852; ( ) ;

1 sin

s

e
s e

h h
h f m f

a a

a bk
k m

GMe

                 

 
     

 
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En las aplicaciones en que se requiera mayor precisión podrá adoptarse la gravedad 
normal corregida mediante el uso de las anomalías g ,  y expresada por la Ec. 
(4.55) que aquí reproducimos. 
 

( )

( , , ; , ) ( )g g
corr N

U

g

h g

g

    
              
    

g γ     (6.59) 

 
Siendo la (6.58) un caso particular de la (6.59) para g= establecemos la 
diferencial de esta última:  
 

   
ˆ ˆ ˆˆ ˆ ( , )

ˆ ˆˆ ˆ ˆˆ ˆ( , ) ( , ) ( , )

1 0 )

gg

h

h g h h

g

       
    

                    
             

  (6.60) 

 

Con: ˆ ˆ ˆˆ ˆ; ; ;h h h g g g                    , y además: 
 

ˆ ˆˆ ˆ( , ) ( , )
( , )

h h
h h

h

   
     

 
      (6.61) 

 
Finalmente, definiendo el error en el ángulo vectorial de deriva como: 

 0 0
Tn α   y ˆ     se obtiene ng  mediante: 

 
ˆ ˆ( )n g g g g n g             n n n n n

g g g g gg C g C g S α C g C g α g C g   (6.62) 

 

6.5.5 Ecuaciones generales de la dinámica del error en terna LGV  
A continuación resumimos las ecuaciones lineales del error en terna LGV ((6.27), (6.38) 

y (6.50)). Para simplificar usamos: 2υ ρ Ωn n n
e , f C fn n b

b , Ω C Ωn n e
e e e . 

 

( ) ( )

( ) ( ) ( )[ 2 ( ) ]

( )

S ω S Ω θ ρ C ω

V S f S V S V ρ S Ω θ C f g

θ S ρ θ ρ

υ

n n n n n n n b
in e b ib

n n n n n n n n n n b n
e b

n n n n

n
zh V

 



       

            

     

  







 (6.63) 

 
Con:  
 

1
;

0 /( )

g C g ρ

y y x

n n g n
x g x y

n
z n

g V h

g V h
R h

R h

       
   

                    

   (6.64) 
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Definiendo al error de navegación en terna LGV como: 
 

10;( ) ( ) ( )
Tn n T n T n T h      x V θ      (6.65) 

 
mediante sustituciones adecuadas, las ecuaciones (6.63) adoptan la forma general de 
ecuación de estado lineal variante con el tiempo: 
 

( ) ( )n n n n nt t       μ G gx F x B       (6.66) 
 
Donde 10 10( )n xt F   y 10 6( )n xt B   son matrices con coeficientes dependientes del 

tiempo, en tanto que  3 3 3 3 3 30 0
T

I  G .  

6.6 Ejemplos de ecuaciones de errores y aplicaciones  

6.6.1 Ecuaciones del error en coordenadas geográficas {g}. 
La condición de apuntamiento al Norte ( 0      ) y la relación (6.30) imponen 

restricciones sobre las coordenadas de θg . En particular, N  y U  quedan 

vinculadas por la relación tanU N    . Esto reduce a 2 los grados de libertad del 

error gθ  el cual podrá expresarse ya sea en función de sus componentes sobre el plano 

horizontal  TH

E N   θ  o bien en función de   y   mediante: 

 
1 0 0 -1

0 1 cos 0

0 tan sin 0

g H

gHT

   
                      

θ θ



    (6.67) 

 
Por la misma razón, el error gx  definido en (6.65) queda reducido al siguiente vector 
de dimensión 9. 
 

9

( ) ( )

( ) ( ) ( )

Tg g T g T

E N

Tg T g T g T

h    

   

 

  

V

V π

x 





    (6.68) 

 
Las últimas 3 componentes de x  corresponden al error de posición que denotamos 

 π Tg
E N h    .  Reescribimos la Ec. (6.57) en la forma:  

 
gg g

V     ρ R V R π      (6.69) 

 
Con:  

2

0 1 0 0 0
1 1

1 0 0 ; 0 0

tan 0 0 sec 0

E

V N
n n

E U

R h R h
V



    
       
         

R R   (6.70) 
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Dado que en coordenadas {g} E y U=Ntan, usando la (6.67) determinamos el 
producto: 

 

0

( )S Ω θg g
e U E

N

 
     
  

    (6.71) 

 
A partir de las (6.67) a (6.70) y usando además las definiciones: 
 

2

0 0 /( )

0 /( ) ;

sec 0 /( )

E n

U N n V V

N N U n

R h

R h

R h



  
     
       

Φ Φ R    (6.72) 

 
Se obtiene para el término: 
 

( ) ( )S Ω θ ρ S Ω θ R V R π Φ π Φ Vg g g g g g g g g
e e V V               (6.73) 

 

Introduciendo la definición ( )Φ S ωg
ig  , a continuación reescribimos la 1ª de las 

(6.63) como: 
 

g g g g g b
V ibb       Φ Φ V Φ π C ω     (6.74) 

 
Usando una vez más la (6.71) junto la (6.69) después de algunas manipulaciones 
algebraicas determinamos el siguiente término de la 2ª de las Ecs. (6.63): 
 

( )[ 2 ( ) ] ( ) ( ) 2 ( )

( )

S V ρ S Ω θ S V R V S V R π S Ω θ

S V R V V π

n n n n g g g g g g
e V e

g g g
V





          

   
 (6.75) 

 
donde: 

2

0 0 /( )

( ) 2 0 /( ) ;

2 sec 0 /( )

E n
g

U N n

N N U n

R h

R h

R h



  
     
      

V S V   (6.76) 

 
Con las definiciones anteriores y las siguientes: 
 

( ); ( ) ( ) ;n g g
V V   V S f V S S V Rυ     (6.77) 

 
la 2ª de las Ecs. (6.63) puede escribirse para este ejemplo como: 
 

g g g g g b g
V b          V V V V V π C f g     (6.78) 

 
evaluamos ahora: 
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2

0

( )

0 0 / ( )

tan / ( )

(1 sec ) / ( )

g g g
U E

N

E n
g

N E N n

N E U n

R h

R h

R h

 

 
        
  

  
        
       

T π S R π

π



  (6.79) 

 

Mediante la cual, junto con la definición: TV-RV , la 3ª de las (6.63) resulta: 

 

 g g g
V     θ T V T π     (6.80) 

 

Reemplazando la última fila de la (6.80) por la ecuación g
Uh V    resulta: 

 

π Π V Π πg g g
V         (6.81) 

 
Con: 
 

0 0 /( )0 1 01
1 0 0 ; tan /( )

0 0 1 0 0 0
Π Π

E n

V N E N n
n

R h
R h

R h 

   
       

      
   (6.82) 

 
Agrupando las Ecs. (6.74), (6.78) y (6.81), la Ec.(6.66) del error de navegación resulta 
para este ejemplo: 
 

0

0

0

0

0 00

g
b b

g g g gib
b b

g g g g

V

V

V

I

 





    
                   

    

   



C
ω

C g
f

F B μ G g

Φ Φ Φ

x V V V x

Π Π

x


  (6.83) 

 

6.6.2 Error de navegación con vehículo en reposo en terna terrestre {g}. 
La condición de reposo sobre la Tierra impone: 
 

0;

0

V V ρ ω Ω

C C

gg g g g
ig

g g
eb

   

 



 
    (6.84) 

 
Para los fines del análisis de este ejemplo y el siguiente se usará la aproximación (6.58) 

para la gravedad gg . Bajo estas condiciones la fuerza específica y la velocidad angular 
inerciales junto con sus respectivas mediciones provistas por los instrumentos inerciales 
a bordo resultan:  
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b bˆ

ˆ

b b b

b b b g b b b
ib e g e ib e ib

     

   



 ΩΩ Ω

f γ f γ f

ω C ω ω
    (6.85) 

 
Las condiciones (6.84) imponen los siguientes valores para las matrices definidas en el 
ejemplo 6.1: 
 

0 0 0

( ); 0 0

0 0

( ); ( ); 0

0

2

 

 



 
     
  

   



Φ S Ω Φ

V S γ V S V

Π

Ω

g
U

N

g
V

g
e     (6.86) 

 
De este modo, la matriz de la dinámica del error (6.83) para este ejemplo resulta: 
 

1

1

1

1

1

2
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0 0 ( ) 0 0 0 0

0 0 ( ) 0 0 0 0

0 0 ( ) tan 0 0 0 0

0 0 0 2 2 0 0 0

;0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 ( ) 0 0 0 0

0 0 0 ( ) 0 0 0 0 0

0 0 0 0 0 1 0 0 0

U N n

U n U

N n N

U N
g

U

N

n

n

R h

R h

R h

R h

R h











 

 

 

 





 
   
    
 

  
  
 
 
  
  
 
 




F  (6.87) 

 
Esta matriz permite extraer algunas conclusiones sobre la dinámica del error: 
 
1. Las ecuaciones del error son invariantes con el tiempo y dependen de los valores de 

la latitud  la altura h sobre el elipsoide normal y su orientación Cg
b .  

2. Las componentes Nθ  y h no afectan a las otras componentes de x . 

3. Los valores propios de la matriz gF  están sobre el eje imaginario. En particular, 
para la latitud 35º y h=0 los valores propios de gF  resultan:  

 
-3 -3 -3

1,2 3,4 5,6 7,8,9= i1,2910x10 ,  = i1,19x10 ; = i0,0729x10 ; =0        (6.88) 

 
De estos valores surgen los siguientes períodos de oscilaciones autosostenidas: dos 
llamados de Shuller: T1,2  81seg; T3,4  88seg y dos llamados de Foucault: T5,6 23,93 
hs. Los primeros corresponden aproximadamente al periodo de oscilación de un 

péndulo de brazo igual al radio terrestre: 1234 / 84T a seg    . El segundo período 

corresponde al de la rotación sideral terrestre*.  

                                                
*Período de rotación de la Tierra respecto de las estrellas que difiere del día solar de 24hs. 



Martín España Comisión Nacional de Actividades Espaciales  

 150 

La Fig. 6.7 presenta las formas de onda de las componentes del vector de error 
provocadas por un desconocimiento inicial en la componte 

N
(0)=0,1º. Se destacan las 

oscilaciones de Shuller moduladas por oscilaciones más lentas de Foucault. Se advierte 
una transferencia cíclica y conservativa de la energía entre oscilaciones N-S y E-O tanto 
para los errores de velocidad como de plataforma. Dicha transferencia es provocada por 
la fuerza de Coriolis debida a la rotación terrestre y tiene como período el día sideral 
23,9hs El gráfico inferior derecho muestra los errores de desplazamiento en metros 
según las direcciones E,N,U y evidencia el importante efecto que tiene sobre la posición 
cualquier error inicial de alineación de la plataforma analítica. Las oscilaciones E,N se 
corresponden con las respectivas componentes del error en velocidad, en tanto que la 
componente vertical diverge como consecuencia de la presencia de polos múltiples en el 
origen. 

 
La Fig. 6.8 demuestra el efecto de un error inicial en la velocidad: VelU(0)= 0,01m/seg.  
Además de las oscilaciones propias de un sistema no amortiguado, se advierte la 
respuesta en rampa de la posición en la dirección “arriba”. Una vez más, esta dinámica 
está asociada a al polo múltiple en el origen del sistema (6.87).   
 

Figura 6.7: Respuesta del vector de error al error inicial 
N
(0)=0,1º.  

Figura 6.8: Respuesta del vector de error al error inicial VU(0)= 0,01m/seg.  

VelE 
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La Fig. 6.9 revela la influencia de los errores giroscópicos sobre los parámetros de 
navegación. En ella se destaca la divergencia polinomial en la posición debida a un 
error giroscópico proyectado sobre la dirección Norte. 
 

De este ejemplo se concluye que aún pequeños desconocimientos en las condiciones 
iniciales o errores en las mediciones inerciales pueden inducir oscilaciones indeseadas y 
divergencias no acotadas en los parámetros de navegación calculados mediante la 
integración de las ecuaciones de navegación.  El fenómeno guarda cierta similitud con 
el de la inestabilidad del canal vertical abordado en el Capítulo 5 aunque en este caso, el 
problema no está asociado a la dependencia funcional de la gravedad respecto de la 
altura sino que es inherente a la dinámica de los sistemas no amortiguados con polos 
múltiples en el origen.  

6.6.3 Autoalineación de un vehículo estacionario sobre la Tierra 
El ejemplo anterior demuestra la importancia de reducir el error inicial del estado 
cinemático en un sistema de navegación inercial (SNI). Se denomina alineación al 
procedimiento mediante el cual se intenta lograr este objetivo. Un caso particular es la 
alineación de los ejes de la plataforma analítica respecto de la terna de navegación de un 
vehículo en reposo sobre la Tierra. El procedimiento consta usualmente de dos fases 
(ver Titerton/Weston, (2004)).  La primera, de alineación gruesa, utiliza normalmente 
instrumentos ópticos, geométricos y magnéticos para obtener una primera aproximación 
de la orientación inicial.  A esta fase suele sucederle otra de autoalineación fina que 
tiene por objetivo reducir dicho error inicial. Para esto es posible usar el propio 
algoritmo de navegación inercial realimentado con información externa. En este 
ejemplo se supondrá que la posición del vehículo y la gravedad local son perfectamente 
conocidas.  
 
La Fig. 6.10 describe el modo de funcionamiento del sistema de navegación durante el 
procedimiento de autoalineación. Éste consiste en sumar a la proyección de las 
magnitudes inerciales sobre la terna geográfica local la señal calculada mediante la 
siguiente ley lineal en la velocidad horizontal: 
 

Figura 6.9: Respuesta del error a un sesgo giroscópico en dirección N: 
N=0,1gr/hr. 
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6 2
ˆ

ˆ ;
ˆ

u
u K KV K

u
Eg

H

V N

V

V


  

    
    

     (6.89) 

 

 

Cabe señalar que siendo la velocidad del vehículo Vg=0 su valor calculado V̂ g es en sí 
mismo el error de velocidad y de acuerdo con la definición (6.1): 
 

V̂ Vg g    (6.90) 
 
La racionalidad de la ley (6.89) radica en que, como se vió en el ejemplo anterior, los 
errores en las componentes de la velocidad horizontal calculada son una consecuencia 
“visible” de los errores de alineación e instrumentales (ver Fig. 6.7 a 6.9).  Estando el 
vehículo en reposo, su estado cinemático es constante en tanto que el estado calculado 
evoluciona alrededor de este valor fijo. Siendo precisamente el objetivo de la 
autoalineación reducir estas diferencias, en lo que sigue haremos uso del modelo (6.83) 
que describe la dinámica del error de navegación.  
 
Dado que este esquema de autolineación no utiliza la velocidad vertical, se impone a 
ésta el valor nulo de la condición de reposo durante la autoalineación. Asimismo, se 
impone como condición inicial de la posición del vehículo su valor conocido. Lo 
anterior se traduce en las siguientes condiciones sobre el vector de error (6.68) y su 
dinámica (6.83): 
 

ˆ 0

0π π

U U U

g g

V V V    

   




   (6.91) 

 
Las condiciones anteriores implican suprimir las últimas 4 filas y columnas de la matriz 
Fg  de la (6.87), de modo que el modelo lineal que describe los apartamientos de la 
condición nominal de reposo del navegador realimentado de la Fig. 6.10 resulta: 
 

;g g g     x F x μ u    (6.92) 
 
Donde: 

5
ˆ

; ;
ˆ

x u K KH x
VH

g
Eg

N

V

V

   
       

     
     (6.93) 
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Figura 6.10: Esquema de mecanización de la autoalineación en 
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y además:  
 

1

1

2

2

0 0

0 0 0
0 0 0 1 0

; ; ;0 0 0 00 0 0 0 1
0 0 0

0 0 0

g
EU N R h
g
NU R h

g g g
UN
g
EU
g

U N
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n





 









   
  
  

                  
       



H F μ   (6.94) 

 
La matriz constante K se diseña de modo de que el siguiente sistema lineal realimentado 
sea exponencialmente estable:   
 

( ) ;g g     x KH x μF     (6.95) 
 
Condición que es posible lograr dado que, como es fácil demostrar, las matrices (Fg,H) 
conforman un par observable (ver por ejemplo Goodwin et al., 2001 para una 
exposición general sobre la observabilidad). En efecto, bajo esta condición es posible 
asignar arbitrariamente los valores propios la matriz del sistema en lazo cerrado: 

( ) g
lc A K KHF . Así imponiendo que estos tengan parte real negativa, el resultado 

es que si los errores instrumentales son nulos ( 0g μ ) el error x  converge 
exponencialmente a cero asegurando la alinearon asintótica de la plataforma analítica.  

 
Para las unidades [rad] y V[m/s] con el valor de K (Para la determinación de K en 
función de los valores propios deseados de ( )lcA K  consultar, por ejemplo 

Kautsky/Nichols, (1985) o Laub/Wette, (1984)):  
 

410
  0   -0.0178    0   80   0

0.0178    0   -0.2   0  80

T

 
 
 

K     (6.96) 

 

Figura 6.11: Alineación sin errores instrumentales.  
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se obtienen los siguientes valores propios de ( )lcA K  

 

1,2,3,4,5 =-0.0010, -0.0030,    -0.0040,  -0.0040 + 0.0017i, -0.0040 - 0.0017i  (6.97) 

 
La Fig. 6.11 muestra el resultado de la autoalineación para la ganancia K establecida en 
(6.96) para un desalineamiento inicial g =[0.5,0.5,1]T[º]. También se grafican las 

componentes de ˆ
HV  con el fin de mostrar que todas las componentes del vector de 

errores tienden asintóticamente a cero como esperado.  
 

Cuando 0g μ , la estabilidad asintótica del sistema realimentado (6.95) asegura que 
0x  , pero no que 0x  . Efectivamente, como es fácil comprobar en este caso, 

x  converge a: 
1( ) g

lc


  x A K μ    (6.98) 

 

Donde 1( )A Klc
  es la matriz de sensibilidad del error de alineación a los errores 

instrumentales.  Despreciando el término de Coriolis, de las 2 últimas filas de la Ec. 
(6.95) en estado estacionario ( 0x  ) se obtienen los errores de nivelación límites en 
función de los sesgos acelerométricos: 
 

 
ˆ 0 /

ˆ 0 /

      

      




E N E

N E N

V

V
    (6.99) 

 

De las Ecs. (6.99) resulta que, con resoluciones  100g pueden obtenerse errores de 

nivelación 4, 10 [ ]N E rad   . Con estos valores y para las resoluciones giroscópicas 

usuales, resulta ser: ˆ, /U N N n EV R    por lo que, de la 1ª fila de la Ec. (6.95) se 

obtiene una estimación del límite inferior en la precisión de la determinación del azimut 
usando instrumentos inerciales (función de girocompás) en función de la resolución del 
giróscopo E :  

 
/ cosU E e        (6.100) 

 
Físicamente, la anterior debe interpretarse como el límite de la capacidad de medir con 
giróscopos la componente E de la velocidad angular terrestre, la cual, sólo tendrá un 
valor aparente diferente de cero si hay un error de azimut. Claramente, esta capacidad es 
nula en los polos y máxima en el Ecuador.  
 
Finalmente, la Fig. 6.12 ilustra la evolución del error en los parámetros de navegación 
durante el proceso de alineación para un desalineamiento inicial de la plataforma 
analítica proyectado sobre la terna {gg =[0.5,0.5,1][º] y errores instrumentales 

g=[1, 1, 1][gr/hr], g=[100, 100, 100][g]. Como se advierte, en presencia de errores 

instrumentales el error de alineación estacionario no es nulo. 
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Figura 6.12: Alineación con errores instrumentales. 
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Capítulo 7  
Algoritmos “Strapdown”  

de Navegación Inercial 

 
Para determinar la posición, velocidad y actitud de un vehículo a partir de mediciones 
inerciales en configuración “strapdown” la computadora de navegación a bordo debe 
integrar en tiempo real las ecuaciones cinemáticas de la mecanización correspondiente. 
Los requerimientos en la capacidad de cómputo son impuestos tanto por la aplicación 
específica como por la dinámica del vehículo en la misión estipulada. Mientras más 
rápida sea la dinámica, más alta serán las tasas requeridas de actualización de los 
parámetros de navegación, de adquisición de datos y por ende, la velocidad de cómputo 
del algoritmo de navegación inercial.  
 
De los capítulos anteriores, resulta claro que el conocimiento de la orientación 
instantánea del vehículo es crucial para proyectar adecuadamente las aceleraciones 
registradas por los acelerómetros sobre la terna de referencia (de navegación) en la que 
se describe la traslación. De otro modo, debido a la doble integración de las 
aceleraciones, pequeños errores de orientación se traducen en errores de posición que 
crecen polinomialmente con el tiempo.  Esto confiere a la ecuación de Laning/Bortz (o 
de coneo) que describe la evolución de la orientación, un rol central en los métodos de 
navegación inercial. Este hecho y la complejidad inherente al carácter no lineal de dicha 
ecuación han hecho que el cálculo de la orientación tenga en la literatura un lugar 
preponderante.  
 
Si bien es posible usar métodos de integración numérica generales estándar tales como 
Runge-Kutta, predictor corrector etc., se aprovecha mejor la capacidad de cómputo 
disponible con algoritmos adaptados a la estructura particular de las ecuaciones 
cinemáticas. Esta idea está en la base de una línea de investigación muy activa durante 
el pasado reciente, entre cuyos resultados mas significativos se destacan los trabajos 
pioneros de Savage, (1966), Jordan, (1969) y Bortz, (1971) y más recientemente, los 
trabajos de Savage (1998) partes I y II y Savage (2006) que consolidan la maduración 
del tema.  
 
Aunque dinámicamente acoplados, los movimientos de rotación y traslación de un 
vehículo suelen desarrollarse en escalas de tiempo distintas. Una de las características 
más significativas de los algoritmos mencionados arriba es que permiten independizar la 
tasa de ejecución de los cálculos para las distintas dinámicas presentes lo cual permite 
reducir la carga computacional efectiva en tiempo real sin afectar la precisión.  
 
Para muchos casos prácticos la terna de navegción usada es LGV. Esto comporta 
especiales cuidados en el cálculo de la rotación por transporte ya que cuando la terna 
geográfica varía rápidamente respecto de una terna inercial, las aproximaciones del 
algoritmo tienden a producir un crecimiento acelerado en el error de la posición. Esta 
situación, que puede presentarse aún en vehículos estacionados sobre la Tierra en fase 
de alineación (tener en cuenta que un punto sobre el ecuador se mueve a 1600Km/hr 
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respecto de una terna inercial) y resulta crítica en vehículos “veloces”, como satélites, 
lanzadores satelitales, cohetes, etc. Por esta razón, en la primera parte de este Capítulo 
se desarrolla un algoritmo de navegación inercial referido a la terna LGV. En la segunda 
parte se muestra sin embargo que, adoptar la referencia ECEF no sólo simplifica 
considerablemente la formulación matemática, si no que además permite mejorar 
significativa la precisión en traslación, especialmente en vehículos rápidos, a la vez que 
reduce considerablemente la complejidad numérica del algoritmo de navegación. 
 
La Fig. 7.1 es un esquema de la estructura clásica de un algoritmo de navegación 
inercial en tiempo real alojado en la computadora de navegación de un vehículo.  El 
algoritmo toma como entradas los incrementos integrales vectoriales lα  y lv  

provistos por la electrónica asociada a los instrumentos inerciales: giróscopos y 
acelerómetros. La salida del algoritmo son los parámetros de navegación en la terna 
elegida y a la tasa requerida por la aplicación.    
 

 

7.1 Integración numérica de las ecuaciones de navegación en terna LGV  

En este apartado usaremos las ecuaciones de navegación en la forma (5.33) que 
rescribimos a continuación. 
 
Ecuaciones de orientación: 
 

1 1
( ) ( )

2 20 0

b n
n n b n n n n nib in
b b ib in b b b b

n n n n n e
in e e e

   
       

   
   

ω ω
C C S ω S ω C q q q

ω ρ Ω ρ C Ω

 
  (7.1) 

 
Ecuaciones de traslación: 
 

0

0 0

(2 )  ; (0)

; ( )

n n b n n n n n n
b e

n
zh V h t h

      

 

V C f g Ω V V V
    (7.2) 
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Figura 7.1: Entradas y salidas de un algoritmo de navegación inercial. 
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1
( )

2 0

n
e e n e e
n n n n

 
    

 

ρ
C C S ρ q q       (7.3) 

 
Como se menciona en el Párrafo 5.3, para trayectorias cercanas a la Tierra podrá ser 
suficiente usar el modelo de gravedad normal que en terna LGV resulta (ver Ec. (5.32)): 
 

0

( , ) 0

( , )

n n

U

h

h

 
     
   

g γ


    (7.4) 

 
Donde ( , )U h 

 representa la aproximación de Hofmann/Moritz (ver Párrafo 4.41 y Ec. 

(4.45)): 
 

22 2
2( , ) ( ) 1 2 1 2 sin ( ) 3U

T

a b h h
h f f

GM a a

                     

    (7.5) 

 

La relativa simplicidad de la expresión de nγ  en la terna LGV constituye una de las 

motivaciones más importantes para usar a ésta última como referencia. En aplicaciones 
de precisión, en lugar de la (7.4) podrá utilizarse la expresión corregida por las 
anomalías locales dada por la Ec. (4.55).  
 
Rotación por transporte: 
 

( , , ) ; sen( )          ρ V z  n n n n n
n z zhK    (7.6) 

 
La anterior se corresponde con la expresión (5.37) y subsiguientes y depende de la 
mecanización elegida para la deriva de azimut cuyas versiones más usuales fueron 
indicadas en la Tabla 5.1. Por razones de claridad, en la mayor parte de lo que sigue 
usaremos la descripción de la orientación en términos de MCD, sin embargo, tal como 
fuera señalado en el Capítulo 3, en la práctica podrá preferirse la representación en 
cuaterniones por requerir actualizar menos coeficientes y aún asegurar mayor 
estabilidad numérica.  
 

7.1.1 Notación 
Siguiendo a Savage (1998), subdividimos los cálculos de la integración de las 
ecuaciones de navegación según tres cadencias. Esto permite agregar flexibilidad y 
aprovechar mejor la capacidad de cómputo instalada a bordo, teniendo en cuenta que en 
general las cinemáticas de orientación y de traslación evolucionan en escalas de tiempo 
muy distintas.  En las cadencias más rápidas se ejecutan los cálculos más sencillos pero 
que requieren de mayor precisión en el tiempo. Estos cálculos están  relacionados con la 
actualización de los parámetros de la orientación y de las componentes de alta 
frecuencia de la velocidad.  
 
De acuerdo con la Fig. 7.2, distinguimos 3 períodos encastrados: un período corto: Tl , 
otro medio: Tm y un tercero largo: Ts. Estos períodos se supondrán vinculados mediante 
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los números enteros L y M de tal modo que: Ts=MTm, Tm=LTl. Para distinguir diferentes 
instantes e intervalos de tiempo introducimos la siguiente notación, también 
representada en la Fig. 7.2, para 0,..., 1, 0,..., 1j M i L     y k=0,…,HN (horizonte 
de navegación).  
 

1 , ; , ,;k k m k j k m k j i k m lt t M T t t jT t t jT iT           (7.7) 

 
Notar en particular que: ,0k kt t ; , ,0 , , , , 1 , 1; ;k j k j k j L k j k M kt t t t t t    . Cualquier 

variable dependiente del tiempo v(t) evaluada en el instante , ,k j it  se denotará 

indistintamente como , , , ,( )k j i k j iv t ó v . 

 
En lo que sigue se usarán las siguientes definiciones:  
 

, , , .

, , , ,

, , , , : , , ,

,

{ ( )} { ( , , )}: terna { } en el instante

( ) :  ángulo entre las ternas { ( )} y { ( )} para [ , ] 

( ) : ángulo entre las ternas { ( )} y { ( )}

k j i k j i

b
k j k j k j k j m

b b
k j k j i k j i k j k j i

k j

t k j i t

t t t t t t T

t t t



 





b b b

b b

b b



 

 , , , , , , ,

, , 1 , : 1 , , 1

( ) : ángulo entre las ternas { ( )} y { ( )} para  [ , ]

( ) :  ángulo entre las ternas { ( )} y { ( )}

( ) :  ángulo entre las ternas { ( )} { ( )} para 

b
i k j i k j i k j i l

b b
k j k j k j j k j k j

k k

t t t t t t T

t t t

t t y t t

  

 



b b

b b

θ n n

 

1 : 1 1

, : ,

[ , ] 

( ) :  ángulo entre las ternas { ( )} { ( )}

( ) :  ángulo entre las ternas { ( )} { ( )}

k k s

k k k k k k

k k j k j k k j

t t T

t t y t

t t y t

  

 





θ θ n n

θ θ n n

 (7.8) 

 

Donde , ( )b
k j t  y ( )k tθ  son, respectivamente, las soluciones en el instante t de las 

ecuaciones de Laning/Borz (ver Ec. (3.98) del apartado 3.8):  
 

,2

1 1 sin( )
( ) 1 ( ); ( ) 0

2 2(1 cos( ))
b b b
ib ib ib k jt t

  
           

ω ω ω         (7.9) 

2

1 1 sin( )
( ) 1 ( ); ( ) 0

2 2(1 cos( ))
n n n
in in in kt t

  
           

θ ω θ ω θ θ ω θ   (7.10) 

 

Ts 

Tm Tl 
tk tk+1 

tk,1 

tk,1,2 

tk,2 tk,5 

tk,5,3 

Figura 7.2: Períodos encastrados y notación de tiempos. 
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Como se advierte de la Ec. (7.9), , ( )b
k j t  depende de la velocidad angular del vehículo 

respecto de la terna inercial b
ibω  medida por los giróscopos, mientras que ( )k tθ  depende 

de la velocidad angular de la terna {n} respecto de la terna inercial: n n n
in  ω Ω ρ  (ver 

la expresión general (5.37) de nρ  en el apartado 5.3.1).  

En general, la integral entre los instantes tk,j,i y t tk,j,i de una función integrable del 

tiempo ( )v t  se denotará: 
 

, ,

, , 1

, ,

, ,

, , , , 1 , , : 1

( ) ( )

( ) ( )

k j i

k j i

k j i

t

k j i t

t

k j i k j i k j i i t

v t v d

v t v v d


 

 

  








    (7.11) 

 

7.1.2 Integración de las ecuaciones de orientación. 

En el instante 1kt   la MCD y el cuaternión que transforman las coordenadas de la terna 

del cuerpo {b} a la terna de navegación {n} pueden factorizarse de la siguiente manera: 
 

 
 

 
 

 
 

 
 

( 1) ( 1) ( ) ( )
( 1) ( ) ( ) ( 1)

1 1

1 1

n k n k n k b k
b k n k b k b k

n k n k n k b k

b k n k b k b k

 
 

 
 





C C C C

q q q q
    (7.12) 

 
con lo cual es posible considerar en forma independiente la rotación inercial de la terna 
del cuerpo y la rotación de la terna de navegación. Esto adquiere especial significación 
en el cálculo que sigue dado que, usualmente, ambos movimientos se ejecutan en 
escalas de tiempo distintas. En efecto, un vehículo sub-atmosférico puede estar 
sometido a velocidades angulares inerciales de varios rad/seg (un cohete con 
estabilización por espinado axial puede llegar a varias decenas de rad/seg), mientras que 
la rotación por transporte de vehículos aun de muy alta velocidad, sumada a la 
velocidad angular de la Tierra, resulta en velocidadades angulares de la terna de 

navegación respecto de la inercial relativamente bajas (Ejemplo: para 410n V Km/hr 

resulta 0.01n
inω  rad/seg.) 

 

En consecuencia, la actualización de la MCD ( 1)
( )

n k
n k

C  se calcula más lentamente a 

intervalos Ts en función del ángulo : 1
n
k kθ  mediante:  

 
( 1) ( )

: 1 : 1( ) ( 1)

*: 1 : 1( 1) ( ) ( 1)
( ) ( 1) ( )

: 1

( ( )) ( ( )), o bien:

sin( / 2)

cos( / 2)

n k n n k n
k k k kn k n k

n n
k k k kn k n k n k

n k n k n kn
k k

exp exp
 

  




   

  
        

C S θ C S θ

θ
q q q


  (7.13) 

 
Por otra parte, la siguiente descomposición: 
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 
 

 
 

 
 

 
 

 
 

 
 

 
 

,1 , 1

,1 ,2 1

,1 , 1

,1 ,2 1

( )
( 1)

1

b k b k b k M

b k b k b k

b k b k b k M

b k b k b k

b k
b k

b k

b k















C C C

q q q q

C 


    (7.14) 

 

permite actualizar la MCD ( )
( 1)

b k
b kC  a intervalos más cortos en función del ángulo , : 1

b
k j j  

(j=0 a M-1) rotado por la terna del vehículo respecto de la terna inercial en cada 
intervalo Tm=Ts/M: 
 

( , ) ( , 1)
, : 1 , : 1( , 1) ( , )

*, : 1 . : 1( , ) ( , 1) ( , )
( , 1) ( , ) ( , 1)

. : 1

( ( )) ( ( )), o bien

sin( / 2)

cos( / 2)

b k j b b k j b
k j j k j jb k j b k j

b b
k j j k j jb k j b k j b k j

b k j b k j b k jb
k j j

exp exp
 

  
 



   

 
        

C S C S

q q q


 

  (7.15) 

 
Una aproximación de la solución de la expresión (7.9): 
Expandiendo en potencias de   el factor del último término de la Ec. (7.9) se encuentra 
que:  
 

2 2
2

1 sin( ) 1 1 1
1 (1 ...) ( )

2(1 cos( )) 12 60 12
O

  
           

  (7.16) 

 
Dado que este factor pondera al término de 2° orden de la Ec. (7.9) se concluye que, a 

menos de errores de orden 4( )O  , el 2º miembro de esa ecuación diferencial resulta 
aproximable mediante: 
 

, ,
1 1

( ) ( ); ( ) 0;  
2 12

b b b
ib ib ib k j k jt t t t       ω ω ω      (7.17) 

 

Por otro lado, y dado que ,( ) 0k jt  , para ,k jt t  suficientemente pequeño el término 

que más contribuye a la solución ( )t  de la (7.9) es el primero ( b
ibω ) (lo mismo se vale 

respecto de la (7.17)). De este modo, para b
ibω  suficientemente suave resulta 

,( ) ( )k jt O t t    y 
22

,( ) ( )k jO O t t   . Por consiguiente, en el mismo pequeño 

intervalo, la diferencia entre los 2º miembros de las Ecs. (7.9) y (7.17) es de orden 
4

,( )k jO t t  con lo cual el error entre la soluciones de las Ecs. (7.9) y (7.17) resulta de 

orden 
5

( )kO t t . Reescribimos la última como:  

 

,

, ,
1 1

( ) ( ) ;  
2 12

k j

t
b b b

k j ib ib ib k j
t

t d t t           ω ω ω      (7.18) 

 

Si b
ibω  no rotase respecto de la terna {b(t)}, en cuyo caso b

ibω  se mantiene paralela a   

y los dos últimos térrminos de las (7.18) y (7.9) son nulos, la solución exacta de , ( )k j t  

se podría calcular explícitamente por simple cuadratura integrando b
ibω . De lo contrario, 
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la Ec. (7.18) presenta, la complejidad inherente a toda integral implícita. Miller (1983) 
propone en estos casos usar la siguiente forma truncada de la (7.17):  
 

, ,
1

( ) ; ( ) 0;  ;
2

b b
ib ib k j k jt t t t    ω ω       (7.19) 

 
Por las razones comentadas más arriba, la falta del término de 2° orden de la Ec. (7.17) 

produce errores del orden 
3

( )kO t t  en las soluciones de la Ec. (7.19) respecto de la 

(7.18).  Auque en muchos casos esto pueda representar en la práctica un grado aceptable 
de aproximación, de todos modos, la simplificación de Miller no evita tener que calcular 
la integral implícita (7.19).  
 
Savage (1998, parte I) propone la siguiente reformulación de la (7.19):   
 

,
,

,

1
( ) 0 ( ) ;

2 ;
( ) 0

( )

b b
k jib ib

k j
k jb

ib

tt
t t

t
t

       

ω α ω

α
α ω







    (7.20) 

en la cual ambos 2° miembros son independientes de ( )t  y por tanto pueden integrarse 
directamente por cuadratura. Pero, lo que hace aún más interesante a las (7.20) es el 
resultado de Savage (2006), obtenido usando la teoría de aproximaciones sucesivas de 
Picard de las soluciones de ecuaciones diferenciales (para la teoría de aproximaciones 
de Picard ver, p.e. Boyce/Diprima, 1997), según el cual los errores en las soluciones de 
la (7.20) son al menos de un orden inferior a los alcanzados por la aproximación de 
Miller (7.19) (ver los excelentes análisis de los errores derivados de estas 
aproximaciones para la dinámica de coneo en Ignagni, 1994 y para la combinación de 
las dinámicas de coneo y sculling, término que definiremos más abajo en Ignagni, 

1998). Es decir, los errores en ( )t  son ahora del orden 
4

( )kO t t ! La selección del 

intervalo corto Tl dependerá de  este pequeño error. 
 

Cálculo del ángulo , : 1
b
k j j : 

Con el resultado anterior y basándonos en Savage (1998, parte I), presentaremos a 
continuación el algoritmo digital propuesto de integración de la Ec. (7.20). Previamente 
introducimos la notación: 
 

,
, ( ) ( )

k j

t b
k j ibt

t d  ω      (7.21) 

,
, , , ,

1
( ) ( ( ) ( ) ( )) ( ) ( );

2k j

t b b
k j ib k j ib k j k jt

t d t t         ω ω β    (7.22) 

,
, ,

1
( ) ( ) ( ) ;

2 k j

t b
k j k j ibt

t d   β ω       (7.23) 

 
El término (7.23) es una corrección de 2º orden respecto de la aproximación de 1er orden 
dada por el ángulo integral , ( )k j t . Como ya se mencionó esta corrección será nula 

sólo si  b
ib   es no-rotante para t≥tk,j, razón por la cual el término , ( )k j tβ  es 
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denominado corrección por coneo. Las aproximaciones requeridas para el cálculo del 
término , ( )k j tβ  imponen subdividir el intervalo [tk,j,tk,j+1] en L pequeños sub-intervalos 

de longitud Tl; con lo cual:  
 

, ,

, ,

,

, , , , ,

, , , , , , . 1

, , ,

( ) ( ) ;

1
( ) ( ) ( )

2
1

( ) ( )
2

k j i

k j i

k j

k j k j i k j i

t b
k j i k j ib k j i k j it

t b
k j i k j ibt

t t

t d t t t

d




   


      



     





β β β

β ω

β ω

 



  (7.24) 

 
Análogamente con respecto del ángulo integral establecemos:  
 

, ,

, ,

,

, , , , ,

, , , , , . 1

, ,

( ) ( );

( ) ( ) ;

( )

k j i

k j i

k j

k j k j i k j i

t b
k j i ib k j i k j it

t b
k j i ibt

t t

t d t t t

d




   

    

   





ω

ω



  





    (7.25) 

 
Introduciendo las definiciones: , , 1 , , , , 1( )k j i k j i k j it  β β , , , 1 , , , , 1( )k j i k j i k j it    , 

junto con las (7.24) y (7.25) se tiene: 
 

, , 1

, ,
, , 1 , , , , 1 , ,

1 1
( ) ( ) ;

2 2
k j i

k j i

t b
k j i k j i k j i k j i ibt

d


         β ω    (7.26) 

 
Para evaluar el último término de la Ec. (7.26), supondremos una variación lineal de 

b
ib  respecto del tiempo a lo largo de dos intervalos consecutivos , , 1 , , 1[ , ]k j i k j it t  .  Esto 

equivale a la existencia para cada i=1,.. L-2 de vectores constantes ai, bi tales que: 
 

, , , , 1 , , 1( ) ( );b
ib i i k j i k j i k j it t t        ω a b     (7.27) 

 
A partir de la anterior evaluamos los ángulos integrales consecutivos:  
 

 

 

, , 1 , , 1

, , , ,

, ,

, , 1

2
, , 1 , ,

2
, ,

1
[ ( )]

2

1

2

k j i k j i

k j i k j i

k j i

k j i

t t
b

k j i ib i i k j i i l i l
t t

t
b

k j i ib i l i l
t

d t d T T

d T T

 



         

    

 



α ω a b a b

α ω a b





 (7.28) 

 
En función de los cuales se obtienen las: 
 

    2
, , 1 , , , , 1 , ,/ 2 ; /i k j i k j i l i k j i k j i lT T        a α α b α α   (7.29) 

 



Martín España Comisión Nacional de Actividades Espaciales  

 165 

que, junto con la (7.27), permiten calcular el 2º término de la (7.26) como: 
 

 , , 1 , , 1

, , , , , ,

, , 1

, ,

, ,

, ,

2
, , , , , ,

2 2
, , , ,

1 1
α ( ) ( ) [ ] ( )

2 2
1 1

[ ( ) ( ) ] [ ( )]
2 2
1 1

[ ( ) ( ) ]
2 2

k j i k j i

k j i k j i k j i

k j i

k j i

k

k j i

t tb b b
k j i ib ib ibt t t

t

i k j i i k j i i i k j it

t

i i k j i i i k j it

d d d

t t t d

t t d

 




          

          

        

  



ω ω

a b a b

a b b a



, , 1

3
, ,

, , , , 1

, , 1

( )1 1

4 3 12

j i

k j i b b
i i k j i k j i

k j it

t







 
    



a b α α

 (7.30) 

 
Con lo cual la (7.26) resulta: 
 

, , 1 , , , , 1 , , , , 1
1 1

2 12
b b

k j i k j i k j i k j i k j i        β α α   (7.31) 

 

Finalmente, de las (7.21) a la (7.31) se obtiene el algoritmo para el cálculo de , : 1
b
k j j  : 

 

, :0 , ,0 , ,0 , 1,

, ,

, , , , 1 , ,

, , , , 1 , , , , 1 , ,

, : , : 1 , , , ,

, : , : 1

0; 0;

1 1

2 12

b
k j k j k j k j L

k j i

k j i k j i k j i

b b
k j i k j i k j i k j i k j i

b b
k j i k j i k j i k j i

b b
k j L k j j

for i= 1:L,

Adquirir la medida

end





 





    



 

     

    



α α α

α

α α α

β α α α α

α β



 

 

   (7.32) 

 
Este algoritmo es considerado de 2º orden dado que en la Ec. (7.31) aparecen productos 
de los ángulos integrales presente y pasado: , , 1k j iα  , ,k j iα  como consecuencia de 

haber supuesto una variación lineal  b

ib   en dos intervalos consecutivos. El lector 

podrá comprobar que es posible obtener algoritmos de orden superior usando una 
expansión polinomial de grado mayor a uno para  b

ib  , lo cual conduce a una 

expresión de la corrección por coneo en función de ángulos integrales de dos o más 
períodos consecutivos pasados (un análisis generalizado que incluye algoritmos de 
orden superior a dos se presenta en Ignagni, 1998). Finalmente, destacamos que los 
ángulos integrales , ,k j iα  i=1,…,L pueden ser provistos directamente por la electrónica 

de adquisición de los giróscopos en cada intervalo de adquisición Tl lo cual tiene el 
beneficio suplementario de promediar el ruido de medición. En Carrizo J. (2019) se 
demuestra que de este modo, no sólo se evita usar un filtro “antialias”, si no que 
además permite independizar la selección del ancho de banda útil de la señal (ejemplo 
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rechazando vibraciones mecánicas espurias) de las necesidades de la precisión numérica 
del algoritmo (selección del período Tl). 
 

7.1.3 Integración de las ecuaciones de traslación. 
Retomamos la ecuación (7.2) que reformulamos en su forma integral en terna n(k) en el 
instante tk, denotando con: ( ) ( ) ( )n k n k

k ktV V  

 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )

k

t
n k n k n k n k n k

k k kt
t d t      V V V V V    (7.33) 

 
Introducimos a continuación las definiciones de los términos de “gravedad” ( ) ( )n k

g k tu ; 

“Coriolis” ( ) ( )n k
c k tu  y “fuerza específica” ( ) ( )n k

f k tu  (todas referidas a la terna n(k)):  

 
( ) ( ) ( ) ( )

1 1( ) ( )
k

t
n k n k n k n k

g k g k g k kt
t d t  u γ u u       (7.34) 

 
( ) ( ) ( ) ( ) ( ) ( )

1 1( ) (2 ( )  ( ) ( )
k

t
n k n k n k n k n k n k

c k e c k c k kt
t d t    u Ω V u u      (7.35) 

 
( ) ( ) ( ) ( )

( ) 1 1( ) ( ( )
k

tn k n k b n k n k
f k b f k f k kt

t d t   u C f u u       (7.36) 

 
mediante los cuales, la actualización de la Ec. (7.33) se escribe como:  
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1 1 1

( ) ( ) ( )
1 1

( ) ( ) ( ) ( );n k n k n k n k
k f k g k c k

n k n k n k n k
k f k g k c k

n k n k n k
k k k

t t t t

   

 

    

  

  

V u u u

V u u u

V V V

     (7.37) 

 

Cálculo del término de la fuerza específica 
El término (7.36), relativo a la fuerza específica (propulsión/sustentación) medida en 
terna del cuerpo, puede, en vehículos ágiles, contener componentes de alta frecuencia y, 
por tanto, requerir, a la vez, de una alta tasa de cálculo y de un método de integración 
preciso. Para tener en cuenta esto, introducimos primeramente las definiciones 
( , , 1[ , ]k j k jt t t  ):  

 
,

,

( ) ( ) ( )
, , ( )

( ) ( ) ( ) ( )
, ( ) , 1 , , 1

( ) (

( ) ( ; ( )

k j

k

k j

tn k n k n k b
f k j f k k j bt

tn k n k b n k n k
k j b k j k j k jt

t d

t d t



  

 

  





u u C f

u C f u u



   

 
  (7.38) 

 
Descomponiendo el intervalo de integración de la Ec. (7.36), con las anteriores 
escribimos: 
 

( ) ( ) ( )
, ,( ) ( )n k n k n k

f k f k j k jt t u u u      (7.39) 
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Ecuación que conduce a la siguiente iteración para calcular ( )

1un k
f k :  

 
( )
,0

( ) ( ) ( )
, 1 , , 1

( ) ( )
, 1

0

; 1,...,. 1

n k
f k

n k n k n k
f k j f k j k j

n k n k
f k M f k

j M 





   



u

u u u

u u

    (7.40) 

 
Retomamos ahora el término ( )

, ( )n k
k j tu  en la Ec. (7.38) que rescribimos como: 

 

,

( ) ( ) ( , ) ( ) ( , )
, ( , ) ( ) ( , ) ,( ) ( ( )

k j

tn k n k b k j b n k b k j
k j b k j b b k j k jt

t d t   u C C f C u    (7.41) 

,

( , ) ( , )
, ( )( ) (

k j

tb k j b k j b
k j bt

t d  u C f      (7.42) 

 
En la primera se extrajo de la integral el término ( )

( , )
n k
b k jC  que, por estar referido al inicio 

del intervalo de integración, es constante a lo largo del mismo. Cada uno de esos 
términos podrá actualizase como sigue en función de los ángulos , 1:

b
k j j  ya calculados 

mediante la iteración (7.32):  
 

( ) ( )
( ,0) ( )

( , 1)
( , ) , 1:

( ) ( ) ( , 1)
( , ) ( , 1) ( , )

( ) ( )
( 1) ( , )

( ( )) ;

; 1,...,

n k n k
b k b k

b k j b
b k j k j j

n k n k b k j
b k j b k j b k j

n k n k
b k b k M

exp

j M













 



C C

C S

C C C

C C


     (7.43) 

 
El resultado final de la iteración anterior: ( )

( 1)
n k
b kC , junto ( 1)

( )
n k
n k

C  (cuando esté disponible) 

y la Ec. (7.12) nos permitirán reiniciar un nuevo ciclo del cálculo de n
bC  a partir ( 1)

( 1)
n k
b k


C . 

 
Para calcular el término ( , )

, ( )b k j
k j tu  con , , 1[ , ]k j k jt t t   usamos la misma sub-partición de 

este intervalo que la empleada en las (7.24) a (7.32), de tal modo que para 

, , , , 1,k j i k j it t t     la Ec. (7.42) se reescribe como:  

 

, ,

( , ) ( , ) ( , ) ( , , )
, , , , ( , , ) , ,

, , , , 1( , , ) ( , , )
, , ( )

( ) ( ) ( )

,
( ) (

k j i

b k j b k j b k j b k j i
k j k j k j i b k j i k j i

t
k j i k j ib k j i b k j i b

k j i b

t

t t t

t t t
t d 



 
       




u u C

C f

  


 (7.44) 

 
Tal como en (7.42), se extrajo de la integral el término de la rotación referido al inicio 
del intervalo de integración. Para las rotaciones se usan las siguientes expresiones o sus 
respectivas aproximaciones de 1º orden: 
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( , )
( , , ) , : , :

( , , )
( ) , , , ,

exp( ( )) ( )

exp( ( ( )) ( ( ))

b k j b b
b k j i k j i k j i

b k j i b b
b k j i k j i

  

    

C S I S

C S I S

 

 
    (7.45) 

 
Donde la primera es función de los pequeños ángulos calculados en cada paso de la 
iteración (7.32) (al final de cada intervalo Tl).  A continuación procedemos a evaluar el 
término que surge de la Ec. (7.44):  
 

, , 1

, ,

( , , ) ( , , ) ( , , )
, , 1 , , , ,. 1 ( )( ) ( ; 1,..., 1

k j i

k j i

t

b k j i b k j i b k j i b
k j i k j i k j i b

t

t d i L


       C f   (7.46) 

 
para lo cual, en primer lugar, supondremos que Tl es suficientemente pequeño como 
para considerar b

ib  no rotante en cada intervalo, lo que nos permite escribir:   

 

, ,
, , , , 1

, , , ,

( ) ( )
[ , ]

( ) ( );

b b
k j i ib

k j i k j ib
k j i k j i

t t
t t t

t t


  
  

ω

α

δ

δ




    (7.47) 

 

Luego, usando la 2ª de las aproximaciones (7.45), válida para , , ( ) 1b
k j i tδ   dentro de 

un intervalo Tl, se tiene: 
 

( , , )
( ) , , , , , , , , 1exp( ( ( )) ( ( )); [ , ]b k j i b

b k j i k j i k j i k j iI t t       C S Sδ    (7.48) 

 
Introducimos ahora las definiciones: 
 

, , 1

, , , ,
, , , , , , 1( ) ( ( ) ( ); (

k j i

k j i k j i

t tb b b
k j i k j i k j it t

t d t t d


          v f v f v f  (7.49) 

 
que sustituimos junto con la (7.48) en la (7.46) para obtener: 
 

, , 1

, ,

, , 1

, ,

( , , )
, , 1 , , 1 , ,

, , 1 , , , ,

( ) (

( ) (

k j i

k j i

k j i

k j i

tb k j i b
k j i k j i k j it

t

k j i k j i k j it

d

d





 



       

       





v α f

v α v




    (7.50) 

 
Integrando por partes el último término de la Ec. (7.50) se llega a:  
 

 

, , 1

, ,

, , 1

, ,

, , , ,

, , 1 , , 1 , , , ,

( ) (

1 1
( ) ( ( (

2 2

k j i

k j i

k j i

k j i

t

k j i k j i

t

t

b b
k j i k j i k j i k j i ib

t

d

d





 

     

            





α v

α v α f v ω



 (7.51) 

 
Lo que permite descomponer el aporte de la propulsión a lo largo del intervalo 

, , , , 1[ , ]k j i k j it t   según la terna {b(k,j,i)}, dado por la (7.50), según los términos siguientes: 
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 
, , 1

, ,

( , , )
, , 1 , , 1 , , 1 , , 1

, , 1 , , 1 , , 1

, , 1 , , , ,

1

2

1
( ) ( ( (

2

k j i

k j i

b k j i
k j i k j i rt k j i sck j i

rt k j i k j i k j i

t

b b
sck j i k j i k j i ib

t

d


   

  



     

  

         

v v v

v α v

v α f v ω







 (7.52) 

 
Analizamos a continuación el significado de cada uno de estos términos. La variación 
integral de la fuerza específica en un intervalo Tl: , , 1k j iv  corresponde al incremento de 

la velocidad del vehículo en ausencia de rotación de la terna del cuerpo. Los otros 
términos son productos de variaciones integrales de ambas magnitudes inerciales y por 
lo tanto son correcciones de 2º orden respecto del primero. Cuando a lo largo de Tl 
ocurre una rotación de la terna del vehículo respecto de la terna inercial, , , 1rt k j iv  

corrige la impulsión , , 1k j iv  debido al cambio de orientación de la terna {b} (el 

producto vectorial proyecta , , 1k j iv  sobre los ejes actuales de {b}). A esto debe este 

término el nombre de corrección por rotación.  El término , , 1sck j iv  merece un análisis 

más detallado.  Cuando en el intervalo Tl puedan despreciarse las variaciones tanto de la 
fuerza específica como de la velocidad angular ( .b constf  y .b

ib constω ) se tendrá 

(ver definiciones (7.25) y (7.49)):  
 

, ,

, ,

, , , ,

, , , ,

( ) ( )

( ) ( )

k j i

k j i

b
k j i ib t k j i

b
k j i t k j i

t

t

     

     

α ω

v f
    (7.53) 

 
de donde, sustituyendo en la última de las (7.52), surge claramente para este caso que el 
integrando del término , , 1sck j iv  resultará despreciable y por tanto:  

 

( , , )
, , 1 , , 1 , , 1 , , 1

1

2
b k j i
k j i k j i k j i k j i        v α v     (7.54) 

 
De este resultado extraemos como primera conclusión que el término , , 1rt k j iv  

predomina en bajas frecuencias mientras que el término integral , , 1sck j iv  constituye 

una corrección de alta frecuencia del incremento de la velocidad debido a la propulsión. 
Más aún, este último término refleja ciertos efectos dinámicos combinados de ( )b f  y 

( )b
ib ω  promediados a lo largo de Tl y proyectados sobre la terna {b(k,j,i)} que son de 

interés destacar.  Como es fácil constatar a partir de las definiciones (7.25), (7.49) y 
(7.52), si ( )b f  y ( )b

ib ω  fuesen paralelas a lo largo de Tl , este término se anularía. Por 

otra parte, a magnitudes iguales, su contribución a la propulsión se maximiza cuando 
ambos vectores permanecen ortogonales entre sí en el mismo intervalo.  Este efecto es 
el que explica el impulso que imprime un remero a una embarcación con un único remo 
(la góndola es el ejemplo clásico) mediante un movimiento ondulante del mismo y es 
conocido por su nombre náutico en inglés “sculling”. Por esta razón, el término 

, , 1sck j iv  es denotado en la literatura inglesa como corrección por sculling (Savage 

1998 parte II) lo cual podría traducirse al Castellano como “corrección por gondoleo”.  
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Para evaluar la corrección por gondoleo procedemos en forma similar al cálculo de la 
integral (7.30) suponiendo, junto con la existencia de los vectores ai, bi que satisfacen la 
Ec. (7.27), la existencia de los vectores constantes ci, di que satisfacen: 
 

, , , , 1 , , 1( ) ( );b
i i k j i k j i k j it t t        f c d    (7.55) 

 
Lo que implica suponer una variación lineal con el tiempo de ambas magnitudes 
inerciales en coordenadas del cuerpo. Sustituyendo las (7.27) y (7.55) respectivamente 
en las (7.25) y (7.49) se obtienen, además de las (7.28), las siguientes relaciones con los 
incrementos integrales de la fuerza específica:  
 

2 2
, , , , 1

1 1
;

2 2k j i i l i l k j i i l i lT T T T     v c d v c d    (7.56) 

 
Si a continuación se sustituyen las (7.27), (7.28), (7.55) y (7.56) en la expresión de 

, , 1sck j iv  (Ec. (7.52)) después de algunas manipulaciones similares a las que conducen 

a la (7.30) se obtiene:  
 

, , 1 , , , , 1 , , , , 1

1
[ ]

12sck j i k j i k j i k j i k j i        v α v v α   (7.57) 

 
A partir de las expresiones (7.44), (7.45), (7.52), (7.57) es posible calcular el término 

( )
, 1

n k
k ju  requerido en cada paso de la iteración (7.40) (al final de cada intervalo Tm), 

mediante el siguiente algoritmo que procesa las magnitudes integrales , ,k j iα  y , ,k j iv  

enviadas a la más alta frecuencia desde la electrónica de los sensores inerciales:  
 

( , )
, , ,0 , ,0 , , , ,0 , 1,

, , 1 , , 1

( , , )
, , 1 , , 1 , , 1 , , 1 , , , , 1 , , , , 1

( , ,

( ) 0; ;

 i= 0 : -1,

1 1
[ ]

2 12

b k j
k j k j k j k j i L k j k j L

k j i k j i

b k j i
k j i k j i k j i k j i k j i k j i k j i k j i

b k j

t

for L

Adquirir medidas y

 

 

     

      

 

          

u α α v v

α v

v α v α v v α

C





( , )
) , : , :

( , ) ( , ) ( , ) ( , , )
, , , 1 , , , ( , , ) , , 1

( , ) ( , )
, , , , 1

( ) ( ) ( , )
, 1 ( , ) , 1

exp( ( )) ( )

( ) ( )

( )

b k j b b
i k j i k j i

b k j b k j b k j b k j i
k j k j i k j k j i b k j i k j i

b k j b k j
k j k j L k j

n k n k b k j
k j b k j k j

t t

end

t

 



 

  

 





S I S

u u C

u u

u C u

 

  

 

 

(7.58) 

 
Imbricando el pseudo-código (7.58) en el (7.40) se obtiene finalmente un procedimiento 
para calcular el término de la fuerza específica en la Ec. (7.37).  
 

Cálculo de los términos de gravedad y Coriolis 
En vehiculos no espaciales, la posición, la gravedad (dependiente fundamentalmente de 
la altura), la velocidad, la rotación de transporte y, consiguientemete, la aceleración por 
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Coriolis son funciones diferenciables (suaves) del tiempo y por tanto aproximables por 
su valor medio en un intervalo de integración Ts elegido lo suficientemte pequeño. 
 
Bajo estas condiciones se justifica reunir los términos de gravedad y Coriolis en un solo 
término ( )

1
n k

gc ku  aproximado mediante la siguiente formula de los trapecios*:  

 

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 ¨

ˆˆˆ( / 2) (2 )  ( , ) (2 )  n k n k n k n k n k n k n k n k n k
gc k s k e k k k k e k kT h   

          u g Ω V g Ω V   (7.59) 

 

En la anterior, además de los valores conocidos en tk: k , ( )n k
kV , ( )n k

kV , ( )n k
k  y ( )n kK , 

se usan las “predicciones”: 
 

 

( ) ( ) ( )
1

( ) ( )
¨ 1 1

( ) ( ) ( )
1 ¨ 1 1

( ) ( )
1 ¨ 1

ˆ   ;

ˆ ˆ 
2

ˆ ˆˆ ( , , ) ( )

ˆˆ ( , )

n k n k n k
k k k s

n k n ks
k k k k

n k n n k n k
k k k k k n z k

n k n k
k k k

T

T
h h

h t

h



 

  

 

 

  

  

 

V V V

V V z

V z

g g

α





 K

     (7.60) 

 
denotadas con “^” para destacar que sus valores no son aún los definitivos que serán 
determinados según se indica en el siguiente párrafo. 
 

Actualización de la velocidad en tk+1: 
Luego de calcular la Ec. (7.59) junto con el resultado de ejecutar el algoritmo (7.40) se 
calcula la velocidad ( )

1
n k
kV  en tk+1 mediante las Ecs. (7.37). Si es necesario, éste último 

valor podrá reintroducirse en las Ecs. (7.59) y (7.60) iterando los cálculos de ( )
1

n k
gc ku  y 

de ( )
1

n k
kV  hasta lograr la aproximación deseada.  

 
Destacamos sin embargo que ( )

1
n k
kV  deberá aún ser proyectada sobre la terna n(k+1) una 

vez que ( 1)
( )

n k
n k

C  esté disponible, mediante: 

 
( 1) ( 1) ( )
1 ( ) 1

n k n k n k
k n k k

 
 V C V

    (7.61) 
 

Actualización de la posición: 
La posición del vehículo relativa al elipsoide normal queda determinada por su altura h 

y por e
nC  (también e

nq  o, equivalentemente, las coordenadas curvilíneas   junto con 

el ángulo de deriva α) solución de las ecuaciones cinemáticas:  
 

                                                
*Más cuidado deberá tenerse en los  casos de cohetes zonda o de lanzadores satelitales. 
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( )

( , , ) ; sen( )

n n n
z

e e n
n n

n n n n n
n z z

h V

h

 



         

z V

C C S ρ

ρ V z

 


 K

   (7.62) 

 
En caso de utilizarse un filtro estabilizador del canal vertical, deberá agregarse a la 
primera de las (7.62) el término correspondiente que fuera introducido en el Párrafo 
5.4.1. Primeramente, usando la componente “z” de la velocidad calculada según el 
párrafo anterior y la Ec. (7.37), actualizamos la altura mediante:  
 

1

1 1

1
1

;

( ) ( )
( )

2

k

k

k k k

t n n
n z k z k

k z s
t

h h h

V t V t
h V d T



 




  


   

    (7.63) 

 

Por su parte, para calcular la matriz ( 1)
e
n kC  en función de ( )

e
n kC  se requiere conocer el 

ángulo vectorial 1k  , rotado por la terna {n} en [tk, tk+1] respecto de {e}, impulsado por 

la velocidad angular nρ  y solución, en ese intervalo, de una ecuación de Laning/Bortz 
del tipo de las (7.9) y (7.10). Para vehículos no espaciales y valores usuales de Ts, el 
vector de rotación 1k   resulta en la práctica lo suficientemente pequeño* como para 

suponerlo paralelo a nρ  en dicho intervalo. Esto permite aproximar su evolución 
mediante el primer término de la ecuación de Laning/Bortz: 
 

( ) ( ) ( ) ( )
1 1( )

2

k

k

st T
n k n k n k n k s
k k k

t

T
d



                (7.64) 

 
Las mismas condiciones de suavidad invocadas más arriba para la velocidad vertical y 
rotación por transporte justifican las integraciones por trapecios usadas en (7.63) y 
(7.64)†.  
 

En las siguientes ( )
1

n k
k  es una predicción que en este caso se calcula usando el valor ya 

actualizado de la velocidad ( )
1

n k
kV : 

 
( )

1

( 1) ( ) 1 1

( ) ( ) ( ) ( )
11 1 ,

ˆ

ˆ ˆ ˆˆ ˆexp( ( )) , ,

ˆ ˆ( , , )

n k
k sk

e e
n k n k k k k k

n k n k n k n k
k k k nk k k z

T

h



    

   



   

  

C C S

V z

 



 K





   (7.65) 

 
Se destaca, en primer lugar, la necesidad del paso intermedio en las Ecs. (7.65) para 

calcular los valores (no definitivos) de 1
ˆ ˆy k k    que, junto con kh  , son argumentos 

                                                
* Para la velocidad orbital terrestre (ground speed) 7Km/seg y Ts <0.1 seg,   0.01[rad]. 
† Savage (1998 II, secc. IV-C) propone un método de mayor precisión y complejidad numérica para estos 
cálculos. 
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del tensor de curvatura ( )n kK  requerido en la última ecuación para determinar las 

componentes horizontales de ( )
1

n k
k . También, que ésta última está expresada en terna 

n(k) y, finalmente, que su componente vertical es ña calculada al final del ciclo anterior.  
 
Con 1k   calculado con la Ec. (7.64), las siguientes ecuaciones permiten evaluar 

( 1)
e
n kC  y, a partir de ésta, las coordenadas curvilíneas en tk+1: 

 

( 1) ( ) 1

( 1) 1 1

exp( ( ))

, ,

 

   



 

C C S

C

e e
n k n k k

e
n k k k k



 
    (7.66) 

 
De requerirse mayor precisión en el cálculo de estas últimas podrán iterarse las Ecs. 
(7.64), (7.65) y (7.66). 
 
Cálculo de ( 1)

( )
n k
n k

C  

Resta por evaluar la transformación de coordenadas usada en la Ec. (7.61) que permite 
re-expresar la velocidad según la terna de navegación actualizada al instante tk+1. Una 
vez más, vistos los valores usuales de Ts, es posible considerar el vector de rotación 
angular : 1

n
k kθ  de la terna {n} colineal con ( )n k

inω  y a ésta aproximadamente lineal con el 

tiempo en cada intervalo Ts.  Esto justifica, en primera aproximación, el cálculo:  
 

1 ( ) ( )
( ) 1

: 1

ˆ ( ) ( )
( )

2

k

k

t n k n k
n n k in k in k
k k in s

t

t t
d T







   

ω ω
θ ω     (7.67) 

 
Aquí, la predicción ( )

1
ˆ ( )n k

in kt ω  se evalúa mediante:  

 
( ) ( ) ( )

1 1

( ) ( ) ( ) ( )
1 1 1

ˆ̂ˆ ( ) ( )

ˆ̂ ( ) ( , , )) ( )

n k n k n k
in k e k

n k n k n k n k
k k k k k n z k

t t

t h t

 

    

 

 

ω Ω

ρ V z



 K
  (7.68) 

 
En la cual se usan los valores determinados previamente para 1 , ,  k k kh  (Ecs. 

(7.63) y (7.66)) y para la velocidad ( )
1

n k
kV  (Ec. (7.37) y subsiguientes). Se usa ˆ̂ρ  para 

distinguirla de su valor definitivo calculado más adelante incluyendo la actualización de 
su componente vertical.  
 

( 1
( )

n k
n k

C  se calcula mediante la siguiente expresión:. 

 
( 1)
( ) : 1 : 1 : 1( ( )) ( ( ); 1)n k n n n

n k k k k k k kexp I
     C S θ S θ θ     (7.69) 

 

Proyección de las variables sobre la terna n(k+1) 
La expresión anterior junto con la (7.61) nos permite referir las velocidades a la terna 
n(k+1) y recalcular 1kh   y 1kh   de la Ec. (7.63) usando las expresiones: 
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( 1) ( ) ( 1) ( )
( ) ( ) 1

1

1 1

2 z

n k n k n k n k
n k k n k k

sk

k k k

h T

h h h

 




  


 



C V C V
    (7.70) 

 
Con lo cual será posible actualizar la matriz de rotación desde el cuerpo a la plataforma 
analítica (en el Capítulo 6 (Fig. 6.5) se estableció la notación equivalente 

ˆ ( 1) ( 1)n p
b bk k  C C ): 

 
( 1) ( )
( ) ( 1)( 1) ( )p p

b b
n k b k
n k b kk k

 C C C C      (7.71) 

 
Finalmente, antes de iniciar el siguiente período de integración Ts de las Ecs. (7.1) a 
(7.3) se actualiza la rotación por transporte en el instante tk+1 

 

( 1) 1
1 1 1

1

( 1) ( 1) ( 1) ( 1)
1 1 1 1

( )
( ) sin ( ) ( )

( )

( ) ( , , )) ( )

n k E k
z k k k

p k

n k n k n k n k
k k k k k n z kH

V t
t t t

R t

t h t

 
  



   
     

  

 ρ V z





 

 
  (7.72) 

 

7.2 Integración numérica de las ecuaciones de navegación en terna ECEF  

Cuando en las ecuaciones (7.1) y (7.2) se impone ne, 0e ρ  la ecuación de 

orientación resulta: 
 

 
( ) ( ) ;

( ) ( ); 0 0 1 ;

1 1

2 20 0

e e b e e e e
b b ib ie b ie e

Te e e e
e e z z e e

b e
e e eib e
b b b

  

     

   
     

   

C C S ω S ω C ω Ω

S Ω S e e Ω

ω Ω
q q q





   (7.73) 

 
y para las de traslación se tiene *: 
 

02 ; (0)e e b e e e e e
b e

e e

    



V C f γ Ω V V V

P V




    (7.74) 

 
Como se advierte, la inexistencia de rotación de transporte conduce a ecuaciones 
cinemáticas más simples que las ecuaciones (7.1) y (7.2). En particular, la ecuación de 
orientación resulta desacoplada de la de traslación y el término de Coriolis en la (7.74)
es lineal en la velocidad.  Aunque en este caso el modelo de la gravedad normal no tiene 
una forma tan sencilla como la (7.4), es posible utilizar alguna de sus expresiones 
explicitas en coordenadas ECEF dadas por las ecuaciones (4.48) ó (4.51). 

                                                
*Para simplificar la exposición supondremos el modelo normal de gravedad, pero todo lo que sigue se  
extiende sin dificultad a cualquier otro modelo de gravedad. 
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7.2.1 Integración de las ecuaciones de orientación. 
Con la notación definida en el Párrafo 7.1.1, tal como en la (7.12), usamos la 
descomposición: 
 

 
 

 
 

( 1) ( 1) ( ) ( )
( 1) ( ) ( ) ( 1)

( 1) ( 1)
( 1) ( ) 1

e

e k e k e k b k
b k e k b k b k

k b ke k e k
b k e k b k b k

 
 

 
 





C C C C

q q q q
     (7.75) 

 

Dado que ahora e
eΩ  es constante, la rotación de la terna de referencia e respecto de la 

ECI en un periodo Ts esta dada por : 1
e e
k k s eT θ Ω  (comparar con las (7.67) y (7.68)). Así, 

la expresión (7.69) (y su versión en cuaternión) resulta para este caso en la matriz 
constante:  

 

( 1) ( 1)
( ) ( )

sin( / 2)
( ( ) ;) ;

cos( / 2)

e
z s ee k e ke

s ee k e k e
s e

T
exp T

T

    
    

  

e
C S Ω q   (7.76) 

 
Notar que en esta formulación la rotación de la terna de referencia puede calcularse en 
forma exacta evitando las aproximaciones (7.67) a (7.69). Por su parte, el factor 

, : 1
( )
( 1) ( ( ))b

k j j
b k
b k exp   SC  , correspondiente a la rotación inercial del vehículo, se 

actualiza del mismo modo que para la terna LGV (ver pseudocódigo (7.32)). 

7.2.2 Integración de las ecuaciones de traslación.* 
Introduciendo la notación: 
 

; ;
e e

e e

e e

   
   

      

P P
X X

V V





     (7.77) 

3 6 6 3
0

; ( ) ( ( )) ( )
0 2 ( )

x e e e e b
be

I
t t t

S

 
   

 
A w γ P C f

Ω
     (7.78) 

 
las ecuaciones de traslación (7.74) se agrupan en la siguiente ecuación de estado: 
 

0
; ( ) ;

( )
e e e e

k k ke
t dado t t

t

 
     

 
X AX X X

w
     (7.79) 

 
con solución explicita en t= tk+1= tk+Ts: 
 

1
( )

1

0
;

( )

k

s

k

t
Te e t

k k e
t

e e d





 
   

 
A AX X

w
    (7.80) 

 

                                                
*La validación numérica de este enfoque, cuyo desarrollo no habia sido publicado previamente, es tratada 
en Carrizo et al. 2007. 
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Dada la estructura de la matriz constante A y usando la definición de la exp(At) es 
posible constatar que: 
 

2 3 ( )1 1
( ) ( ) ....

0 ( )2! 3!
t I t

e I At At At
t

 
       

 
A Q

R
   (7.81) 

 
Donde:  
 

2 ( )

0

( ) ; ( ) ( ) ;
e

t
tt e t d  S ΩR Q R       (7.82) 

 
Para lo que sigue convendrá además introducir las siguientes definiciones: 
 

0 0

( ) ( ) ; ( ) ( )
t t

t d t d    U Q W U       (7.83) 

 
Integrando sucesivamente término a término la serie de potencias (7.81) y tendido en 
cuenta que toda matriz conmuta con su exponencial, resultan, además las siguientes 
relaciones útiles: 
 

2 2

( ) 2 ( ) ( ) 2 ( ) ( )

( ) 2 ( ) ( ) 2 ( ) ( )

( ) 2 ( ) ( ) / 2 2 ( ) ( ) / 2

e e

e e

e e

t t I t I

t t It t It

t t It t It

     

     

     

R Q S Ω S Ω Q

Q U S Ω S Ω U

U W S Ω S Ω W

  (7.84) 

 
Nótese en la (7.80) que el término independiente de la propulsión, que incluye al efecto 
Coriolis, a diferencia de la (7.59) en la formulación en LGV (ver también la Ec. (7.60)), 
se calcula en forma exacta como una simple transformación lineal constante del estado 
en el instante anterior. Más aún, las submatrices constantes Q(Ts) y R(Ts) de exp(ATs) 
pueden ser calculadas de una vez para siempre fuera del algoritmo de integración 
reduciendo así la complejidad del algoritmo en tiempo real. 
 
Por otra parte, con las definiciones (7.82), el término de la convolución en (7.80) se 
reescribe como:  
 

1

11 ( )
1 1 1

1

0

( )

k

k

k

t
k t g f

k k ke
k t

e d


 
  



   
      

  
 AP

X X X
V w


   

 
  (7.85) 

 
Donde se introdujeron los términos de gravedad y de fuerza específica:  
 

1

1

1
1

1

1
1

1

( )
( ( )) ;

( )

( )
( )

( )

k

k

k

k

t
kg e e

k
kt

t
kf e

k
kt

t
d

t

t
d

t















 
  

 
  





Q
X γ P

R

Q
X f

R






  




  



     (7.86) 
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Cálculo del término de la gravedad: 
Introducimos la aproximación de primer orden para 1[ , ]k kt t t  : 
 

 

( )

( ( )) ( ) ( ) ( )

( ) ( ) ( ) ( )

e e e e e
k k k

e
e e e e

k k k k k ke e
ke

k
k

t

t t t t t

t t t t t t

    


          P

b

γ P γ P V

γ
γ P V γ b

P
γ




   (7.87) 

 
En la anterior pueden utilizase alguna de las expresiones explícitas de la gravedad en 
función de eP  presentadas en el Párrafo 4.4.1. En el Apéndice B se consignan las 
expresiones analíticas de las entradas de la matriz jacobiana [ / ]e e γ P  para el caso 
particular de la aproximación “J2” de la gravitación normal dada por la Ec. (4.51).  
 
Introduciendo la (7.87) en la primera de las (7.86) luego 1kt     y por último el 
cambio del variables habitual para integrar por partes, se obtiene:  
 

1 1
1 1

1
1 1

0 00 0

( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( )

k k

k k

s s

t t
k kg e

k k k k
k kt t

T T
e e
k s k k s k k

s

T Ts s

t t
d t d

t t

d T d d T d

T

 
 


 

    
         

       
            

       



 

   

Q Q
X γ b

R R

Q Q Q Q
γ b γ b b

R R R R

U

Q

 
   

 

   
     

   

0

( ) ( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )

( ) ( )

sT
s s se e

k s k k k s k k s k
s s s s

s se
k k

s s

T T Td
T T T

T T T Td

T T

T T

        
             

        
   

    
   


U W UU

γ b b γ b b b
Q U QQ

U W
γ b

Q U






 (7.88) 

 
Una vez más, las matrices constantes que intervienen en la expresión anterior pueden 
calcularse a priori en funcion del Ts elegido fuera del algoritmo. 

Cálculo del término de la fuerza específica 
Descomponiendo el intervalo [tk, tk+1] en sub-intervalos de longitud Tm, la 2ª de las 

(7.86) se rescribe como:  
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Donde se introdujo la aproximación para , , 1,k j k jt t     :  
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Similarmente a las (7.38) definimos: 
 



Martín España Comisión Nacional de Actividades Espaciales  

 178 

,

, ( ) , 1 , , 1( ) ( ; ( )
k j

t
e e b e e
k j b k j k j k j

t

t d t      u C f u u    (7.91) 

 
Con la cual la (7.89) resulta: 
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Donde las matrices constantes ( )jQ , ( )jR ; j=0,..,M-1 se calculan de una vez para 
siempre en función de Ts y Tm.  
 
Similarmente a la (7.41) escribimos: 
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donde, como en (7.43), ( , )

e
b k jC  es actualizado mediante la siguiente iteración en función 

del ángulo , 1:
b
k j j  previamente calculado con el pseudo-código (7.32) 
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El resultado final de la iteración anterior: ( )

( 1)
e k
b kC  junto con la (7.75) y la (7.76) permiten 

reiniciar el ciclo del cálculo e
bC  a partir ( 1)

( 1)
e k
b k


C .  En cuanto al cálculo del término 

( , )
, ( )b k j

k j tu  en (7.93) el desarrollo reproduce los mismos pasos que para la terna LGV 

desde la (7.44) hasta el pseudo-código expresado por (7.58). 

7.3 Comparación entre los algoritmos en ternas LGV y ECEF 

Los algoritmos “strapdown” en coordenadas LGV son la continuación natural de los 
sistemas de navegación con plataforma giroestabilizada paralela al plano tangente local 
terrestre. En gran parte es esta herencia histórica la que ha determinado su popularidad 
durante el desarrollo de la tecnología “strapdown”. En defensa de esta opción cabe 
destacar además que la terna de referencia geográfica y el posicionamiento en 
coordenadas curvilíneas son muy usados en la navegación en vehículos sub-
atmosféricos y que muchos instrumentes exoceptivos clásicos de ayuda a la navegación 
inercial (altímetros, radionavegación terrestre y radar) son diseñados adaptados a esa 
misma terna. Otro especto que motiva el uso de estas coordenadas es la forma sencilla 
que en ellas adopta la expresión de la gravedad normal (fórmula de Somigliana en el 
Capítulo 4). Sin embargo, como se demuestra en este Capítulo la formulación en terna 
LGV no resulta las más adecuada desde el punto de vista numérico. 
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Las ecuaciones cinemáticas según la terna terrestre (ECEF) son considerablemente más 
sencillas que las expresadas en terna LGV. Como fuera señalado en Wei/Schwarz 
(1990), esto permite relajar aproximaciones mejorando así la precisión y reduciendo la 
complejidad e intensidad del cálculo en tiempo real. Más específicamente, en ECEF: a) 
La corrección por Corilolis se calcula en forma exacta en cada paso del algoritmo que 
transforma el estado cinemático anterior mediante una matriz constante conocida a 
priori; b) La rotación de la terna “e” en cada intervalo Ts es constante y conocida a 
priori en forma exacta; c) La ausencia de la rotación de transporte reduce la complejidad 
de las ecuaciones.  
 
Las ventajas numéricas señaladas se acentúan en alta velocidad (alta rotación de 
transporte) como satélites, inyectores satelitales y aviones. En Carrizo et all. (2007) se 
demuestra que en vehículos rápidos los errores inducidos por la aproximación del 
término de Coriolis en terna LGV pueden dominar en varios ordenes de magnitud a los 
provocados por las otras aproximaciones numéricas. En la misma referencia se compara 
el desempeño de ambos algoritmos para idénticos valores de Tl, Tm y Ts, sobre una 
trayectoria sintética (generada con el método expuesto en Giribet et al. 2007) de un 
inyector satelital similar al vehículo DELTA-II de NASA. El resultado es una 
divergencia en la posición en la versión LGV más de 3 órdenes de magnitud superior en 
relación a la observada en terna ECEF. 
 
Como la ECEF es la terna estándar de los sistemas GNSS, a las ventajas anteriores se 
suma una mejor adecuación del algoritmo de propagación del estado cinemático a la 
navegación integrada inercial-GPS (objeto del Capítulo 10). En particular, los modelos 
matemáticos de las medidas de pseudo-rango y Doppler (considerados en el próximo 
Capítulo) son los mismos que los adoptados por los receptores GPS. La mayor 
simplicidad de los modelos de estas mediciones exoceptivas se traducen además en 
ventajas numéricas en la implementación del algoritmo de navegación integrada. Por 
último cabe destacar que para ciertas aplicaciones como la geo-referenciación 
automática de imágenes adquiridas mediante sensores remotos tanto aéreos como 
satelitales la terna de preferencia es la ECEF. 
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Capítulo 8  
Sistemas Satelitales  

de Navegación Global 

 
Los Sistemas Satelitales de Navegación Global (GNSS según sus siglas en inglés) son 
sistemas de radionavegación pasiva con estaciones de referencias a bordo de satélites en 
órbita alrededor de la Tierra. La constelación de satélites constituye un sistema de 
referenciación absoluta que permite a un receptor alcanzado por las señales satelitales 
medir su distancia respecto de cada satélite y determinar, por triangulación, su propia 
posición en coordenadas ECEF, terna de referencia estándar adoptada por todos los 
sistemas GNSS.  
 
La posición de cada satélite visible es determinada en el propio receptor con base en sus 
parámetros orbitales (efemérides) transmitidos junto con la señal recibida. La distancia a 
cada trasmisor satelital se calcula escalando con la velocidad de propagación de la luz 
en el vacío la medida del tiempo de propagación de la correspondiente señal. 
Clásicamente, la medición precisa de intervalos de tiempos entre eventos no co-
localizados requirió de relojes sincronizados de alta precisión y estabilidad en ambos 
eventos. Es la introducción del concepto de pseudo-distancia o “pseudo-rango” lo que 
hizo posible reducir esos requerimientos de alta calidad y sincronía en el reloj del 
receptor permitiendo así su miniaturización y masificación. Para esto se utiliza un 

número redundante de mediciones de tiempos de propagación (al menos 4 en 3 ó 3 en 

2) todos afectados por idénticas imprecisiones del reloj del receptor (de calidad 

comercial).  A partir de éstas se determina, simultáneamente, las coordenadas de la 
posición del receptor y el sesgo horario de su propio reloj. De éste modo, además de 
posicionar un receptor es posible propagar el tiempo preciso medido a bordo de los 
satélites de referencia.  Con los sistemas GNSS es posible lograr esto con errores 
acotados uniformemente sobre casi cualquier punto del espacio circundante a la Tierra, 
en casi todo instante y con escasa dependencia de las condiciones atmosféricas.  Así 
mismo, el desplazamiento Doppler, medido al sintonizar la portadora, permite calcular 
la velocidad radial del receptor respecto de cada satélite y, consiguientemente, 
determinar el vector velocidad en las mismas coordenadas del sistema de referencia 
satelital. Los receptores modernos pueden además rastrear la fase de la portadora 
emitida por los satélites, lo cual, mediante técnicas interferométricas, hace posible 
posicionamientos de muy alta precisión y aún medir directamente la orientación de un 
receptor equipado con múltiples antenas. Los métodos interferométricos son la base de 
los más modernos sistemas de navegación de alta precisión. 
 
Los sistemas GNSS son tributarios del rápido desarrollo durante las últimas décadas de 
importantes tecnologías críticas tales como: vehículos espaciales altamente confiables; 
relojes atómicos de alta precisión y estabilidad (<1 seg. en 3x106 años); buena 
estabilidad a corto plazo de osciladores de cuarzo; técnicas precisas de rastreo satelital y 
de cálculo de efemérides y métodos avanzados de modulación de portadora. 
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Las aplicaciones actuales y potenciales de los GNSS son innumerables y abarcan todas 
las ramas de la ingeniería, la arquitectura, la salud, el manejo territorial, de los recursos 
naturales y de catástrofes, los sensores remotos, entretenimientos y, por supuesto, 
cualquier medio de transporte lo cual constituyó el motor original de esta tecnología.  
 
Los actuales sistemas GNSS operativos o en curso de serlo son: el NAVSTAR-GPS 
desarrollado y operado por la fuerza aérea estadounidense y operativo desde 1992, el 
sistema GLONASS desarrollado y operado por el ministerio de defensa ruso, operativio 
definitivamente en 2012 y el sistema GALILEO. Este último, único de origen civil fue 
desarrollado por la Comunidad Europea y está en sus fases finales de puesta en servicio. 
Un aspecto destacable de esta última constelación es el uso, a bordo de cada satélite, de 
un par de relojes atómicos redundantes de muy alta precisión: un H-Maser (1nesg/día) y 
otro RAFS (Rubidium Atomic Frequency Standard, 10nseg/día). Asimismo, GALILEO 
constituirá un sistema de segunda generación capaz de proveer por sí mismo una señal 
de integridad compatible con las requeridas por la ICAO (International Civil Aviation 
Organization) para la mayor parte de las fases de los vuelos comerciales. Actualmente 
esta función es provista por subsistemas ad-hoc de aumentación regional GPS, tales 
como el WAAS (Enge et al., 1996) sobre Norteamérica, el EGNOS (Toran/Traveset, 
2004) sobre el continente europeo y el MSAS sobre Japón. Paralelamente al desarrollo 
del sistema GALILEO, EEUU inició un plan de modernización del GPS con miras a 
proveer también prestaciones de 2ª generación durante la presente década.  Es 
importante remarcar que en un futuro próximo todos estos sistemas estarán accesibles 
simultáneamente para receptores multi-constelación lo cual permitirá mejorar la 
confiabilidad, la precisión, la continuidad y la integridad a niveles insospechados por 
los pioneros de la navegación satelital. 
 
Luego de presentar la arquitectura básica de los sistemas GNSS y de cada uno de sus 
componentes, se describe la señal de radiofrecuencia en el espacio, en base a la cual se 
modela matemáticamente la señal en la antena del receptor y su etapa de RF antes de 
introducir los procedimientos de demodulación compleja y de conversión digital de la 
señal. Toda la información emitida por la(s) constelación(es) visible(s) es luego extraída 
numéricamente de la señal muestreada, esto incluye el rastreo de cada satélite en línea 
de vista. El último sub-capítulo está dedicado a describir el mensaje transmitido por la 
señal de RF en el espacio de la constelación GPS.  

8.1 Arquitectura de un sistema GNSS  

Es clásico describir la arquitectura de los sistemas GNSS según sus 3 componentes 
principales, a saber: el segmento espacial, el segmento terreno y el receptor o segmento 
del usuario.  

8.1.1 El segmento espacial 
Consiste en la constelación de satélites junto con las señales en el espacio que ellos 
proveen. Los satélites se distribuyen según órbitas circulares cada una de las cuales 
ocupa un plano fijo en coordenadas ECI conteniendo entre 4 y 6 satélites activos más 
uno, o en ciertos casos dos, de repuesto.  La distribución espacial de los satélites (y sus 
órbitas) esta diseñada de modo que sea posible “ver” al menos 4 satélites desde 
cualquier punto de la Tierra.  
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La Tabla 8.1 indica algunas características de las constelaciones GPS, GALILEO y 
GLONASS. Por su parte, la Figura 8.1 muestra, a modo de ejemplo, los 6 planos 
orbitales del sistema GPS con 4+1 satélites en cada órbita.   
 
Las funciones del segmento espacial son: a) recibir y almacenar la información 
preveniente del segmento de control, b) mantener el tiempo preciso a bordo, c) modular 
y transmitir las portadoras con los respectivos códigos de cada satélite y los mensajes de 
navegación y d) asegurar la localización espacio-temporal asignada por el segmento de 
control de cada satélite dentro de su órbita. 
 
GNSS PLANOS 

ORBITALES 
SATÉLITES 

/ÓRBITA 
INCLINA-
CIÓN 

PERÍODOS SATÉLITES 
VISIBLES 

ALTURA 

GPS 6 a 60º 4+1 55º 12hs 4 20200Km 
GALILEO 3 a 120º 10+1 56º 14hs 6 23600Km 
GLONASS 3 a 120º 7+1 64,8º 11,25hs 5 19100Km 

Tabla 8.1: Características orbitales nominales de 1as principales constelaciones GNSS. 

 

 
La Figura 8.2 indica las portadoras de las señales en el espacio para las 3 constelaciones 
consideradas, todas ubicadas en la región RNSS (Radionavigation Satellite Service) de 
la banda L. Esta región incluye a la zona protegida de interferencias ARNS 
(Aeronautical Radio Navigation Service) destinada a la aeronavegación comercial y 
sujeta a muy estrictas regulaciones internacionales.  
 
El sistema GPS utiliza el método CDMA (Code Division Multiple Access, ver Sec. 8.2) 
para emitir sus señales según dos códigos con un canal de código independiente 
asignado a cada satélite. Sobre su portadora L1 (1575.42 MHz) en la zona ARNS 
trasmite, “en fase”, una señal de precisión para aplicaciones militares con el código 
denominado P(Y) code (que puede estar encriptado) y otra “en cuadratura” con código 
C/A (Coarse-Acquisition code) de libre acceso. El código P(Y) también es trasmitido 

Figura 8.1: Órbitas del segmento espacial del sistema GPS proyectadas 
sobre el plano del Ecuador. 

Plano del  
Ecuador 

60o 
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sobre la componente en fase de una segunda portadora L2 (1227.60 MHz) ubicada fuera 
de la zona protegida ARNS.  A partir de los primeros satélites del plan de 
modernización: Block II R-M (Repelenishment and Modernized) lanzados en 2005, 
GPS también trasmite en cuadratura sobre la portadora L2 la nueva señal civil L2C con 
código C/A. Los satélites del bloque Block II F (follow on), con lanzamientos desde 
2009, incluyen dos nuevas señales de seguridad de vida (SOL: Safety of Life) sobre la 
portadora L5 (1176.45 MHz) con un código similar al P(Y)*. Culminado el proceso de 
modernización, el sistema GPS ofrecerá señales en 3 bandas de frecuencias diferentes a 
sus usuarios civiles, lo que implicará una significativa mejora en precisión y 
confiabilidad respecto de la situación actual.  
 
El sistema GLONASS utiliza como técnica de multiplexado la división por frecuencia 
FDMA (Frequency Division Multiple Access) y trasmite un mismo código 
simultáneamente en 15 canales de frecuencias sobre dos portadoras: L1: 1602,0 Mhz 
(1598.0625 a 1605.375 MHz) y L2: 1245,8 MHz (1242.9375 a 1248.625 MHz). La no 
coincidencia de bandas con GPS complica y encarece el diseño de receptores 
combinados GLONASS/GPS, por lo que el programa de modernización de GLONASS, 
anunciado en 2008 por el estado ruso, contempla la transmisión de los mismos 15 
canales sobre una nueva señal FDMA localizada en la banda L3 (de 1197.648 a 
1212.255 MHz) situada entre las bandas L2 y L5 de GPS y coincidente con la banda 
E5b de GALILEO. El uso de FDMA hacia de GLONASS la excepción en el uso de 
CDMA adoptado por el resto de los sistemas GNSS (incluido el sistema COMPASS 
chino en desarrollo).  Teniendo en cuenta esto, la federación rusa aprobó en 2008 la 
futura incorporación de dos señales CDMA centradas, respectivamente, en las 
portadoras L1 y L5 de GPS. 
 

La constelación GALILEO utiliza 10 señales multiplexadas según el sistema CDMA 
con portadoras en las bandas E5a, E5b, E6, en banda L inferior, y E2-L1-E1, en la 
banda L superior (ver; Hein et al., 2002).  La selección de estas bandas asegura 
compatibilidad en la recepción con los sistemas GPS y GLONASS. En particular, como 
se advierte en la Figura 8.2, GALILEO comparte con GLONASS y GPS las frecuencias 
centrales E5a/L5 y L1 y con GLONASS la sub-banda E5b.  

                                                
*El satélite SVN49 del Bloque IIR-M lanzado en marzo de 2009 fue el primero en trasmitir en frecuencia 
L5. Se prevé una constelación operativa en L5 para 2018. 

E1 E2 

Bandas ARNS Bandas ARNS 

Bandas RNSS Bandas RNSS 

Galileo Galileo GPS GLONASS  

Figura 8.2: Portadoras en banda L de los 3 sistemas GNSS. 
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La Tabla 8.2 resume las principales características previstas para la señales de 
GALILEO (no todas tienen ya definida la velocidad de transmisión de datos) que 
conllevarán 5 tipos de datos: a) de navegación, b) de integridad, c) comerciales, d) 
señales reguladas por el poder público (PRS: Public Regulated Service) y e) del servicio 
de búsqueda y rescate o SAR (Search And Rescue). Esta última banda es una novedad 
del sistema GALILEO y está dedicada a la emisión de datos sobre situaciones de 
emergencias a los operadores de este servicio. Las señales destinadas a los servicios 
comerciales (CS) y PRS son de acceso restringido y estarán encriptadas, mientras que el 
resto serán de acceso libre (OS: Open Service))). El sistema ofrecerá datos de 
navegación OS y SOL en 6 señales, incluyendo 3 “portadoras piloto” sin datos*, sobre 
las bandas E5a/L5 y L1.  
 

SEÑAL BANDA  CHIP RATE ENCRIPT.  USUARIO 
1 E5a1 10Mcps No OS 
2 E5a2 10Mcps Piloto OS 
3 E5b1 10Mcps No OS/CS/SoL 
4 E5b2 10Mcps Piloto OS 
5 E6a 5Mcps Si  PRS 
6 E6b 5Mcps Si  CS 
7 E6c 5Mcps Piloto OS 
8 L1a mMcps Si  PRS 
9 L1b 2Mcps No OS/CS/SoL 

10 L1c 2Mcps No OS/CS/SoL 

Tabla 8.2: Características y usuarios de las bandas de GALILEO. 

8.1.2 El segmento terreno  
El segmento terreno o segmento de control de un sistema GNSS es el conjunto de 
estaciones, instalaciones y equipos destinados a monitorear la salud del segmento 
espacial y asegurar el rastreo, la telemetría, el comando y control de cada satélite. 
También queda bajo su autoridad la determinación del tiempo global del sistema, la 
sincronización de los relojes de los segmentos espacial y terreno, el cálculo de las 
correcciones de tiempo y de efemérides, la determinación de los parámetros de 
propagación y el enlace de datos hacia el segmento espacial.  Un conjunto de estaciones 
de referencia de posiciones conocidas con alta precisión rastrea los satélites visibles y 
reenvía sus señales a un centro de cómputo que calcula las efemérides y el error del 
reloj atómico abordo de cada satélite.  Estos datos son luego transmitidos a las 
estaciones terrenas de enlace las que a su vez los suben a la constelación para luego ser 
incorporados al mensaje de navegación modulado sobre la señal que recibe el usuario.   
 
Posiblemente la principal fuente de errores en la determinación del tiempo de 
propagación proviene de la capa ionosférica de la Tierra que introduce un retraso en la 
velocidad de grupo de la señal (ver más adelante). Como la profundidad e intensidad de 
la ionosfera varían con la hora del día, la latitud y la actividad solar†, una función del 
segmento terreno es actualizar los parámetros de un modelo del contenido electrónico 
                                                
*Las portadoras piloto facilitan el rastreo y la medición de la distancia al satélite emisor por parte del 
receptor. 
†Como veremos en el próximo capitulo sus efectos pueden ser paliados si cada satélite emite en más de 
una frecuencia y el receptor está capacitado para recibirlas.   



Martín España Comisión Nacional de Actividades Espaciales  

 186 

de esta capa. El sistema GPS utiliza el modelo de Klobuchar (ver Parkinson/ Spilker, 
1996, Vol. 1, Ch.12, p.485-514) que corrige hasta un 60% del retraso ionosférico. Los 
parámetros del modelo ionosférico son subidos a la constelación y posteriormente 
difundidos por vía del mensaje de navegación.  
 
La precisión con la cual es posible corregir los errores del segmento espacial (incluido 
el retraso ionosférico) depende de la densidad de estaciones de rastreo, de la cantidad de 
estaciones de referencia que ve cada satélite en un dado instante y de la frecuencia de 
renovación de estos datos por parte del segmento de control. Por este motivo, el nuevo 
programa de modernización del segmento terreno del sistema GPS, acordado en 
septiembre de 2007 elevó a 11 las estaciones de monitoreo MS (Monitor Station), 
agregando a las 5 originales manejadas por la USAF, localizadas en Hawaii, Colorado 
Springs, las islas Ascensión (Atlántico Sur), Diego García (Indico Sur) y Kwajalein 
(Pacífico Norte), las recientes 6 administradas por la agencia NIMA (National Imagery 
and Mapping Agency) y localizadas en: Washington, DC, Inglaterra, Argentina, 
Ecuador, Arabia Saudita y Australia. También prevé a mediano plazo la incorporación 
de 5 nuevas estaciones más. Asimismo, a la estación de control central MCS (Master 
Control Station) en Colorado Springs se agregó la MCS en Gaithersburg, Maryland.  La 
actual red de estaciones MS de GPS asegura la visibilidad desde cada satélite de al 
menos 2 MS el 100% del tiempo (Yinger, et.al., 2003). Las 3 antenas de subida de datos 
(GA: Ground Antenna) ubicadas, respectivamente, en Ascensión, Diego García y 
Kwajalein actualizan los parámetros orbitales de la efemérides de los satélites y sus 
respectivos relojes atómicos (con precisión de nano-segundos) al menos una vez por 
día.  Estos datos son incorporados al mensaje de navegación incluido en la señal 
trasmitida desde cada satélite. Con la sustitución de la actual constelación por las nuevas 
generaciones de satélites Block IIR/IIF, el segmento espacial dispondrá de la 
funcionalidad de auto-navegación relativa, lo que permitirá actualizar con mayor 
frecuencia los parámetros del mensaje prescindiendo del segmento terreno, que, de 
todos modos, seguirá asegurando la supervisión a largo plazo de los parámetros del 
mensaje de navegación.  
 
El segmento terreno de GLONASS ocupa actualmente el interior del territorio de la 
antigua URSS y consiste de 9 estaciones MS, 3 estaciones de enlace (GA), 4 de rastreo, 
telemetría y control y su MCS cercana a Moscú. Un programa de modernización 
(anunciado en 2008) consiste en la instalación de nuevas estaciones MS fuera del 
territorio ruso para mejorar la trazabilidad de la constelación y reducir el período de 
actualización de las correcciones a bordo. Esto es un avance significativo teniendo en 
cuenta que hasta ahora un satélite podía emitir datos erróneos durante 6hs. sin ser 
detectado.  Con esta mejora GLONASS puede proveer una precisión de tiempo y de 
determinación orbital similares a las de GPS.  
 
El segmento terreno del sistema GALILEO está conformado por dos subsistemas: el 
GCS (Ground Control Segment) y el GMS (Ground Mission Segment). El GCS con una 
red global de 5 estaciones TTC (Telemetry Tracking and Control) para el 
mantenimiento, control orbital, supervisión paramétrica y salud de los satélites.  El 
GMS se apoyará en una red global de 30 estaciones GSS (Galileo Sensor Stations) 
equipadas con receptores de referencia dedicadas al monitoreo continuo de las señales 
en el espacio (SIS) emitidas por la constelación. Mediante esta red el GMS realiza la 
determinación orbitográfica y la sincronía de tiempos (ODTS: Orbitography 
Determination and Time Synchronization) incluyendo el cálculo de los desfasajes de los 
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relojes y de la predicción de sus derivas, resultados que serán retransmitidos a la 
constelación a intervalos de 100 minutos. Asimismo el GMS calculará la función de 
integridad de la señal de cada satélite luego traducida en mensajes de alerta difundidos 
por la constelación asegurando que el intervalo entre la detección de una falla y su 
notificación al usuario TTA (Time to Alert) sea inferior a 6 segs. Cinco estaciones 
globales de enlace ULS (Up-Link-Stations) permitirán la comunicación del segmento 
terreno con el segmento espacial.  

8.2 Características de la señal GPS  

Como se dijo más arriba, el sistema GPS utiliza el multiplexado CDMA para emitir las 
señales desde cada satélite. Este sistema consiste en modular, en banda base, una 
secuencia binaria pseudo-aleatoria (PRBS) única para cada satélite (código) con los bits 
de los datos efectivamente trasmitidos por éste. La tasa de bits (bit rate) de la PRBS se 
elije mucho más alta que la tasa de bits de los datos. Como veremos, entre otros estos 
últimos vehiculizan hacia el receptor información crucial relativa, por un lado, sobre a 
la constelación en su conjunto y, más detallada y precisa, sobre el satélite emisor. A la 
señal en banda base resultante se la llama de espectro expandido (spread spectrum en 
inglés) dado que el soporte de su espectro de potencia queda determinado por la señal 
PRBS y se extiende sobre una banda de frecuencias mucho más amplia que la 
correspondiente a la información efectivamente trasmitida. Señales en banda base de 
este tipo pueden ser emitidas sobre más de una portadora.  
 
Dos son los servicios básicos que ofrece el GPS: el SPS (Standard Positioning Service) 
y el PPS (Precise Positioning Service). Ambos utilizan multiplexado de tipo CDMA, el 
primero usa un código (PRBS) llamado “C/A” (Coarse Acquisition) y el segundo un 
código de mayor extensión y ancho de banda y por tanto más preciso llamado “P” que, 
cuando está encriptado (y es sólo accesible a usuarios autorizados), se denota Y. La 
notación usual P(Y) hace referencia al código de precisión sin distinguir si está o no 
encriptado. Ambos códigos modulados por los datos se montan sobre señales portadoras 
usando modulación de tipo BPSK (Binary Phase Shift Keying) consistente en rotar en 
180º la fase de la portadora (coincidente con el pasaje por 0 o  radianes de la misma) 
cada vez que hay un cambio de nivel en la señal en banda base a trasmitir.  Esto permite 
distinguir entre ambos estados.  
 
Las frecuencias de las portadoras usadas por estos servicios son múltiplos enteros 
coherentes de una frecuencia única generada por el reloj atómico estándar a bordo de 
cada satélite de 10,23MHz., de tal modo que: 
 

 1

2

154 10,23MHz 1575,42MHz

120 10, 23MHz 1227,60MHz
L

L

f

f

  

  
   (8.1) 

 
Las tasas de cambio de estado (chip-rate) están sincronizados con el reloj atómico de 
referencia y ésta para el código C/A es de 1,023MHz mientras que para el código P(Y) 
es de 10,23MHz. Cada satélite tiene asignada una secuencia PRBS de bits (+1 ó -1) 
única para ambos códigos de ambos servicios. El código C/A usa secuencias PRBS 
lineales de tipo “Gold” de máxima longitud, de duración temporal total igual a 1ms con 
N=1023 bits y ancho de pulso Tc=1/1,023µseg (1540 ciclos fL1). Estas secuencias C/A 
son caracterizadas por ser mutuamente estadísticamente cuasi-ortogonales bajo la 
operación binaria de correlación cruzada (Gold, 1967).  Esto permite discriminar 
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fácilmente entre dos secuencias PRBS distintas. Por su parte, el PPS codifica la señal 

con secuencias PRBS no-lineales, llamadas P-code, de gran longitud (N1014) y ancho 

de pulso Tp=1/10,23 µseg (120 ciclos fL2). Estas secuencias son reiniciadas al principio 
de cada semana. Desde su inicio en 1994, el código P es usado en su forma encriptada: 
Y-code con el fin de limitar su uso sólo a usuarios autorizados.  
 
La Figura 8.3 esquematiza la jerarquía en los procesos de modulación de las señales 
GPS. El nivel del bit del dato de navegación es sumado modulo-2 al correspondiente 
nivel del bit de la secuencia del código C/A ó P(Y) según el caso. Esta operación 
aprovecha el hecho de que los chip rates de ambos códigos son múltiplos enteros del bit 
rate (tasa de bits por unidad de tiempo) de los datos de 50Hz. De este modo, con una 
longitud Td=20mseg. cada bit de datos recubre un número entero de bits de cualquiera 
de los dos códigos correspondiendo, respectivamente, a 20 secuencias PRBS completas 

del código C/A y a 2x105 bits del código P(Y).  El nivel resultante de la primera 

operación binaria modula en BPSK la componente en cuadratura de la portadora L1, 
mientras que el resultado de la segunda operación modula las componentes en fase, 
tanto de la portadora L1 como de la L2.  Así, la portadora L1 es modulada por ambos 
códigos (en fase y en cuadratura), mientras que la L2 está dedicada exclusivamente al 
código P(Y). La administración del sistema puede decidir no modular con datos al 
código P(Y) montado sobre una u otra portadora.  
 

 
Como ya se indicó, la modulación de la portadora con una PRBS redistribuye la 
potencia de la señal, originalmente contenida en una pequeña banda (50Hz en este 
caso), sobre una banda mucho mayor centrada en la portadora que, como veremos en el 
Párrafo 8.2.1, en el caso del código C/A es de 2Mhz y en el caso de código P(Y) es de 
20MHz (en ambos casos dos veces el ancho de banda del chip rate).  La potencia de 
estas señales en un punto cercano a la superficie terrestre es extremadamente baja.  En 
promedio, para el código C/A es de -160dBW, para el código P(Y) en L1 es -163dBW y 
para el código P(Y) en L2 es -166dBW.   
 
La Figura 8.4 muestra esquemáticamente las formas de onda en banda base y, en su 
parte inferior, la onda resultante de la modulación indicada en la Figura 8.3. Se 

Portadora L1 1575.42 

Portadora L2 1227.6 MHz 

Código C/A 1.023 MHz 

Datos nav. @ 50 Hz 

Código P(Y) 10.23 MHz 

Señal L1 

Señal L2 

Suma 
Módulo-2 

Figura 8.3: Esquema de modulación de las señales en el espacio de GPS.  


 90 
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ejemplifica con varios bits del código C/A de longitud Tc y un bit de datos de longitud 
Td recubriendo un cierto número entero de bits de código. 

 
El modelo usado para describir la señal de espectro expandido en la antena del satélite i 
de la constelación GPS es: 
 

1

2

1 1 1

1 1 1

2 2 2

( ) 2 ( ) ( ) (2 ( ) )

2 ( ) ( ) (2 ( ) )

2 ( ) ( ) (2 ( ) )

i i i i i
c

i i i i
P

i i i i
P

s t W D t CA t sen f f

W D t P t cos f f

W D t P t cos f f

      

      

     

    (8.2) 

 
Donde: cW , 

1PW  y 
2PW  son, respectivamente, las potencias promedio de las señales 

transportadas por el código C/A sobre la frecuencia f1 (L1) y por el código P(Y), 

respectivamente, sobre f1 y f2 (L2); 1
if y 2

if  son los desvíos en frecuencia de las 

respectivas portadoras respecto de sus valores nominales para el satélite i; 1
i  y 2

i  son 

las correspondientes fases módulo 2 (indeterminadas, ambiguas y no coherentes entre 

sí) de dichas portadoras; ( )iD t (=1) es la secuencia de bits de los datos del mensaje 

trasmitido por el satélite i; ( )iCA t  (=1) es la secuencia PRBS de su correspondiente 

código C/A que, además de expandir el espectro, identifica al satélite i; ( )iP t (=1) es la 
secuencia correspondiente al código P(Y).  

8.2.1 Banda base de la señal GPS 
Siendo la señal PRBS del código C/A de cada satélite periódica de período 1ms 
(longitud temporal de la PRBS), su densidad espectral de potencia (PSD) en banda base 
resulta ser una distribución de deltas de Dirac (espectro de líneas) equi-espaciados a 
1KHz. La envolvente de esta distribución tiene la forma (ver Papoulis (1962) y 
Kaplan/Hegarty (2006)):  
 

2 2 2
2

2

sen ( )
( ) sinc ( )

2 ( ) 2

i i
i c c c
s c

c

A T fT A T
E f fT

fT


 


    (8.3) 

 
Sin ser realmente una función, un delta de Dirac tiene integral unitaria. Esto explica que 
la integral de la PSD de una PRBS sobre intervalos de frecuencias grandes comparados 

Td Tc 

Figura 8.4: Modulación BPSK de la portadora GPS L2.  

Portadora L2 

Portadora L2 
modulada 

Código PRBS 

Código 
modulado c/datos 

Bits de datos 
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con 1KHz resulte equivalente a la integral de su envolvente (8.3). Por esto, a la 
expresión anterior se la denomina la envolvente continua equivalente de la PSD de una 
PRBS (Parkinson/Spilker (1996), Vol. I, p. 338). Con esto, la potencia total de la señal 
PRBS puede calcularse a partir de la (8.3) y resulta: 
 

2

lim ( )
2

i
Bi i

s sBB

A
P E f df




     (8.4) 

 
Es posible demostrar sin embargo que el 90% de la potencia total i

sP  se concentra en el 

intervalo de frecuencias [-B,B][Hz] con B=1/Tc1MHz. Teniendo en cuenta que el 

ancho de banda de la señal de datos ( )iD t  que modula al código C/A es, a penas, el 5% 
de B, el valor de referencia para la banda base efectiva de la señal útil emitida por cada 
satélite (PRBS+C/A) resulta en la práctica ~2B=2[MHz]. 

8.2.2 Representación de un ruido en banda base y de un ruido pasabanda 
Introducimos estos conceptos para referencia futura. Por ruido en banda base se 
entiende a un ruido blanco (de banda ancha) gaussiano filtrado por un filtro pasabajos 
cuya PSD se concentra en una banda acotada de frecuencias conteniendo al origen tal 
que: f W  siendo W el ancho de la banda base. Por otro lado, un ruido pasabanda es 

el resultado de filtrar un ruido blanco, gaussiano con un filtro pasabanda, así, por 
definición, un filtro pasabanda es aquel cuya función de transferencia se anula en un 
rango de frecuencias simétrico respecto del origen. Siendo la respuesta impulsiva de un 
filtro pasabanda (BPF) real, el módulo de su función de transferencia es simétrico 
respecto del origen. De este modo, un filtro pasabanda de frecuencia central fc y ancho 
de banda cW f  posee respuesta no nula sólo entre las frecuencias [ , ]c cf W f W   

(rama positiva del filtro) y entre las frecuencias [ , ]c cf W f W     (rama negativa del 

filtro).  
 
Cuando un filtro pasabanda ideal, dado por el par (fc,W), con función de transferencia 

 pbH f  unitaria y tal que  pb 0H f   para cf f W   es excitado por un ruido blanco 

de densidad espectral de potencia (PSD) constante igual a N/2, la respuesta ( )pbn t  del 

filtro es por definición un ruido pasabanda con densidad espectral de potencia 
( ) / 2

pbnS f N  para cf f W   y nula sobre el resto del eje de las frecuencias. La 

potencia promedio de ( )pbn t  es por lo tanto: 2( ) } 2pbnP E n t WN   .  

 
Eligiendo dos ruidos gaussianos independientes nI(t) y nQ(t) descorrelacionados entre sí 
en la banda base W con PSD's planas, ambos tales que ( ) ( )

I Qn nS f S f N   para 

f W  y nula fuera de esta banda, construimos el proceso estocástico: 

 
( ) ( ) cos(2 ) ( )sin(2 )I c Q cn t n t f t n t f t        (8.5) 

 
Dada la descorrelación entre ambos ruidos y el hecho de que sus funciones de 
autocorrelación sean iguales a: 1( ) ( ) ( )}

I IQn n nR R S f     , es fácil mostrar usando la 

definición de función de autocorrelación que (ver Proakis/Saleshi, 2002): 
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2 2

( ) ( ) ( )}
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c c
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R E n t n t

e e
R f R

    

    

 
       

 

   (8.6) 

 
Usando las propiedades de traslación de la transformada de Fourier, el espectro de 
potencia del ruido ( )n t  resulta: 
 

( ) ( )
( ) ( )} ( )

2
I I

pb

c c

n n

n n
n

S f f S f f
S f R S f

  
       (8.7) 

 
con lo cual, en términos de sus estadísticas de segundo orden, el proceso ( )n t  no se 

distingue de un proceso pasabanda ( )pbn t  introducido más arriba. Visto lo anterior, y 

siguiendo a Parkinson/Spilker (1996; Vol. I, pag. 340) o también a Proakis/Saleshi, 
(2002; Sec. 4.6) se adopta a la (8.5) como caracterización de un ruido pasabanda con 
frecuencia central cf .   

 
Introduciendo el fasor complejo en banda base ( ) ( ) ( )bb I Qn t n t jn t  y a partir de la 

caracterización (8.5) el ruido pasabanda se rescribe como: 
 

2 2( ) Re ( ) ( )) } Re ( ) }c cj f t j f t
pb I Q bbn t n t jn t e n t e        (8.8) 

 
El proceso ( )bbn t es llamado la envolvente compleja en banda base del ruido pasabanda 

npb(t).  Nuevamente usando la descorrelación entre los procesos ( )In t  y ( )Qn t  y la 

definición de función de correlación, es fácil mostrar en primer lugar que: 
 

*( ) ( ) ( )} 2 ( )

( ) ( )} 2 ( )
bb bb bb I

bb bb I

R E n t n t R

S f R S f

  


   

   
     (8.9) 

 
y, junto con la (8.7), que la potencia promedio de npb(t) resulta: 
 

2 ( )} (0) (0) (0)
pb pbpb I Qn nP E n t R R R         (8.10) 

8.3 El receptor GPS  

El receptor GPS recibe en forma superpuesta las señales de espectro expandido 
(CDMA), emitidas por los satélites en línea de vista con el receptor, sumadas al ruido 
ambiental y a interferencias de diverso origen, tales como: ruido electrónico, emisiones 
térmicas de origen terrestre, atmosférico y astronómico, señales GPS reflejadas e 
interferencia humana deliberada o accidental. En condiciones de recepción nominal, la 
potencia de señal en el receptor comparada con la del ruido total, resulta, para la señal 
C/A, en una relación señal ruido (SNR) de entre -18dB y -26dB (dependiendo del 
ángulo de elevación de la línea de propagación).  Para la señal P(Y) esta relación se 
deteriora aproximadamente en la misma proporción en que aumenta el ancho de la 
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banda base, es decir en un factor 10 (similar potencia de señal pero distribuida en una 
banda 10 veces mayor). 
 
Como se advierte, el desafío del diseño de un receptor GPS reside en extraer la 
información desde el fondo de un ruido con niveles de potencia hasta 3 ordenes de 
magnitud superior a la potencia de la señal! Lo que hace posible abordar este desafío es 
el hecho de que la señal emitida por un dado satélite es, en un cierto sentido que 
comentaremos, incoherente con todas las perturbaciones, incluidas las señales emitidas 
por los otros satélites de la constelación. 

8.3.1 La señal de RF en la antena del receptor 
La portadora de cada satélite llega al receptor con un desplazamiento en frecuencia 
propio causado por la velocidad radial relativa del satélite respecto del receptor (efecto 
Doppler). Para un vehículo atmosférico este desplazamiento puede alcanzar los ±10Khz. 
En vehículos espaciales (cohetes o satélites) el desplazamiento total en frecuencia puede 
llegar hasta ±20Khz.  
 
Para simplificar la exposición, consideramos sólo la portadora L1 modulada con código 
C/A. Las conclusiones son generalizables a más de una portadora.  Llamaremos fc=f1 a 
la frecuencia nominal de esa portadora. La señal en la antena del receptor, superposición 
de las señales provenientes de la constelación visible más el ruido, resulta:  
 

 1

( ) ( ) ( ); º de satelites visibles.

( ) 2 ( ) ( )cos(2 ( ) ); 1,...,

K
i

i

i i i i i i i i i
a a c d

s t s t w t K n

s t P D t CA t f f f t i K


  

           


 (8.11) 

 

Donde: iP  es la potencia promedio de la señal del satélite i en la antena; w(t) es el ruido 
aditivo de banda ancha, mayormente de origen térmico o de impacto (shot noise), 
supuesto gaussiano, centrado, descorrelacionado, estacionario de 2º orden e 

independiente de las señales satelitales; i
a  es el tiempo de propagación desde el satélite 

i a la antena del receptor, i
df  es el desvío Doppler en la antena, [0,2 )i    es la fase 

módulo 2  (ambigua) de la portadora en la antena del receptor y, por último, 
i i

cf f   . 

8.3.2 Etapa de RF en el receptor 
En esta etapa, la señal en la antena s(t) pasa primeramente por un pre-amplificador de 
bajo ruido, luego por un filtro pasa-banda centrado en la portadora que suprime en parte 
interferencias y ruido fuera de la banda pasante y, a continuación, por una etapa de 
mezclado con la señal del oscilador local cuya frecuencia fol es diseñada para bajar la 
frecuencia de la portadora a la frecuencia intermedia fif. A la salida del mezclado se 
suprime la banda superior con un filtro pasabajos. La señal resultante pasará todavía por 
un filtro pasabanda centrado en fif  con ancho de banda Wif con el fin de atenuar o 
suprimir ruido fuera de la banda útil, armónicos y otros términos indeseados 
provenientes del proceso de mezclado.  
 
A la salida de la etapa de frecuencia intermedia, la señal puede ser descrita mediante la 
siguiente "señal pasabanda": 
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 (8.12) 

 

Donde, Ai es la amplitud resultante de la señal; i
u  es ahora el tiempo de propagación 

total incluyendo la suma de los retardos electrónicos de las distintas etapas en cascada 
del receptor del usuario (amplificación, filtrado, mezclado, etc.); if  es la fase módulo 

2  que agrega el oscilador local; ( )r t  es un ruido pasabanda resultado de filtrar el 
ruido de banda ancha w(t) con el filtro pasabanda de la etapa de frecuencia intermedia. 
Por otra parte, denotando uf  al error en frecuencia del OL, el desvío Doppler 

"efectivo" que percibe el receptor resulta ser: 
 

i i i
D d uf f f f       (8.13) 

 
El soporte sobre el eje de frecuencias del espectro de potencia de la señal pasabanda real 

( )ifs t  (incluyendo al ruido ( )r t ) es caracterizado por el par (fif ,Wif); if iff W . Dicho 

soporte, que resulta simétrico respecto del origen (sin contener a éste), posee una banda 
en las frecuencias positivas (rama positiva) de ancho Wif centrada en la frecuencia iff  y 

otra simétrica (rama negativa) centrada en la frecuencia iff *.  

8.3.3 Demodulación y muestreo en cuadratura 

 
El muestreo en cuadratura consiste en digitalizar la envolvente compleja de la señal en 
frecuencia intermedia (8.12) (incluido el ruido) después de trasladar su espectro a la 
banda base (e.d.: centrado en el origen de frecuencias) reteniendo la señal útil (e.d: 

PRBS más código C/A más Doppler efectivo i
Df ). Por razones de brevedad y 

simplicidad, sólo expondremos la técnica más clásica del muestreo en cuadratura basada 

                                                
*En rigor el centro de ambas bandas estaría en ( )i

if Df f  , pero en la práctica i
if Df f . 

Figura 8.5: Demodulador complejo seguido del conversor A/D. 

LPF 

2 cos(2 )if df t 

( )ifs t
LPF 

2sen(2 )if df t 

( )I t

( )Q t
A/D ( )sQ kT

( )sI kT

ka  

A/D 



Martín España Comisión Nacional de Actividades Espaciales  

 194 

en una etapa de demodulación analógica compleja seguida de otra de muestreo (ver Fig. 
8.5)*.  
 
La primera parte de la demodulación compleja consiste en mezclar la señal ( )ifs t  

(Ec.(8.12)) con las partes real e imaginaria de la señal compleja 2 exp( 2 )ifj f t  generada 

en el receptor. A continuación del mezclado, los filtros pasabajos (LPF) cumplen varias 
funciones claves: en primer lugar, suprimen las bandas superiores centradas en 
armónicos superiores de iff  resultantes del mezclado, en segundo lugar, limitan la señal 

al ancho de banda útil f B  y en tercer lugar filtran el ruido fuera de la banda útil 

impidiendo que éste se “pliegue” sobre dicha banda (efecto aliasing) distorsionando la 
señal discreta resultante del muestreado posterior. Supondremos que la densidad 
espectral de potencia del ruido pasabanda en la banda efectiva cf f B   es N0/2. 

 
Expresando en la (8.12) el coseno como suma de exponenciales complejas y usando la 
representación (8.8) para el ruido pasabanda efectivo, las señales a la salida de ambos 
LPF resultan ser las componentes real e imaginaria de la envolvente compleja de la 
señal útil en la banda base: 
 

1

1

1

( ) ( ) ( ) ( ) ( )exp( (2 )) ( )

( ) ( - ) ( - )cos(2 ) ( );

( ) ( - ) ( - )sen(2 ) ( )

K
i i i i i i i

u u D u bb
i

K
i i i i i i i

u u D u I
i

K
i i i i i i i

u u D u Q
i

a t I t jQ t A D t CA t j f t n t

I t A D t CA t f t n t

Q t A D t CA t f t n t







       

    

    











  (8.14) 

 
Donde, se usó la definición:  
 

i i
u if      (8.15) 

 
Las magnitudes i

u , i
Df  y i

u  varían lentamente con el tiempo y son desconocidas a 

priori. La señal compleja a(t) a la salida del demodulador es muestreada con periodo Ts 
adaptado al ancho de banda de los LPF (<1/2B según Shannon-Whittaker, ver Capítulo 
2) de lo cual resulta la secuencia compleja: 
 

1

( ) ( ) ( ) ( )exp( (2 ))
K

i i i i i i i
k s s s u s u D s u bbk

i

a I kT jQ kT A D kT CA kT j f kT n


         (8.16) 

 
donde bbk Ik Qkn n jn   es la secuencia compleja resultante de muestrear el ruido aditivo 

complejo continuo en banda base ( f B ) ( )bbn t  limitado en frecuencia por el LPF con 

Ikn  y Qkn  secuencias reales, gaussianas, centradas y conjuntamente descorrelacionadas. 

De acuerdo con lo visto sobre el ruido blanco muestreado en el Párrafo 2.5.1 del 

                                                
* Ver Parkinson/Spilker, 1996; Vol. 1 Chap. 8, para la descripción de un procedimiento basado en la 
discretización directa de la señal sif(t), conocido como pass-band IF-sampling, ampliamente usado en los 
receptores modernos definidos por software. 
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Capítulo 2 y la representación (8.8), se tiene 2 2
0} } /Ik Qk sE n E n N T    , de lo cual resulta 

que la función de auto-correlación del proceso complejo discreto bbkn  es*: 

 
*

0} 2 / ; con 1 si y 0 sibbk bbl kl s kl klE n n N T k l k l          (8.17) 

 

8.3.4 Adquisición de los satélites en vista  
Resta aún extraer, de la señal discreta ak de la (8.16), la información crucial requerida 

por el receptor para resolver la navegación, a saber: a) el código ( )iCA t  que determina 

el único satélite que lo usa, b) i
u : el tiempo de tránsito entre el satélite i y el receptor 

(medida de la distancia radial), c) i
Df : el desplazamiento Doppler (medida de su 

velocidad radial), d) Di(t): la cadena de bits de datos que contiene el mensaje emitido 
por el satélite i, finalmente, e) la fase i

u  que, cuando está disponible, permite, como 

veremos más adelante, el posicionamiento de alta precisión mediante métodos 
interferometricos.  
 
Se entiende por adquisición de un satélite con señal presente en la antena del receptor, a 

la determinación de i
u  y i

Df  junto con la detección del código ( )iCA t  específico del 

satélite que emite la señal. A continuación resumimos este procedimiento cuyos detalles 
así como los principios más generales del diseño de los receptores GPS modernos 
pueden consultase en Kaplan/Hegarty, 2006, Misra/Enge, 2006 ó Parkinson/Spilker, 
1996. 
 
La secuencia discreta ka  es correlacionada numéricamente con la siguiente señal 

discreta generada en el receptor en sincronía con el muestreo (8.16) en función del 
código CAi del satélite buscado: 
 

ˆ ˆ ˆ ˆˆ ˆ( , , ) ( ) exp( (2 ))

ˆ ˆˆ( , ) exp( )

i i i i i i i i
k n Dn n s n Dn s n

i i i i
k n Dn n

x f CA kT j f kT

X f j

    

 

  


  (8.18) 

 

Los valores ˆ ˆˆ , ,i i i
n Dn nf   se mantienen constantes durante períodos de longitud fija 

Tin=NTs, llamados de integración coherente e indexados con el índice n, en los cuales, el 
bit de datos de ( )iD t  es supuesto constante (0 ó 1). Para reducir la probabilidad de que 
el bit de datos (de 20ms de duración) cambie de signo en Tin, este periodo se elige igual 
a sólo unos pocos ms. 
 
Para cada satélite visible (o potencialmente visible) y cada período Tin se forman las 
siguientes sumas de productos entre las señales complejas (8.16) y (8.18) indexadas con 
n: 
 

*

( 1)

ˆ ˆ ˆ ˆˆ ˆ( , , ) ( , , ) ; 1,...,
nN

i i i i i i i i
n n Dn n k k n Dn n

k n N

r f a x f i K
 

         (8.19) 

                                                
* Se usa la notación: v*=conj(v); vℂ. 
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La secuencia i

nr  constituye la medición fundamental que produce un receptor GPS 

respecto del satélite i. Con base en estas medidas se generan los “observables" defindos 
mas adelante y que son requeridos por la función de navegación que ejecuta el software 
del propio receptor.  
 
Gracias a la ortogonalidad (descorrelación) entre secuencias PRBS Gold de máxima 
longitud diferentes, este procedimiento numérico (conocido como “matching filtering”, 
Parkinson/Spilker, 1996) "selecciona" la señal proveniente del satélite i (en caso de 
estar presente en la antena) por ser la única para la cual la correlación i

nr  será 

apreciable, en tanto que la correlación con las otras señales aparecerá casi como ruido 

puro. De este modo, para ˆi i i
n D Dnf f f   y ˆi i i

n u n   , al final del n-ésimo período, el 

valor acumulado en el i-ésimo correlador (8.19), i=1,...,K, se expresa según: 
 

( 1)

*

( 1)

ˆ ˆˆ ˆ( , , ) ( ) ( )exp( (2 ( ) ))

ˆ ˆˆ( , , )

nN
i i i i i i i i i i i i

n n Dn n n s u s n n s n n
k n N

nN
i i i i

n bbk k n Dn n
k n N

r f A D CA kT CA kT j f kT

n x f

 

 

        

   




 (8.20) 

 
Dado que la secuencia ka  es gaussiana, que el ruido complejo discreto bbkn  es 

descorrelacionado y que las i
kx ; i=1,...,K, son deterministas, la secuencia compleja n  

también es gaussiana, descorrelacionada y centrada con variancia dada por:  
 

*22 * *

2* *
0 0,

} }

} / /

i i
n bbk k bbl lk l

i i i
bbk bbl l k s k sk l k

E E n x n x

E n n x x N T x NN T

            

   

 
 

   (8.21) 

 
La última igualdad surge de usar la expresión para la función de auto-correlación de 

bbkn  (8.17) y del hecho que, por (8.18), 1i
kx  ; i=1,...,K.  

 
Introducimos los desvíos, ˆi i i

n u n    también supuestos constantes en cada intervalo 

Tin. Para valores de i
nf  y i

n  alejados de cero, el término determinista de las 

correlaciones complejas indexadas por n en la (8.20) resultará muy pequeño comparado 

con el desvío estándar 0 / sNN T  en la (8.21) por lo cual quedará subsumido en la 

secuencia aleatoria n . En cambio, para 0i
n   y 1i

n sf T  , la expresión (8.20) admite 

la siguiente aproximación que resulta ser independiente de los valores absolutos 
ˆˆ  y  i i

n Dnf  (ver: Kaplan/Hegarty (2006), Misra/Enge (2006), Parkinson/Spilker (1996)): 

 
ˆ ˆˆ( , , ) ( )sinc( )exp( )i i i i i i i i

n n Dn n n n n in n nr f A ND R f T j          (8.22) 

 

Donde se denota: i i
n n n inf T   , sinc(x)sin(x)/x, en tanto que ( )i

nR   

representa la función de auto-correlación de la secuencia PRBS de tipo Gold. Esta 
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última posee una cúspide aguda para 0, ( ) 1i i
n nR     y resulta prácticamente nula 

para 0i
n  .  El módulo de la expresión (8.22) es conocido como la envolvente de la 

correlación y tiene su máximo cuando, simultáneamente, , 0i i
n nf   .   

 
Durante la adquisición de un satélite, el receptor evalúa en cada intervalo Tin el módulo  

ˆˆ( , )i i i
n n Dnr f  sobre una grilla del intervalo rectangular:  ˆ [0,1023]i

n seg     

 ,
ˆ [ 10,10]i

D nf KHz  . Notar que el módulo no depende del desvío de fase i
n , por los 

que la adquisición del satélite no requiere conocer este parámetro. Los puntos de la 

grilla del primer intervalo lineal (para ˆ i
n ) están separados en /2cT [seg] en tanto que los 

del segundo (para ˆ i
Dnf ), lo están en 1/(2T )in Hz . Esto conforma un total de 2046 puntos 

de tiempo por 40.000Tin[mseg] puntos de frecuencia lo que hace un total de ~8x108 

puntos de test. Los índices i que acusen un pico aislado de ˆˆ( , )i i i
n n Dnr f  superando un 

cierto umbral de detección revelarán la existencia del satélite i en el campo de visón 
directa, en tanto que su ubicación en el plano de búsqueda se corresponderá con los 

estimados ˆ ˆyi i
Dn nf   del satélite detectado (ver Fig. 8.6).  

 
A mayor N menor es la variancia del ruido residual de ˆˆ( , )i i i

n n Dnr f  fuera del máximo y 

por lo tanto más pequeño el umbral de detección requerido, en consecuencia, menor 
será la probabilidad de una falsa detección.  Sin embargo, esta ventaja es contrapesada 
por el hecho de que grandes valores de N implican una alta probabilidad de invalidar la 
hipótesis de que i

nD  permanezca constante en un dado intervalo. Encontrar uno o más 

satélites visibles puede durar varios minutos cuando el receptor desconoce su tiempo y 
posición, a esta circunstancia se la denomina “arranque en frío”.  

8.3.5 Rastreo de la señal y demodulación del tren de bits de datos 
Una vez adquirido un satélite se inicia el proceso de sintonía de los parámetros y de 
seguimiento del código y de la portadora. Este proceso consiste en la determinación fina 

(con la mayor precisión posible) y rastreo en el tiempo del par ( ˆ i i
n u   , ˆ i i

Dn Df f ) 

para cada satélite adquirido. Esto se realiza vía sendos lazos de sincronía denominados 
Delay Lock Loop (DLL) y Phase Lock Loop (PLL). El primero sincroniza el código del 
satélite con el generado por el receptor y el segundo, permite, simultáneamente, el 

seguimiento de la fase ˆ i i
n u   y de la frecuencia de la portadora (desvío Doppler 

1

1
( )

N

kN 


 

ak 

ˆ ˆˆ( , , )i i i
k n Dn nx f   

ˆ ˆˆ( , , )i i i i
n n Dn nr f   

i
nr  ˆˆ( , )i i i

n n Dnr f

 

Figura 8.6: Esquema de lazo de búsqueda para la adquisición del satélite i.6 

ˆˆ ,i i
n Dnf  

i
 

i
Df  
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efectivo). El momento de inicio del seguimiento de la fase es denominado “enganche” o 
instante de phase lock.  
 
Asegurados la sintonía y el rastreo en el tiempo de los valores instantáneos de los 

parámetros ( ,i i
u Df ), recién entonces es posible demodular el tren de pulsos de datos 

que permitirán leer el mensaje que envía cada satélite, pero, para esto, el rastreo de la 
señal debe estar asegurado durante toda la duración del mismo. Para valores pequeños 

de los desvíos 0, 0i i
n nf     la correlación (8.22) medida por el receptor resulta 

aproximable mediante la siguiente función compleja en la que interviene el bit de datos 

y el error en la estimación de la fase ˆi i i
n u n    de acuerdo con: 

 
exp( )i i i i i i

n n n n Rn Inr A ND j R jR          (8.23) 

 
La expresión (8.23) constituye la base de los lazos digitales de seguimiento de la fase 
(Phase Lock Loop PLL) cuyo principio de funcionamiento se esquematiza en la Fig. 8.7. 
La medida del desvío i

n  es calculada con la ayuda de un discriminador en función de 

las partes real e imaginaria de la variable i
nr , con esta medida se actualiza la estimación 

del ángulo ˆ i
n  en el próximo intervalo con el cual usada para rotar al vector complejo 

ˆˆ( , )i i i
k n nX f  en un lazo que tiende a reducir i

n . Como veremos, el seguimiento preciso 

de la fase i
u  es una función de gran importancia en la navegación de alta precisión, 

pero además, para valores pequeños de i
n , el signo de la parte real de i

nr  coincide con 

el “valor” del bit de datos i
nD , lo que permite decodificar el mensaje. 

 

 
Finalmente, la Fig. 8.8 resume los procesos al interior del receptor GPS. En ella se 
muestra en forma esquemática el tratamiento en paralelo de cada canal de datos 
caracterizado por el código CDMA específico a cada satélite visible. 
 
Las tecnologías introducidas en este párrafo son temas cruciales de la teoría y del diseño 
de los receptores GPS.  Sin embargo, un tratamiento detallado de las mismas excede los 
objetivos del presente volumen, por esto recomendamos fuertemente al lector interesado 
consultar algunas de las excelentes obras que tratan el tema in-extenso tales como: 

ka  

ˆ ˆˆ( , , )i i i i
k n n nx f   

Figura 8.7: Lazo de Costas para el seguimiento de fase y 
demodulación de los bits de datos.  
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Kaplan/Hegarty (2006), Cap. 5; Misra/Enge (2011), Caps. 9 a 11 y Parkinson/Spilker 
(1996), Cap. 8.   
 

8.4 Contenido del mensaje GPS  

Como ya se ha dicho, cada satélite del segmento espacial GPS trasmite datos que le son 
propios y datos globales de la constelación.  El primer conjunto de datos contiene: a) los 
parámetros orbitales del satélite y sus derivadas temporales para permitir localizarlo en 
el instante de transmisión y b) una estimación del desvío del reloj abordo respecto del 
tiempo global GPS así como de su derivada temporal. Estos datos, requeridos para el 
cálculo de la posición y de la velocidad, denominados de navegación son actualizados 
cada 30seg, siendo ésta la tasa más alta de renovación de información en el mensaje. El 
segundo grupo de datos contiene información relativa al estado de la constelación en su 
conjunto y a las condiciones de propagación de las señales. Incluye los parámetros del 
modelo ionosférico*, la salud y estado de cada satélite, el número de la semana y el 
“almanaque”.  Este último es un conjunto de datos de efemérides de baja precisión de 
toda la constelación actualizados una vez por semana. El almanaque permite al receptor 
saber que satélites están visibles o cuando aparecerán sobre el horizonte con sólo 
adquirir la señal de uno cualquiera de ellos.  

8.4.1 Estructura de la trama del mensaje GPS  
La Fig. 8.8 describe la trama del mensaje transportado por la señal GPS. La misma esta 
organizada en grupos (frames) de 5 palabras (subframes) de 300 bits de longitud cada 
una.  A 50bps la duración de cada palabra es de 6seg y la de un frame de 30seg. El 
mensaje completo toma 25 frames lo que totaliza una duración de 12,5min. Los 
primeros 3 subframes de cada frame contienen información específica del satélite 
(corrección de tiempo y de efemérides, ver Fig. 8.9) accesible al receptor cada 30seg. 
Los subframes 4 y 5 de cada frame contienen información que es común a todos los 
satélites y constituyen las páginas del mensaje que se completará en 25 frames. Estas 
páginas albergan los parámetros del modelo ionosférico, el almanaque y el estado de 
salud de la constelación. Los primeros dos módulos de cada palabra tienen un 
significado especial. El módulo TLM (telemetry word) contiene un patrón fijo de 8 bits 
de sincronía que indica el inicio de cada palabra. Cada módulo HOW (hand-over word) 
contiene el tiempo de inicio de la palabra siguiente en módulos de 6 seg según el reloj 

                                                
*Modelo de Klobuchard (Parkinson/Spilker, 1996). 
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Figura 8.8: Esquema simplificado de un receptor GPS.  
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del satélite. Esta información es crucial para la navegación, ya que constituye la base de 
tiempo que usa el receptor para calcular el instante de emisión de la señal. 
 

 
 

Tiempo en 
minutos 

Tiempo 
en 

segundo

Correcciones del reloj + salud y precisión 

Correcciones del reloj + salud y precisión 

Parámetros orbitales /efemérides 

Parámetros orbitales/ efemérides 

Parámetros orbitales/ efemérides 

Almanaque, modelo ionosférico 

Almanaque 

Figura 8.9: Estructura del mensaje GPS. 
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Capítulo 9  
El Receptor GPS  

Como Sensor Exoceptivo 

 
Si bien un receptor de la constelación GPS (o en general GNSS) esta diseñado para 
determinar y proveer al usuario su posicionamiento y velocidad en terna ECEF, es 
conveniente estudiar cuidadosamente las variables primarias que efectivamente mide y 
sobre las cuales basa sus cálculos.  La descripción precisa de estas medidas, designadas 
también como "datos crudos" u "observables", tiene un gran interés práctico dado que 
permiten: a) cuantificar las imprecisiones en el cálculo de las variables de navegación 
que entrega el dispositivo al usuario; b) discernir entre las condiciones de uso bajo las 
cuales estas medidas son mas sensibles a las fuentes de error; c) arbitrar procedimientos 
que hagan más eficiente el uso de las mismas y d) usarlas directamente en esquemas de 
navegación integrada fusionándolas con datos inerciales o procedentes de otros sensores 
exoceptivos. La última opción, considerada en el Capítulo 10, convierte al receptor 
GNSS en un instrumento exoceptivo más a bordo de un vehículo y presenta particular 
interés en el contexto de las tecnologías expuestas en este volumen.   
 
Se modelan matemáticamente los observables disponibles en un receptor así como los 
errores que afectan distintamente a cada uno ellos y se evalúa la importancia relativa de 
estos errores dependiendo del uso que se haga de las medidas. Se discuten las 
diferencias significativas en lo que respecta a precisión y exactitud entre el observable 
pseudo-rango, obtenido a partir del lazo seguimiento del código PRBS de cada satélite, 
y los observables Doppler y de fase, medidos con la ayuda del lazo de seguimiento de la 
portadora. A pesar de la precisión con que es posible medir la fase, es inherente este 
observable un sesgo invariante pero de magnitud arbitrariamente grande llamado 
ambigüedad de fase.  
 
Basadas en medidas adquiridas por más de un receptor, las técnicas llamadas 
diferenciales permiten compensar y aun suprimir ciertos errores correlacionados 
espacialmente. Con ellas se consiguen aumentos importantes en la precisión del 
posicionamiento tanto relativo como absoluto. Las mismas técnicas son usadas para 
formular nuevos observables diferenciales de fase con residuos centimétricos (y aún 
milimétricos) lo cual habilita la utilización de avanzados métodos numéricos para la 
determinación época por época de la ambigüedad de fase. Eso abre un enorme campo de 
aplicaciones de los receptores GPS a la navegación de muy alta precisión. 
 
Ciertos receptores son capaces de procesar más de una portadora lo que aumenta la 
cantidad de observables y por tanto de información disponible en cada instante. La 
consecuencia es también una mayor precisión en las variables de navegación estimadas 
que de ellos se deriven. La existencia actualmente de más de una constelación GNSS 
operativa y los planes de habilitar nuevas en un futuro próximo, ha estimulado a muchos 
fabricantes a ofrecer al mercado receptores multi-constelación y multi-frecuencia. La 
difusión y popularización de estos dispositivos conllevará en muy corto plazo la 
disponibilidad de precisiones, confiabilidad, redundancia e integridad insospechadas 
hace tan sólo unos pocos años atrás. Algunas industrias como la de los vehículos 
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autónomos, la navegación aerocomercial, la industria espacial y los servicios personales 
serán fuertemente impactadas por esta evolución tecnológica. 

9.1 Observables de un receptor GPS  

Por cada satélite visible de la constelación GPS, un receptor puede realizar hasta tres 
mediciones directas llamadas observables. Ellas son: el pseudo-rango, basado en el 
código PRBS específico para cada satélite, la fase Doppler (o de batido) de la portadora 
y el desvío Doppler efectivo en frecuencia entre las portadoras de la señal en el espacio 
y la generada localmente. Como se recordará, este desvío es consecuencia, a la vez, de 
la velocidad radial relativa entre el receptor y el satélite y de las diferencias entre las 
derivas de los respectivos relojes.   
 

 
La formulación del modelo matemático de los tres observables requiere tener en cuenta 
la existencia de (al menos) 3 escalas de tiempo presentes en el problema, cada una de 
ellas asociadas a un reloj independiente (ver Fig, 9.1). Llamaremos: tg al tiempo global 
de la constelación que, por ser el más preciso, lo equiparamos al tiempo absoluto t 

(tg); ts(t) denota el tiempo que indica el reloj del satélite en el instante absoluto t, en 

tanto que, tu(t) es el tiempo indicado por el reloj del receptor (usuario) en el mismo 
tiempo absoluto (ver Fig. 9.1 a). Los desvíos instantáneos respecto del tiempo absoluto 
de los tiempos indicados por los relojes, respectivamente del satélite y del usuario se 
definen como:  
 

( ) ( )
( ) ( )

s
s

u u

t t t t t
t t t t t
 
 


    (9.1) 

 
La fase de la señal que abandona la antena del satélite en el instante de transmisión 
absoluto tt llega a la antena del receptor en el instante absoluto de recepción tr. Sin 
embargo, el tiempo que el reloj del satélite estampó en el mensaje al momento de la 

transmisión es ( )t t s
st t t t   , en tanto que, según el reloj del usuario, el instante de 

recepción es: ( )r r
u ut t t t    (ver Fig. 9.1 b)).  De este modo, en el mejor de los casos, 

tg(t) 

tu(t) 

ts(t) 

ts
 

0 
t=tg 

tu 

ts 

Figura 9.1: Escalas de tiempo del sistema GPS. 

a) 

tt tr tu 
ts
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ts(t
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tu(t
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t=tg 

tu 

ts 

tu 
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en lugar del tiempo “real” de propagación de la señal s r t
u t t   , sólo será posible 

medir mediante los relojes involucrados el pseudo-tiempo de propagación dado por: 
 

ˆ ( ) ( ) ( ) ( )s r t s r s t
u u s u ut t t t t t t t           (9.2) 

 

Efectos atmosféricos 
En los más de 20.000Km de su trayectoria a la Tierra la señal GPS atraviesa medios 
atmosféricos con diversos índices de refracción que afectan su fase y velocidad de 
propagación instantáneas. En algún punto entre los 1000 y 600Km de altura entra en la 
ionosfera y mucho más cerca, en los últimos 50Km, inicia su tránsito por la troposfera. 
Estas dos capas de la atmósfera son las que más afectan la propagación e inciden de 
modo tal en el tiempo total de propagación que resulta imprescindible tenerlas en cuenta 
en un modelo de las mediciones GPS. Los efectos de ambas capas son diferentes tanto 
cuantitativa como cualitativamente y por ende convendrá distinguirlos.  
 
La ionosfera, considerada como un plasma iónico anisotrópico e inhomogéneo con 
densidad electrónica función del tiempo y del espacio, induce un efecto dispersivo sobre 
la radiación en banda L, es decir, una variación del índice de refracción con la longitud 
de onda. Así, al atravesar tal medio, las componentes frecuenciales de la señal dentro el 
ancho de banda base transportado por la portadora modulada se ven afectadas 
diferencialmente en sus velocidades y fases. El resultado es que la portadora viaja a la 
llamada velocidad de fase vf, distinta a la de la envolvente de modulación, llamada 
velocidad de grupo vg, con la cual se propaga la información montada sobre la 
portadora. Información ésta que, en el caso de la señal GPS corresponde en banda base 
a la del código PRBS de cada satélite. La relación teórica entre estas velocidades queda 
expresada mediante la siguiente fórmula que relaciona los correspondientes índices de 
refracción: nf=c/vf  y ng=c/vg.

* 
 

f
g f

dn
n n f

df
      (9.3) 

 
Para un plasma ideal, nf  y ng admiten los siguientes modelos aproximados: 
 

2 2

40.3 40.3
1 1e e

f gn n
f f

 
         (9.4) 

 
Donde, e  representa la densidad electrónica local del plasma y la segunda de las (9.4) 

se obtiene de la primera utilizando la (9.3). Claramente, de las (9.4) resulta un índice de 
refracción de fase menor que la unidad lo que implica una velocidad de fase superior a 
la velocidad de la luz en el vacío. Por otra parte, la velocidad de grupo resulta inferior a 
c, por lo cual, la recepción del código montado sobre la portadora se verá retrasada con 
respecto de una onda que viaje en el vacío en un lapso de tiempo dado por: 
 

                                                
* Consultar Misra/Enge, 2006, subcap. 4.3 para una clara descripción de este efecto. 
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2

2 2

1 1 1 40.3
( ) ( ) (1 )

40.3

usuario usuario usuario
s
u g e

gsatelite satelite satelite

s
s u
u

I f dl n dl dl
v c c cf

K
TEC

cf cf

    

 

  
   (9.5) 

 
Donde s

uTEC  (total electron count) es el n° total de electrones dentro de un “tubo” de 

1m2 de sección transversal que contiene la trayectoria de la onda en la ionosfera y 
40.3s s

u uK TEC . El retraso s
uI  se corresponde con un aumento aparente de la distancia 

satélite-usuario que, en la dirección zenital, es del orden de los 2m a 10m. Un 
razonamiento análogo, usando ahora la 1ª de las (9.4), demuestra que la fase de la 
portadora se adelanta respecto de la fase de la misma señal en el vacío, resultando una 
reducción aparente del tiempo de viaje de la portadora en el mismo lapso s

uI .  Como 

veremos, este fenómeno se traduce en una diferencia significativa entre los modelos de 
las mediciones del pseudo-rango y de la fase. Como ya se dijo, el sistema GPS trasmite 
en el mensaje los parámetros del modelo de Klobuchard de la ionosfera usado para 
corregir el error ionosférico en el receptor. Cabe destacar sin embargo que dicho modelo 
es muy aproximado, por lo cual, luego de su aplicación subsisten errores que pueden 
llegar hasta el 40% del retraso ionosférico. El sistema GALILEO prevé usar un modelo 
mucho más preciso.  
 
En sus últimos, aproximadamente, 50 Km, la señal atraviesa la troposfera, un medio 
esencialmente neutro cuyo índice de refracción en banda L es prácticamente invariante 
con la frecuencia, moderadamente estable con el tiempo y ligeramente superior a la 
unidad*. Esto se traduce en una reducción uniforme de la velocidad de propagación de 

las componentes frecuenciales de la banda pasante. El retardo troposférico s
uT  

correspondiente se corresponde con un alargamiento aparente s
ucT  en la distancia 

satélite-usuario que oscila entre los 2,5m y 25m dependiendo de las condiciones 
atmosféricas y de la elevación del satélite sobre el horizonte.  
 
Existe una variedad de modelos del retraso troposférico de la señal GPS que difieren en 
sus hipótesis y suposiciones básicas acerca de los perfiles estándar en altura de la 
temperatura y de la humedad a la latitud del lugar. Sin embargo, el sistema GPS no 
provee ninguna información sobre los parámetros de estos modelos por lo que, si fuera 
requerido, el usuario debe implementar su propio modelo con base en datos de la 
atmósfera local. Al igual que con el retraso/adelanto ionosférico, la oblicuidad de la 
línea de vista al satélite determina la longitud del camino dentro del medio y, por tanto, 
deberá ser tenida en cuenta en los modelos respectivos.  

9.1.1 Observable de código o pseudo-rango  
Utilizando, por un lado, el valor del instante de transmisión medido por el reloj del 
satélite “estampado” en la trama del mensaje emitido y, por el otro, el tiempo de 
recepción de la misma trama determinado por el reloj del receptor, este último 
determina su pseudo-rango s

u  respecto del satélite multiplicándolo por la velocidad de 

la luz en el vacío c a la medida del pseudo-tiempo ˆ s
u  indicado en la (9.2). 

                                                
* Al nivel del mar el índice es n1.0003 y mucho más cercano a la unidad por encima de los 10Km. 
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( ( ) ( )) " "s r t

u u sc t t t t error de medición       (9.6) 

 
La medida s

u  la provee el lazo Delay Lock Loop (DLL), introducido en el Capítulo 

anterior, encargado de sincronizar el código del satélite con el generado por el receptor. 
Por esta razón este observable es también denominado observable de código.  
 
El error de medición del pseudo-rango en la (9.6) es consecuencia de errores en la 

medida del pseudo-tiempo ˆ s
u  atribuibles esencialmente a dos causas de características 

aleatorias a saber: a) la relación señal/ruido en el receptor y b) las reflexiones de la señal 
en zonas aledañas a la antena superpuestas a la señal directa llamado efecto multi-pasos. 
Aunque con resultados cuantitativamente distintos los mismos efectos están presentes 
en el observable de la fase que trataremos en un próximo párrafo.  
 
El ruido superpuesto a la señal induce errores de sincronía entre los flancos de los bits 
correspondientes, por un lado, al código PRBS de la señal en el espacio y por otro al del 
mismo código generado localmente en el receptor. Esto introduce un error, considerado 

aditivo y aleatorio, en la medida del pseudo-tiempo ˆ s
u  que se acentúa para un baja 

relación señal/ruido. Como es sabido, sobre esta relación influye, entre otros, la altura 
del satélite sobre el horizonte. También incide en este error la duración del bit del 
código, por lo cual, la magnitud del mismo se verá reducida al aumentar el "chip rate" 
de la señal, lo que hace a la modulación con código P(Y) más inmune a este ruido que 
aquella modulada con el código C/A. Para los estándares actuales, el efecto de este error 
sobre el observable de código C/A resulta dado por: (0.5 ,1 )s m m    .  

 
Las reflexiones de la señal en zonas aledañas a la antena, que inciden sobre ésta luego 
de recorrer caminos más largos que la señal en línea de vista directa, interfieren la señal 
en línea directa alargando en forma aleatoria el tiempo efectivo promedio del recorrido 
de la señal.  Este efecto llamado “multi-pasos” depende de la topografía local, de las 
constantes dieléctricas de los objetos circundantes, del diseño de la antena y de la 
dirección de propagación. Su magnitud guarda relación con la distancia de propagación 
durante la duración de un bit de código. El desvío en metros resultante por este efecto se 
denota s

ucM . En función de ambos errores, junto con la (9.2), la (9.6) se rescribe como: 

 
( ( ) ( ))s s r s t s s

u u u uc c t t t t cM             (9.7) 

 
El tiempo s

u  se corresponde con la distancia geométrica en línea recta 

( , )s s s
u u uR  P P P P  entre el satélite ubicado en sP y el usuario en uP * mediante: 

 
/ ;s s s s

u u u uR c I T H         (9.8) 

 
En la cual se destacan las componentes ionosférica y troposférica del retraso 
atmosférico así como el retraso electrónico H. Si bien es dado considerar retrasos 

                                                
*Si no se indica otra cosa, las posiciones y velocidades en este capítulo están expresadas en terna ECEF, 
estándar en los GNSS. 
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electrónicos específicos para el hardware del satélite y el del receptor, dado que ambos 
son estructuralmente constantes cada uno puede considerarse incluido en el desfasaje de 
tiempo del reloj respectivo: ut  y st . Con las definiciones anteriores, el modelo del 

pseudo-rango se rescribe como: 
 

( , ) ( ) ( ( ) ( ))s s s s s r s t s s
u u u u u u uR c I T c t t t t cM          P P   (9.9) 

 

Sin embargo, de cada satélite, el receptor sólo conoce la posición ˆ ˆ ˆ ˆ T
s s s s sX Y Z   P P  

cuyas coordenadas (en terna ECEF) son determinadas propagando los datos de la última 
efeméride disponible del satélite hasta el instante de transmisión de la señal. La 

diferencia entre ˆ sP  y la posición real sP  induce un error Es en el pseudo-rango llamado 
error de efemérides y definido mediante: 
 

ˆ ˆ( , ) ( ) ( )s s s s s T s s
u u u u uR E E     P P P P r P P


    (9.10) 

 

Donde se introdujo el versor de línea de vista al satélite: ˆ ˆ( ) /s s s
u u u  r P P P P


. 

Teniendo en cuenta esto último, el modelo completo de la medición del pseudo-rango 
resulta finalmente: 
 

ˆ ( ) ( ( ) ( ))s s s s s r t s s
u u u u u s uE c I T c t t t t cM             P P   (9.11) 

 

Cuando convenga y por brevedad, en lo que sigue denotaremos ˆ ˆs s
u uR P P . Por cada 

satélite visible, la (9.11) es una medida de la distancia radial del vehículo a la posición 
estimada del satélite. Como veremos más adelante, esto permite determinar la posición 
del vehículo en terna ECEF usando medidas de pseudo-rangos respecto de cuatro o más 
satélites de la constelación visible por el receptor. 

9.1.2 Observable de fase 
Para la formulación del modelo del observable de fase debe tenerse en cuenta que tanto 
en el satélite como en el receptor, la potadora de frecuencia nominal fo es generada por 
un oscilador que al mismo tiempo funciona como reloj que mide el tiempo local. Así, si 
s y u son las fases en ciclos, respectivamente, de la portadora del satélite y de su 
réplica en el receptor y si [ , ]o

u ut t  y [ , ]o
s st t  son dos intervalos de tiempo medidos, 

respectivamente, por el reloj del receptor y el del satélite, de la condición de oscilador-
reloj para cada portadora resulta la siguiente propiedad de linealidad de la fase respecto 
del tiempo medido: 
 

( ) ( ) ( )

( ) ( ) ( )

o o
u u u u o u u

s s o o
s s o s s

t t f t t

t t f t t

   

   
     (9.12) 

 
La derivada de la fase respecto del tiempo medido por cada reloj-oscilador es, 
naturalmente, su frecuencia nominal:  
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s
u

o
s u

dd
f

dt dt


      (9.13) 

 
Dado que un evento ocurrido en el instante absoluto t ocurre, según cada reloj, 

respectivamente en los instantes ( ) ( )u ut t t t t    y ( ) ( )s
st t t t t   , la propiedad (9.12) 

implica además que: 
 

( ) ( ) ( )

( ) ( ) ( )

u u u u u o u

s s s s s
s o

t t t t f t

t t t t f t

        

        
    (9.14) 

 
Derivando las anteriores respecto del tiempo absoluto t, se obtienen las frecuencias 
“absolutas” de los respectivos osciladores-relojes que naturalmente difieren de la 
nominal: 
 

( ) (1 )

( ) (1 )

u u u u
u o

u

s s s
s

s o
s

d d dt d t
f t f

dt dt dt dt

dtd d d t
f t f

dt dt dt dt

  
  

  
  




    (9.15) 

 
De aquí surgen las siguientes relaciones entre la frecuencia nominal, las absolutas 
locales y las derivadas respecto del tiempo absoluto (o derivas) de los desvíos 
temporales de los relojes respectivos.  
 

( )

( )

u u o
u

o

s
s o

s
o

d t f f
D t

dt f

f fd t
D t

dt f

 



 


    (9.16) 

 
Con base en las (9.12) definimos la fase total ( )s r

u ut [ciclos] como la diferencia entre la 

fase de la portadora nominal replicada en el receptor en el instante de recepción r
ut  

(tiempo del receptor) ( )r
u ut [ciclos] y la fase de la portadora en el satélite en el instante 

de transmisión t
st  (tiempo del satélite) ( )s t

st [ciclos].  

 
( ) ( ) ( ) [ ]s r r s t

u u u u st t t ciclos       (9.17) 

 
Introduciendo los desvíos temporales (9.1) de los respectivos relojes y el tiempo de 
propagación ( )s r r t

u t t t   , la fase total en el instante de recepción en tiempo del 

usuario se rescribe como: 
 

( ) ( ) ( ( ) ) [ ]s r r s r s r
u u u u u ut t t t t t ciclos         (9.18) 

 
Usando las condiciones de reloj-oscilador (9.14) se tiene: 
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( ) ( ) ( ) ( ) [ ]s r s r s r s
u u u o u o ut t f t f t t ciclos          (9.19) 

 
Donde se introdujo la diferencia de fase sincrónica en el tiempo rt  definida como:  
 

( ) ( ) ( )s r r s r
u ut t t       (9.20) 

 
A continuación se rescriben las condiciones (9.12) aplicadas el intervalo [ , ]o rt t  con ot  
el tiempo absoluto de inicio del enganche de fase: 
 

( ) ( ) ( ) ( ) ( )r o r o s r s o
u u ot t f t t t t         (9.21) 

 
Combinando las relaciones (9.20) y (9.21) se obtiene para la fase sincrónica:  
 

( ) ( ) ( ) ( ) ( ) ( )s o o s o r s r s r
u u u ut t t t t t        (9.22) 

 
Lo que demuestra que la fase sincrónica se mantiene invariante en tanto se verifique la 
condición de enganche de la portadora.  
 
En el instante de enganche o

ut  del lazo de seguimiento de fase PLL, la fase que indicará 

el discriminador del lazo es *( ) ( )(mod,1)s o s o
u u u ut t  , es decir, solamente la fracción de 

ciclo (mantisa) de la fase total, la cual convendrá escribir como:  
 

*( ) ( ) ( )s o s o s o
u u u u u ut t N t mantisa de la fase total inicial     (9.23) 

 
Donde ( )s o

u uN t , llamada la ambigüedad entera, es la parte entera de la fase total ( )s o
u ut .   

 

 

tu
o inicio del 

“phase lock” 

* ( );s r r o
u u u ut t t 

( )s o
u ut

tu 

 Mantisa de la fase total inicial 

0 

Fase de batido  

* ( ) ( ) ( )s o s o s o
u u u u u ut t N t  

( )s o
u uN t

“Ambigüedad” entera 

f 

u

s

*s
u

Diagrama de fasores 

Figura 9.2: Evolución temporal de la fase de batido y diagrama de fasores. 
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A partir de o
ut  y en tanto el lazo PLL se mantenga enganchado, un diseño apropiado del 

receptor hace posible disponer de la medida de la fase relativa entre los fasores a partir 
de la condición inicial (9.23), es decir r o

u ut t  : 

 
* *( ) ( ) ( ) ( ) ( ) ( )s r s o s r s o s r s o

u u u u u u u u u u u ut t t t t N t         (9.24) 

 
El resultado es la fase fase de batido *( )s r

u ut  igual a la fase total instantánea ( )s r
u ut  

descontada de la ambigüedad entera ( )s o
u uN t  constante e igual a su valor en el instante 

de enganche. Dicha fase, llamada también fase Doppler o fase de portadora, está 
representada pictóricamente en la Fig. 9.2. 
 
Para asegurar el seguimiento continuo de la fase de batido, el receptor usa un contador 
interno que, según corresponda, se incrementa o decrementa en una unidad cada vez que 
la fase pasa por “0” (0 ó 2 en el diagrama de fasores de la Fig. 9.2).  Así, *( )s r

u ut  se 

compone de una parte entera, almacenada en el contador, y una parte fraccionaria dada 

por la medición electrónica instantánea de la fase de batido (mod 2).  Al momento de 

interrumpirse la condición de enganche, la cuenta de ciclos enteros deja de tener 
validez. De reiniciarse el enganche, al nuevo período le corresponderá un nuevo valor 

s
uN . Cuando una secuencia desenganche/re-enganche pasa inadvertida, el contador de 

ciclos enteros contendrá un valor erróneo durante el nuevo período de phase-lock, en 
este caso se habla de pérdida de ciclos o cycle slip. 
 
Sustituyendo la (9.19) en la segunda de las (9.24), la fase de batido se reescribe en 
función del tiempo de tránsito como:  
 

*

u

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

s r s r s s o s o
u u o u o u u u u

s r s s o
o u o u

t f t f t t t N t

f t f t t B t

       

     
   (9.25) 

 
Donde u ( ) ( ) ( )s o s o s o

u u uB t t N t  , llamada ambigüedad real o sesgo de fase, es 

constante en tanto no se interrumpa el enganche del receptor con la portadora del 
satélite. El término constante ( )s o

u t  es conocido como diferencia de fase sincrónica o 

también como ambigüedad fraccional.  
 
Finalmente, el modelo de la medida de *( )s r

u ut  resulta:  

 
* *efectos no modelados( ) ( ) [ ] ( )s r s r s r s s

u u u u u u o ut t t f m          (9.26) 

 
Donde, similarmente al pseudo-rango, los efectos no modelados incluyen el error de 
seguimiento de la fase por parte del PLL s

 [ciclos], afectado directamente por la 

relación señal/ruido y modelable como un proceso aleatorio aditivo, más el asociado a 
las reflexiones espurias de la señal (error multipasos de portadora) denotado como 

s
o uf m [ciclos]. En receptores de alta gama el primero es inferior al 1% de un ciclo de la 

portadora, lo que equivale a un error de distancia s
  1-2mm (rms). Por su parte, el 
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error por efecto multi-pasos  s
um seg  es usualmente del orden del 10% de la longitud de 

onda (por tanto mucho menor que el correspondiente al código) y su valor en metros 
puede oscilar entre s

ucm  1-5cm (rms). 

9.1.3 Relación entre la fase de batido y la distancia al satélite 

Escalando la fase con la longitud de onda de la portadora  y usando c=fo, de las 
(9.25) y (9.26) resultan el modelo de la fase en metros y el de su correspondiente 
medición: 
 

* *
u

*

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

s r s r s r s s o
u u u u u u

s r s r s r s s
u u u u u u u

L t t c t c t t B t

L t t L t cm 

      

   


    (9.27) 

 
De acuerdo con las Ecs. (9.8) y (9.10), el término del tiempo de propagación en (9.27) 
se escribe como:  
 

ˆ( , ) ( )s s s s s s s s
u u u u u u uc R cA R E c T I      P P     (9.28) 

 
Como se mencionó anteriormente, el carácter dispersivo de la ionosfera induce un 
adelanto en la fase de la portadora (que viaja a la velocidad de fase) igual en magnitud 
pero de signo opuesto al retraso inducido en el código (que viaja a la velocidad de 
grupo). Por su parte la troposfera afecta de igual modo a ambas velocidades.   
 
Introduciendo la (9.28) en las (9.27) se obtienen los modelos del observable y su 

medida en tanto que funciones lineales de la distancia ˆ s
uR . 

 
*

u

u

ˆ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( )

s r s s s s s s o
u u u u u u

s r s s s s s s o s s
u u u u u u u

L t R E c T I c t t B t

L t R E c T I c t t B t cm 

       

         
 (9.29) 

9.1.4 Comparación entre los observables de código y fase 
Los errores residuales de las mediciones con código y fase tienen 3 orígenes que 
conviene distinguir: a) el segmento espacial, b) el medio de propagación y c) el 
receptor.  A continuación resumimos valores típicos medios cuadráticos (rms) de estos 
errores para un receptor en el estándar actual y para la portadora L1 (1575,42Mhz): 
 

 Segmento espacial: se  

Error del reloj del satélite: 2
i

i
tc t m     

Error de efemérides: 2i
u efE m   

2 2 3
ise ef t m       

 
 Propagación: p 

Efecto ionosférico: retraso en código y adelanto en fase 
Dirección zenital: (2 ,10 )i

u ionocI m m  : 

Factor de oblicuidad: FO=1-390°-5°  
Efecto troposférico: retraso tanto en código como en fase 



Martín España Comisión Nacional de Actividades Espaciales  

 211 

Dirección zenital: (2 ,3 )i
u TcT m m   :  

Factor de oblicuidad: FO=1-1090°-5°. 
 

 Recepción: re 
Ruído de medida:  

Código: (0.5 ,1 )i m m    ; Fase: (1 ,2 )i mm mm     

Error multi-pasos (ambiente libre): 
Código (1 ,5 )i

u McM m m  ; Fase: (1 ,5 )i
u mcm cm cm   

 
Como los valores rms de los errores de propagación son estimados sobre la vertical 
local, el factor de oblicuidad (FO) es un multiplicador que tiene en cuenta el aumento 
con el ángulo de incidencia de la longitud del camino en la capa atmosférica 
correspondiente.  
 
Como se advierte al comparar las (9.11) y (9.29), los modelos de ambos observables 
poseen una estructura simular y tienen en común los términos sE , s

uT , s
uI , ut  y st . 

Difieren, sin embargo, en tres aspectos esenciales, a saber: en el signo de s
uI , en la 

presencia de la ambigüedad real de fase u
sB  y en la magnitud de los errores de 

recepción. Respecto de estos últimos, el error en la medición del pseudo-rango es hasta 
2 órdenes de magnitud superior al correspondiente a la medición de la fase. Sin 
embargo, a pesar de la gran precisión de esta última medida, su uso como observable de 
la distancia satélite/receptor se ve limitado por la ambigüedad u

sB  que, de ningún modo, 

podría considerarse comparable al resto de los errores dado que su valor puede ser 
arbitrariamente grande. Por esta razón, los métodos que utilizan la medida de fase para 
el posicionamiento del receptor deben indefectiblemente ser capaces de estimar o 
determinar esta ambigüedad. Más adelante veremos que en principio es posible en 
ciertos casos determinar la ambigüedad usando diferencialmente medidas de fase 
provistas por otros receptores cercanos. En el próximo Capítulo se mostrará como 
también es posible estimar las ambigüedades mediante un esquema de navegación 
integrada con un filtro de fusión de datos basado en el modelo cinemático del vehículo y 
datos provistos por otros instrumentos de navegación a bordo. 

9.1.5 Observable Doppler, relación con la velocidad radial relativa 
Como se vio en el Capítulo anterior, la determinación del desvío Doppler efectivo (Ec. 
(8.13)) es un subproducto natural del proceso de adquisición y seguimiento de la 
portadora de cada satélite por parte del receptor. Desde el punto de vista del receptor, 
dicho desvío se corresponde con la derivada de la fase total entre el receptor y el satélite 
respecto del tiempo del receptor. Así, teniendo en cuenta la invariancia de la 
ambigüedad entera (ver Ec. (9.24), dicha derivada temporal coincide con la derivada 
temporal de la fase de batido: 
 

*( ) ( )s s r s r
D u u u u

u u

d d
f t t

dt dt
        (9.30) 

 
Usando la definición (9.27) y derivando la primera de las (9.29) luego de sustituir donde 
corresponda las Ecs. (9.16), es fácil verificar a partir de la Ec. (9.30) que: 
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* * ˆ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( )

s r s r s s s s s
u u u u D u u u u s

u

s T s s s s
u u u u u s

d d
L t t f E c T I c D D

dt dt

E c T I c D D

         

      

P P

r P P

   

     
 (9.31) 

 
Donde, debido a la gran distancia usuario satélite, se supuso que el versor de la línea de 

vista s
ur


 al satélite s varía muy lentamente con lo cual 0s
u r
 . Como en general los 

cambios en sE , s
uT y s

uI  son muy lentos, sus derivadas temporales también pueden 

considerarse despreciables o al menos asimilables al error residual de la medida de s
Df . 

De este modo, definiendo los vectores velocidad del satélite (calculado con datos de 

efemérides) y del receptor como ˆ ˆs sV P


 y u uV P , el modelo de la medición del 

observable Doppler (9.31) (que por razones históricas es también denominado “delta 
pseudo-rango”) denotado s

u , se escribe: 

 
ˆ( ) ( )s s s s s T s s

u D D u u uf f cD         r V V 

      (9.32) 

 

Donde, s
Df


 es la medida del desvío Doppler al satélite respectivo determinada por el 

receptor; s s
      incluye: los errores de medida, las derivadas temporales sE , s

uT y s
uI , 

el desconocimiento o inestabilidad de la deriva del reloj satelital* y las variaciones del 
efecto de las reflexiones múltiples sobre la fase. Para vehículos en movimiento este 
último efecto podría tener carácter aleatorio. En la práctica el error residual s

   puede 

considerarse no sesgado con un valor rms de unos pocos cm/seg (de 3 a 8 cm/seg para la 
portadora L1), lo que da a esta medición una gran precisión sobre todo si, junto con la 
velocidad uV , se estima el sesgo ucD . 

 

Los datos de la efeméride del satélite son usados para calcular la velocidad ˆ sV  en tanto 
que el versor s

ur


 puede ser calculado a partir de la posición del usuario estimada, a partir 

de las medidas de pseudo-rango. De este modo, la (9.32) es una medida de la velocidad 
radial relativa vehículo-satélite (proyección de la velocidad relativa sobre el radio 
vector). Si bien hay un efecto del error de posicionamiento sobre el versor al satélite s

ur


 

este error resulta despreciable para las distancias nominales de los satélites.  

9.2 Posicionamiento con GPS: soluciones y precisiones 

Los receptores GPS tienen como prestación usual un canal de salida con el cual hacen 
accesibles los observables medidos y el mensaje de navegación GPS. Esto permite a un 
usuario disponer de ellos como insumo de un sistema de navegación de diseño propio. 
En los párrafos restantes de este Capítulo estudiaremos de qué modo pueden ser usados 
estos observables para determinar variables de navegación, absolutas o relativas, tales 
como posición, velocidad y orientación. Veremos que la precisión en la determinación 
de las variables de navegación dependerá de cuales observables se utilicen, de cuántos 
de ellos estén disponibles, si lo están simultáneamente o en épocas distintas y de que 
hipótesis simplificadoras se usen para formular los respectivos modelos matemáticos.  
                                                
*Del orden de 10-12 actualmente con expectativas de rápida mejora a mediano plazo. 
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9.2.1 Problema general del posicionamiento GNSS 
En este párrafo planteamos el problema más general de navegación concebible basado 
en observables GNSS. El objetivo es mostrar cuales son las limitaciones inherentes a 
esta tecnología, cuando será posible paliar algunas de ellas y en todo caso poner en 
evidencia las relaciones de compromiso que habrá que "negociar" entre simplicidad y 
precisión.  
 
El caso más general consiste en suponer disponibles los observables de código y fase en 
un número arbitrario de r receptores espacialmente distribuidos que comparten la 
visibilidad de s satélites emitiendo señal en f frecuencias y con datos adquiridos 
simultáneamente en q épocas distintas. Los observables son indexados, respectivamente 
por los índices: j=1,…r;  l=1,…f; i=1,…s; t=1,…q.  
 
A partir de las (9.11) y (9.29) se formulan las siguientes relaciones para los 2rfsq 
observables disponibles: 
 

, , , , ,

, , , , , ,

ˆ( ) ( ) ( ) ( ( ) ( )) ( ) ( )

ˆ( ) ( ) ( ) ( ( ) ( )) ( ) ( )

i i i i i i i i
j l j j j j l j j l j l

i i i i i i i i i
j l j j j j l j l j l j l l j l

t R t E t c T t I t c t t cM t

L t R t E t c T t I t c t t B cm t





         

          
(9.33) 

 

Donde denotamos ˆ ˆ( ) ( , ( ))i i
j jR t dist t P P  y , , ,( ) ( )i i o i o

j l j l j lB t N t   a la ambigüedad real 

independiente del tiempo (a partir del correspondiente instante de enganche). El resto de 
las variables se reconocen fácilmente a partir de las expresiones que las definen más 
arriba. Si se pretende determinar simultáneamente las posiciones del usuario ( )j tP  a 

partir del sistema de ecuaciones (9.33) con la máxima precisión posible es necesario 
poder determinar todas estas variables con excepción de los inevitables errores de 
medida que determinan los residuos más pequeños posible, a saber: , , , , , ,

i i i
j l j l j lcM     

para el observable de código y , , , , , ,
i i i

j l j l l j lcm      para el observable Doppler.  Para 

abordar esto definimos las 2(2rfsq) variables "agregadas": 
 

, , , ,

, , ,

( ) ( ) ( ) ( ) ( ) ;

( ) ( ) ( ) ( ) ( )

i i i i i i
j l j j j l j j l

i i i i i
j l j j j l j

t E t cT t cI t c t t B

t E t cT t cI t c t t





      

     




    (9.34) 

 
Sumadas éstas a las 3rq coordenadas desconocidas de las posiciones involucradas, se 
tiene un sistema de ecuaciones incompatible, lo que no permite determinar una solución 
por mínimos cuadrados cualesquiera sean 1, 1, 1, 1j f s q    . Por lo tanto, para 
abordar el problema del posicionamiento será necesario ya sea: a) agregar nuevas 
hipótesis; b) aumentar la estructura del problema, c) agregar información al problema 
(p.e. modelos matemáticos de algunas incógnitas) ó d) sacrificar la precisión vía el 
incremento del nivel de los residuos.  En los próximos párrafos nos abocaremos a 
describir algunos procedimientos usuales en este sentido.  

9.2.2 Servicio estándar de posicionamiento (SPS) 
Todo receptor GPS dispone normalmente de una unidad de cómputo que procesa 
numéricamente los observables de código y Doppler y entrega como salida la posición, 
velocidad y el tiempo GPS del receptor. En éste y el próximo párrafo describimos dos 
procedimientos estándar que suelen venir ya implementados en el  receptor. 
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Empezamos por analizar el servicio de posicionamiento más clásico basado en los 
observables de código y Doppler provistos por un receptor GPS en una única época y 
con una única frecuencia. En tanto que caso particular para r=f=q=1 del más general 
formulado en el párrafo anterior, la provisión de este servicio adolece de las 
inconsistencias planteadas, por lo cual, se descarta que el mismo ofrezca la máxima 
precisión posible que sólo podría lograrse con los residuos óptimos.  
 
El servicio SPS usa los observables (9.11) y (9.32) cuyos modelos, para cada satélite i, 
son: 
 

,
ˆ ; 1,...

ˆ( ) ( ) ; 1,...

i i i i i
u u u u u u

i i T i i
u u u u

R c t sp cM i s

cD i s





       

     r V V 


    (9.35) 

 
El término i

usp , llamado “error espacial y de propagación”, incluye los errores 

residuales no compensados provenientes del segmento espacial (desvío del reloj del 
satélite y error de efemérides) y de la propagación en la atmósfera, a saber: 
 

i i i i i
u u u usp E cT cI c t        (9.36) 

Determinación de la posición del receptor 
Para la determinación de la posición del receptor, el servicio SPS establece como 
residuos las magnitudes:  
 

, ; 1,...i i i i
u u u usp cM i s         (9.37) 

 
El sesgo del reloj del receptor se excluye ex profeso del residuo, de otro modo, y vista 
su magnitud en un receptor comercial, el deterioro de la precisión sería inaceptable. Sin 
embargo, éste incluye tanto los errores de propagación ( ,i i

u uT I ) como los del segmento 

espacial ( ,i i
uE t ). La inclusión de estas magnitudes en los residuos va a limitar 

fuertemente la precisión del SPS. Para corregir estos efectos el receptor usa sin embargo 
los datos contenidos en el mensaje de la señal GPS determinados por el segmento 
terreno y subidos a la constelación por las estaciones terrenas de enlace. De estos datos 
extrae los parámetros de la evolución de las efemérides, las correcciones y su evolución 
de los relojes abordo y los parámetros del modelo Klobushar que permiten estimar el 
retraso ionosférico. Cabe señalar que la precisión de estas correcciones se degrada con 
la antigüedad de dichos parámetros. El mensaje GPS no ofrece información sobre el 
tránsito troposférico, sin embargo, en principio, el receptor podría tener incorporado un 
modelo alimentado por datos meteorológicos locales que le permitan limitar el error del 
retardo a unos pocos centímetros.  
 
La tabla de presupuesto de errores del Párrafo 9.1.1 da el orden de magnitud de los 
residuos luego de posibles correcciones efectuadas mediante datos del mensaje. 
Suponiendo independientes cada una de estas fuentes de error se define el desvío 
estándar del error equivalente para el usuario URE (User equivalent Range Error) ure  

mediante: 
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2 2 2 1/2
2 2 1/2

2 2 1/2

[ ] 5 11
[ ] 5 12

[ ] 1 5
sp se T iono

ure sp re
re M

m
m

m

           




 


   
   

    (9.38) 

 
De lo anterior y suponiendo una distribución gaussiana de los errores, la banda de error 
en el 98% de los casos está entre los 10m y 25m ( 2 ure ). 

 
Con los residuos i

u  definidos por la (9.37), los s observables de la primera Ec. (9.35) 

constituyen un sistema de s ecuaciones con 3+1 incógnitas que resulta compatible si 
4s  .  

 

Para la posición y el desvío del reloj genéricos:  , ,
T

u u u ux y zP  y ut  definimos las 

funciones u
ˆ( , ) ( ) ( ) ; 1,...,i T i

u u u u uc t c t i s      P r P P
 . Denotamos *

uP , *

ut  al par: 

posición de la antena del usuario en terna ECEF y desvío de su reloj, las medidas dadas 
por la primera de las (9.35) se escriben entonces como: 
 

* *
u( ) ( , ) ; 1,...,i i i

u u u ut c t i s    P      (9.39) 

 
Con el fin de escribir este conjunto de ecuaciones en forma compacta, agrupamos los 
residuos, las medidas y los valores de * *( , )i

u u uc t P  en los vectores. 

 
1 2 3 1 2 3 * * 1 2 3
u u u u u u u u u... ; ... ; ( , ) ...T T

u u u u uc t                   ξ ρ ρ P       (9.40) 

 
Con esta notación el vector de las medidas se re-escribe como: 
 

* *( , ) s
u u u u uc t   ρ ρ P ξ       (9.41) 

 
Dadas las medidas uρ , el receptor determina, mediante un método iterativo de tipo de 

Newton-Raphson, la solución ˆˆ( , )u uc tP  que minimiza el siguiente criterio cuadrático 

en cada época t: 
 

2

,

( , ; ) ( , )

ˆˆ( , ) arg min{ ( , ; )}
u u

u u u u u u u

u u u u u
c t

H c t c t

c t H c t


  

   
P

P ρ ρ P ρ

P P ρ


    (9.42) 

 

Para el par genérico ( , )u uc tP  definimos las desviaciones *
u u u P P P , 

*
u u uc t c t c t      y la distancia 

2 2 1/ 2( )u us c t     P , luego introducimos la familia 

de vecindades del punto * *( , )u uc tP  indexadas por 0  : {( , ); }u uV c t s     P . Para   

es suficientemente pequeño y si el par ( , )u uc t V P , se tiene: 

 

* *( , ) ( , ) ( )u
u u u u u u

u

c t ct o
c t

 
       

P
ρ P ρ P J      (9.43) 
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Con J  matriz jacobiana de la función ( , )u u uc tρ P  respecto de las incógnitas 

 , , ,u u u ux y z c t  evaluado en * *( , ) ( , )u u u uc t c t  P P  cuya i-ésima fila resulta: 

 

( , )

( ) 1
u u

i
i Tu
u

u u u u t
x y z c t



        
P

r
 

    (9.44) 

 

Siendo i
ur


 el versor de la línea de vista dirigida desde la posición genérica uP  elegida al 

satélite i. 4sJ   resulta: 
 

1

2

( , )

( ) 1

( ) 1( , )

( ) ...

( ) 1
u u

T
u

T
uu u u

u u u u c t
s T

u

t

x y z c t


  
     
  
 
   

P

r

rρ P
J

r







    (9.45) 

 
De este modo, cerca de la convergencia del algoritmo de Newton-Raphson, el criterio 
(9.42) deviene el del problema lineal cuadrático clásico que resulta de sustituir las 
(9.41) y (9.43) en la (9.42) y cuya solución en función de los residuos para s4 es: 
 

2
* *

1
* *

,

ˆ
 = arg min  +( )

ˆ
u u

u u uu T T
u u

u u u uc tc t c t c t c t




    
     

             P

P P PP
J ξ J J J ξ  (9.46) 

 
Donde la matriz J es evaluada en un punto cercano a la convergencia del algoritmo NT 

ˆ ˆ( , )u uc tP .   

 
Como se ve de la anterior, la incidencia de los residuos sobre el error de 
posicionamiento queda determinada por la pseudo-inversa a la izquierda de la matriz J 
que, vista su definición, es función exclusivamente de la geometría de la constelación 
visible por el usuario (no depende de las distancias). En particular, cuando las líneas de 
vista de los satélites se ubican próximas a un único plano (conteniendo al usuario), J  
tiende a ser deficiente en rango (columnas linealmente dependientes) y los errores de 
posicionamiento tienden a infinito. Sin embargo, el diseño de las órbitas de la 
constelación es tal que esta posibilidad está excluida para casi cualquier punto sobre la 
Tierra desde el cual resulten visibles 4 o más satélites. 

Precisión de la posición  

Siendo uξ  un vector aleatorio en cada época t, la solución (9.46) también lo es, en tanto 

que su valor esperado y matriz de covariancia resultan: 
 

*
1

*

1 * 1 4 4
,

ˆ
{ }  + ( ) { }

ˆ

ˆ
cov( ) ( ) cov( ) ( )

ˆu u

uu T T
u

uu Sesgo de la estimación

u T T T x
P t u

u

E E
c tc t

c t



 


   
         

 
  

  

PP
J J J ξ

P
Q J J J ξ J J J



 

  (9.47) 
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De donde surge que si los errores de medida i
u  son sesgados, la estimación de la 

posición también lo será. A pesar de esto, por convención, los estándares de precisión se 
definen suponiendo residuos no sesgados, idénticamente distribuidos y de variancia 
constante 2

u . Bajo estas suposiciones, de la (9.47), resulta la covariancia del estimador 

en coordenadas ECEF:  
 

2 1 , ,
, , ,

2

( )

e

xt
e

e T x y z yt
x y z t u

zt

xt yt zt t

J J 


 
 

     
     

Q
Q     (9.48) 

 
Donde , ,

e
x y zQ  denota la covariancia espacial en coordenadas ECEF definida como: 

 

 , , { }

e

ee
x y z

x
E y x y z

z

 
     

  
Q     (9.49) 

 
Para expresar la covariancia de los errores en coordenadas LGV-ENU usamos la MCD 

g
eC  evaluada en la posición del receptor. El error de posición y su matriz de covariancia 

son re-expresados de acuerdo con: 
 

2

2
, , , ,

2

;

g e

e en eu
g g g e e
e x y z e x y z g en n nu

eu nu u

E x

N y

U z

    
           
         

C Q C Q C

    
    
    

 (9.50) 

 
A partir de las anteriores se definen las distintas versiones de la llamada dilución de la 
precisión (DOP) usadas en la práctica para expresar la calidad del posicionamiento: 
 

2 2

2 2 2

2 2 2 2

( ) ;

( ) ;

( ) ;

( ) ;

( ) ;

u

t

e n

e n u

e n u t

VDOP vertical

TDOP temporal

HDOP horizontal

PDOP posición

DOP geométrica





  

   

    

 

 
Cada una de ellas representa el factor de incidencia de la geometría de la constelación 
visible sobre el correspondiente DOP.  Una buena distribución de los satélites en el 
espacio se traduce en bajos valores de DOP, valores HDOP y VDOP <5 son 
considerados aceptables. 

Determinación de la velocidad del receptor 
A partir del observable Doppler (9.32) definimos las siguientes funciones de las 

medidas i
Df


, i=1,…s, de las efemérides de los satélites visibles (con las que se calculan 

las velocidades ˆ iV ) y del versor i
ur


 calculado con la estimación de la posición:  
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ˆ( ) ( ) ; 1,...,i i i T i i T i

D u u u uf cD i s       r V r V 

      (9.51) 

 
Usando la definición de J  (9.45) las ecuaciones anteriores se rescriben matricialmente 
como:  
 

11

22

( ) 1

( ) 1

( )

T
u

T
u uu

u u

s Ts
u

cD cD 

    
                         
      

r
V Vr

υ ε J ε

r

 







    (9.52) 

 

En la cual 1 Ts s

         ε     . Como se advertirá, a diferencia del posicionamiento, 

el problema de la estimación de la velocidad resulta en sí mismo una minimización 

cuadrática lineal cuya solución en coordenadas ECEF para ˆ
uV  y ˆ

uD  se obtiene a partir 

de la (9.52) mediante: 
 

1
ˆ

( )
ˆ
u T T

ucD


 
  
  

V
J J J υ     (9.53) 

Precisión de la velocidad 
Análogamente a las (9.47) el valor esperado y la matriz de covariancia de la estimación 
de la velocidad junto con las (9.52) y (9.53) resultan: 
 

1 1
ˆ

{ } {( ) }  + ( ) { }
ˆ
u uT T T T

uu Sesgo de la estimación

E E E
cDcD

 


   
     
     

V V
J J J υ J J J ε     (9.54) 

 

* * 1 * * * * 1 4 4
,

2

ˆ
cov( ) ( ) cov( ) ( )

ˆ

cov( ) ; 0,03 - 0,08 m/seg,

u u

u T T T x
D

uD
 



  

 
  

  

   

v

V
Q J J J ε J J J

ε I



  

 
   (9.55) 

 
Es muy importante resaltar una diferencia significativa de las (9.54) respecto de las 
(9.47) y es que en estas últimas no intervienen los errores espaciales ni de propagación 
con lo cual el error Doppler residual ε   en muchos casos puede considerarse insesgado 

y por tanto también la estimación de la velocidad. Tal como para la posición, la 
covariancia del error de estimación de la velocidad, dada por la (9.55), depende de la 
geometría de la constelación visible por lo que resultan válidos los mismos coeficientes 
de dilución de precisión introducidos precedentemente. 

9.2.3 Servicio de posicionamiento preciso (PPS) 
Veremos en esta sección los beneficios de disponer de dos portadoras simultáneamente. 
Naturalmente, esto requiere receptores capaces de operar con modulación CDMA en 
dos portadoras distintas. El servicio PPS del sistema GPS utiliza el código P(Y) 
modulado en ambas portadoras L1 y L2. Un usuario con un receptor dual puede seguir 
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el código C/A en L1 y el P(Y) en L2 siempre que éste último no esté encriptado, de otro 
modo sólo podrán hacerlo usuarios autorizados. Si bien estas restricciones parecen 
limitar el interés práctico de los servicios con portadora múltiple, la realidad es que en 
un futuro próximo se espera un acceso generalizado a frecuencias alternativas a la L1 y 
la L2. Es un hecho, en efecto, que a partir de la modernización del sistema GPS iniciada 
en 2005 ya está operativa en muchos satélites de nueva generación la señal civil L2C 
sobre la portadora L2. Además, y como se mencionó en el Capítulo anterior, es objetivo 
de la nueva serie emitir código en al menos 3 portadoras diferentes, a saber: L1, L2 y L5 
(1176.45 MHz). 
 
El servicio PPS consiste en la adquisición de la posición con observables de un único 
receptor, en una única época pero con canales de código en dos frecuencias distintas: f1 
y f2.  En términos del problema general planteado en el Párrafo 9.2.1, en este caso se 
tiene que r=q=1 y f=2, de modo que para cada época t se disponen de 2s observables: 
 

2
, ,

, , , ,

ˆ / ; 1, 2; 1,..,

; 1, 2 ; 1,..,

i i i i
u l u u u l u l

i i i i i i
u l u u u l u l

R c t K f l i s

E cT c t cM l i s

       

        
   (9.56) 

 
Aunque las inconsistencias planteadas en el Párrafo 9.2.1 subsistan, claramente, este 
servicio dispone de mayor información respecto del caso anterior, razón por la cual, es 
de esperar que ofrezca una perfomance mejor que el SPS. 
 
Notar que ahora los residuos no contienen los retardos ionosféricos i

ucI  que suelen ser 

los términos dominantes y altamente variables de los residuos en el caso SPS. En 
cambio, dichos términos son tenidos explícitamente en cuenta en el observable (9.56) 
incorporando en el mismo el modelo (9.5) función de la frecuencia portadora. Dado que 
ahora se disponen de 2s ecuaciones, es posible incluir las s constantes desconocidas i

uK  

en el grupo de incógnitas a estimar, lo que resulta en un problema de (4+s) incógnitas 
con 2s ecuaciones que podrá resolverse con al menos s=4 satélites visibles.  
 
Teniendo en cuenta el presupuesto de errores consignado en el Párrafo 9.1.4 después de 
usar las correcciones estándar provistas en el mensaje, la magnitud de los residuos 
resultantes resulta:   
 

2 2 2 1/2

2 2 2 1/2

[ ] 3 4 .; 1 5 .; 1 .

[ ] 3 6,5 .

sp ef T ti M

sp M

mts mts mts

mts

        

   
 

 

     

   
 (9.57) 

 
Lo que implica una banda de error en el 98% de los casos de entre 6 y 13m (2σ) 
mejorando sensiblemente la del servicio SPS. 

9.3 Técnicas de código diferencial (DGPS) 

Como se vio en los párrafos anteriores los servicios SPS y PPS abordan el problema de 
la inconsistencia general del posicionamiento absoluto mediante el trámite de degradar 
los residuos de los observables GPS incluyendo en ellos magnitudes no observables o 
no estimables. En el caso PPS, la inclusión de mayor información hace posible 
"descargar" parcialmente los residuos y gracias a esto se logra mayor precisión que en el 
caso SPS. Las técnicas de posicionamiento diferencial buscan también disminuir la 
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magnitud de los residuos agregando información procedente de al menos un receptor 
suplementario. El problema básico consiste en 2 receptores, una frecuencia y 1 época. 
Cuando uno de los receptores se suponga ubicado en una posición conocida se hablará 
de DGPS absoluto. En caso de que ninguno de los dos esté geo-localizado el problema 
se limitará al posicionamiento relativo entre ambos. 

9.3.1 DGPS absoluto con observable de código 

 
Consideramos el problema del posicionamiento con observables de código en una sola 
frecuencia tanto en el receptor del usuario como en otra estación de referencia de 
posición conocida (ver Fig. 9.3) cita en las inmediaciones. En términos del problema 
general, este caso se corresponde con: q=f=1; r=2 (j=u, r).  
 
Retomando la primera de las (9.35) y la (9.36), escribimos el sistema de 2s ecuaciones 
con 2s+5 incógnitas: las 2s i

jsp , las coordenadas del vector línea de base urD  y los 

desvíos de reloj ut  y rt . 

 

,
ˆ ; 1,... ; ,

; 1,... ; ,

i i i i i
j j j j j j

i i i i i
j j j j

R c t sp cM i s j u r

sp E cT cI c t i s j u r

        

     
    (9.58) 

 
Así planteado, el sistema resulta inconsistente con los residuos mínimos.  
 
Las técnicas de posicionamiento diferencial usan la alta correlación espacio-temporal de 
los errores , , ,i i i i

j j jE cT cI c t  que componen cada término i
jsp . En efecto, Kaplan (2006), 

Cap. 8, muestra que para 50ur KmD  es posible asegurar 1i i
ur urE cI cm  *. El error 

troposférico es dependiente de las condiciones medioambientales variantes con el 
tiempo (humedad ambiente, temperatura etc.) y sensible a la diferencia en altura (P.e.: 
para 1h Km  , 1,6i

urcT m ). De este modo, para cada satélite i común al campo visual 

de ambos, podrá suponerse que i i
u rsp sp , a menos de errores métricos y en casos 

centimétricos para h  suficientemente pequeños. Esto agrega suficiente estructura 
como para abordar el mismo problema de 2s ecuaciones pero ahora con s+5 incógnitas, 

                                                
*Se usará la notación [ ]ur=[ ]u-[ ]r para denotar diferencias entre las variables correspondientes. 

ˆ i
rR

ˆ i
uR

ur u  rD P P
Referencia en Pr Usuario en Pu  

Figura 9.3: Posicionamiento diferencial con dos receptores. 

Satélite i  


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y por tanto consistente para un número de satélites 5s  y residuos métricos 

, ,
i i i i

j j j jcM sp     1,...5; ,i j u r   tales que: 

 
2 2 (1 ,5 )M m m         (9.59) 

 
Lo que implica una banda de error en el 98% de los casos de entre 2m y 10m (2σ) 
mejorando en promedio al servicio SPS. 
 
Bajo estas condiciones, un algoritmo de optimización similar al SPS, permite estimar, 
además de la posición urD  respecto de la referencia conocida rP  (y por tanto la posición 

absoluta uP ), los desvíos temporales ut  y rt . Con lo cual también se obtendría el 

tiempo del usuario con la precisión máxima alcanzable dada por la (9.59). Más aún, 
desde un punto de vista práctico importa el hecho de que el procedimiento evita tener 
que pre-corregir los parámetros ligados a la propagación y al segmento espacial dado 
que estos errores son aproximadamente comunes a ambos receptores.  

Servicio DGPS de área local (LA-DGPS) de posicionamiento absoluto 
El procedimiento DGPS absoluto descrito en el párrafo anterior, necesita concentrar en 
un punto las medidas adquiridas por la estación de referencia y por el usuario en cada 
época. Esto requiere de un enlace de comunicación dedicado entre la primera y el 
segundo. En la práctica, los servicios de posicionamiento preciso, llamados DGPS de 
área local (o Local-area DGPS), disponen de estaciones de referencia distribuidas en un 
area determinada desde donde emiten por UHF/VHF sus correcciones de pseudo-rango 
locales ,

i
re , 1,...i s  obtenidos a partir de sus posiciones conocidas. Dichos errores se 

definen como sigue para todos los satélites visibles. 
 

,

ˆ ;

ˆ ( )

i i i i
r r r r r

i i i i i
r r r r r r

R sp c t

e R sp c t

     

     
     (9.60) 

 

Aquí, ˆ i
rR  es la distancia entre la posición conocida de la referencia rP  y la evaluada 

para el satélite i a partir de la efemérides (ambas en ECEF). Cualquier usuario del 
servicio en las inmediaciones de una referencia tal que 50ur KmD , usa los valores 

,
i

re  recibidos etiquetados con la época correspondiente para formar los pseudo-rangos 

corregidos definidos como sigue, para 1,...i s : 
 

, ,

, ,

,

ˆ ( )

ˆ

i i i
u c u r

i i i i i i i
u u u u u r r r r

i i i i
u ur ur ur ur

e

R sp c t cM sp c t cM

R c t sp cM



 



  

          

     



  (9.61) 

 
y con residuos métricos: , ,

i i i i
ur ur ur ursp cM     . Las ecuaciones (9.61) permiten 

determinar (mediante algún algoritmo de optimización) estimaciones de las coordenadas 
ECEF de urD  y de la diferencia de tiempos urt . Notar respecto del procedimiento 

anterior que ahora no se determinan independientemente los tiempos ut  y rt . Cabe 
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señalar, que los términos asociados a los errores de medida ,
i i i
ur ur ure cM    provienen 

de la resta de errores independientes, con lo cual, cuando ambos sean similares la 

magnitud resultante se verá amplificada por un factor 2.  

 
1.41 1.41(1 ,5 ) (1.41 ,7 )i

ur ur ue m m m m          (9.62) 

 
Sin embargo esto no debe verse como una desventaja respecto del procedimiento 
anterior, toda vez que las estaciones de referencia usan receptores fijos de alta calidad 
con antenas inmunes a los efectos multi-pasos lo cual para un usuario comercial implica 
que i i

ur ue e   y por tanto ur u   . Como además sus relojes de alta estabilidad son 

permanentemente sincronizados con el tiempo GPS, ur ut t  , así, el servicio transfiere 

tiempo preciso a sus usuarios. Otra ventaja es que habiendo sólo 4 incógnitas, la 
solución es compatible con 4 satélites y, en caso que s>4 la información suplementaria 
tiende a reducir aun más el error de estimación final. 
 
En conclusión, una LA-DGPS puede ofrecer a sus usuarios en zona bandas de errores de 
posicionamiento del orden (1m-5m) en el 98% (2σ) de los casos. 
  
Pr último, puesto que la precision del sistema se debe en gran parte a la supresion de 
errores en modo común, asegurar i

ursp  sub-métricos, requiere que tanto referencias 

como usuarios corrigen de modo acorde por atmósfera y efemérides o bien ninguno de 
los dos lo hagan.  

9.3.2 DGPS relativo con observable de código 
A diferencia del posicionamiento absoluto, el DGPS relativo sólo se plantea conocer el 
vector "brazo de palanca" urD  (ver Fig. 9.3) entre dos usuarios con sendos receptores a 

bordo. Tal como en el DGPS absoluto, un enlace de datos entre ambos receptores 
permite que cada uno disponga de los observables de código de ambos y por tanto, en él 
calcular los nuevos observables diferenciales para 1,...i s  (ver Ecs. (9.58)):  
 

,
ˆi i i i i i i

ur u r ur ur ur ur urR sp c t cM              (9.63) 

 

Donde, ˆ ˆ ˆi i i
ur u rR R R  (ver Fig. 9.3) denota la diferencia entre sus distancias (rangos) al 

satélite i. Para expresar estas diferencias en función de la línea de base urD  evaluamos 

primeramente el producto escalar: 
 

2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ( ) ( ) ( )( )i i i i i i i i i i
r u r u r u r u u rR R R R R R        R R R R   (9.64) 

 
A partir de la geometría del problema y considerando la Fig. 9.3, es fácil reconocer que 

ˆ ˆ
ur u r

i i
r u   D P P R R . Usando esta expresión en la Ec. (9.64) se obtiene: 

 
ˆ ˆ ˆ ˆ, / ( )ˆ ˆ ˆ i i i i

r u ur r u
i i i
u r ur R RR R R      R R D     (9.65) 
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El resultado es que, ˆ i
urR  depende tanto de urD , como de posiciones desconocidas 

( )ˆ
r

i
rP R  y ( )ˆ

u
i
uP R , con lo cual, se tienen ahora 6 incógnitas espaciales en lugar de las 3 

del caso absoluto. Una manera de abordar el problema sería transformarlo en dos 
problemas SPS con lo cual no se gana precisión si no que se pierde dado que urD  se 

obtiene mediante la resta de magnitudes inciertas y, como vimos, esto implica en 
promedio un aumento del 41% en el error rms.  
 
Para ganar precisión una vez más agregaremos estructura al problema imponiendo que 

urD  sea lo suficientemente pequeño como para poder suponer casi paralelas a ˆ i
rR  y 

ˆ i
uR  (0 en la Fig. 9.3).  Es fácil ver que bajo esta condición la (9.65) admite la 

aproximación: 
 

ˆ ˆ ˆ ˆ, / ( ) ˆ ,ˆ i i i i
r u ur r u

i
u ur

i
ur R RR      R R D R D


    (9.66) 

 

Donde ˆ i
uR


 expresa al versor de línea de vista desde la posición real del usuario a la 

posición calculada del satélite. Pero como ˆ i
uR  es desconocido, substituimos este vector 

por su valor calculado por el receptor del usuario en modo SPS que denotamos i
uR  e 

introducimos el residuo geométrico: 
 

(ˆ ˆ, ,)i i i i i
ur ur uu ur ur uu urR R R       R D R D

 
      (9.67) 

 

De la Fig. 9.3, se advierte que ˆ ˆ ˆcos( ) ,i i
r u ur

i
uR R   R D


, con lo cual se tiene: 

 

ˆ ˆ ˆ ˆ, (1 cos( )) ,i i i i i i
u r uu ur r u u ur

i
ur R R RR         R D R R D

 
       (9.68) 

 

Para  suficientemente pequeño 21 cos( ) / 2    y ˆtan( ) / i
ur rR  D  con lo cual 

22ˆ ˆ ˆ(1 cos( )) / 2 / 2i i i
r r ur rR R R    D  . Por otro lado, teniendo en cuenta que la 

estimación SPS de la posición del usuario asegura un error acotado: 
ˆ ˆ 100i i

u u u u m   P P R R  y que para una referencia cercana a la superficie terrestre 

7ˆ 2x10i
rR m , es posible demostrar que, para valores 9ur KmD  resulta 

ˆ , 5i i
u u ur cm   R R D


 , con lo cual: 

 
29 / 2 2ˆi i

ur ur rKm m métricoR R    D     (9.69) 

 
Para líneas de base aún más cortas un razonamiento similar permite demostrar que  
 

700 0,5 -i
ur urm cm sub centimétricoR   D     (9.70) 
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Como veremos, esta última condición resulta de gran utilidad para el posicionamiento 
relativo de precisión basado en observables de fase. 
 
Lo anterior nos permite usar, para la Ec. (9.66), la siguiente expresión lineal en la 
distancia relativa: 
 

ˆ ,i i i
ur uu ur urR R  R D


     (9.71) 

 
con residuo métrico (o milimétrico según el caso) que no requiere conocer la posición 
de referencia. Sólo se necesita de la determinación SPS de la posición del usuario. De 
acuerdo con esto, los observables diferenciales (9.63) se re-escriben como: 
 

,

( )

ˆ

i T

u ur

i i i i i
ur ur ur ur ur ur

i
ur ur

R c t sp cM

c t

      

   R D

    (9.72) 

 
La determinación del vector urD  resulta así solución del problema clásico de mínimos 

cuadrados lineales cuya precisión queda determinada por los residuos 
i i i i i i i
ur ur ur ur ur ur urR sp cM R         correspondientes a la suma de los residuos del 

caso DGPS absoluto más el residuo geométrico con desvío estándar: 
 

2 2

(2 7 ); 0 2

(3 7,5 )

ur R

ur ur R

a m a m

a m



 

 

  







   


   (9.73) 

 

9.4 Técnicas de posicionamiento relativo con fase diferencial 

De la discusión sobre el observable de fase realizada en los Párrafos 9.1.2 a 9.1.4 de este 
Capítulo, se advierte su potencial para proporcionar posicionamiento de muy alta 
precisión. En efecto, sus errores de medida (residuos mínimos) son en general 
centimétricos y aún milimétricos toda vez que sea posible disponer de antenas inmunes 
al efecto multi-pasos.  Sin embargo, esta potencialmente alta precisión se ve limitada 
por dos características de dicho observable. La primera es la existencia de la 
ambigüedad cuya magnitud, como se vio, puede ser arbitrariamente grande. Se dice, por 
esta razón, que “el observable de fase es extremadamente preciso pero extremadamente 
inexacto”.  La segunda característica, compartida con el (menos preciso) observable de 
código, consiste en la presencia de los sesgos desconocidos y lentamente variantes: 

, , , .i i i i
u u uE cT cI c t  Contrariamente a las ambigüedades, estos sesgos tienen cotas 

superiores métricas, sin embargo, como son mucho más grandes que la longitud de onda 
 y operan aditivamente a los errores de medida ( , )i i

ucm , invalidan toda pretensión 

de precisión sub-centimétrica a partir del uso de este observable. Para lograr la alta 
precisión buscada es necesario entonces, o bien estimar con precisión centimétrica (y si 
posible milimétrica) dichos sesgos, usualmente llamados en este contexto “variables 
indeseadas”, o bien crear de alguna manera nuevos observables diferenciales que sean 
independientes de ellos. Recién cuando esto último sea resuelto, será posible abordar el 
problema de determinar o estimar las ambigüedades con la exactitud requerida. 
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Las técnicas de fase diferencial (al igual que las de código diferencial) aprovechan la 
fuerte correlación espacio-temporal de los sesgos mencionados arriba para estimarlos o 
bien suprimirlos como perturbación en modo común mediante esquemas multi-receptor 
y/o multi-épocas  
 
En este párrafo nos concentramos en describir observables diferenciales que dan cuenta 
de las variables indeseadas y por ende permiten formular apropiadamente el problema 
de la determinación de las ambigüedades.  

9.4.1 Diferencias simples espaciales de fase 
Retomamos el observable de fase (Ecs. (9.29)) con la ambigüedad real expresada como 
suma de las ambigüedades fraccional y entera: i i i

j j jB N  , para 1,...,i s  (n° de 

satélites visibles comunes) y ,j u r , 
 

ˆ ( ) ( ) ( )i i i i i i i i i i
j j j j j j j jL R E c T I c t t N cm               (9.74) 

 
Definimos el nuevo observable llamado diferencia de fase espacial simple entre usuario 
y referencia para cada satélite 1,...,i s  visible desde ambos receptores: 
 

ˆ( ) ( ) ( ) ( ) ( )i i i i i i i i i i
ur u r ur ur ur ur ur ur ur ur urL t L t L t R E c T I c t N cm              (9.75) 

 
donde se introdujo la diferencia entre fases sincrónicas: 
 

( ) ( ) ( ( ) ( )) ( ) ( )i i i i
ur u r u o o r o o u o r ot t t t t t            (9.76) 

 
Como se advierte, esta última sólo depende de la diferencia entre las fases de los 
osciladores locales en el instante de enganche común y por tanto es independiente de i. 
 
De la (9.75), notamos que las variables indeseadas que dependen exclusivamente de i 
fueron suprimidas con la diferencia espacial. Más específicamente, el nuevo observable 
no depende de los sesgos de los relojes satelitales ni de sus fases iniciales: ( )i

ot .  

 

Para una línea de base corta: 700 ,ur mD  de acuerdo con la (9.71), ˆ i
urR  podrá 

escribirse como función lineal en urD  con residuo geométrico sub-centimétrico. Si a 

esto agregamos la suposición de que las diferencias entre errores troposféricos a tal 
distancia relativa puedan ser debidamente canceladas (tal vez usando algún modelo 
atmosférico local), la alta correlación espacial entre los sesgos ionosféricos y espaciales 
permitirá suponer al término ( )i i i i

ur ur ur ursp E c T I    al menos centimétrico y por ende 

incluirlo en los residuos.  Bajo estas condiciones formulamos el: 

Primer problema de resolución de ambigüedades enteras: 
Sea el siguiente modelo del observable (9.75) con residuos centimétricos 

, ; 1,...,i i i i i
ur ur ur ur urR sp cm i s      : 
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( ) ( )i i T i i
ur uu ur ur ur ur urL t c t N       R D


     (9.77) 

 
Introducimos la incógnita real: 1( )ur ur ur urc t N      y las incógnitas enteras: 

, 1,...,i1 i 1
ur ur urN N N i s  , todas constantes en tanto u y r compartan los mismos satélites 

en vista y conserven el enganche de fase. Sumando y restando ur  a cada ecuación del 

sistema (9.77) y luego rescribiendo a éstas matricialmente se obtiene: 
 

1,
21

,
1

0
1

1

urxT
u

ury urs s
ur ur

urz
s T

su
ur ur

D

D N

D

N

                              

G

R

L ξ

R




 



     (9.78) 

 
Donde se usaron las definiciones de los vectores de diferencias simples 

1s s
ur ur ur

T sL L   L     y de residuos 1 Ts s
ur ur ur

s    ξ    .  

 
El problema se reduce a resolver un sistema lineal de s ecuaciones con 4 incógnitas 
reales, s-1 incógnitas enteras y residuos centimétricos. Claramente, si todas las 
incógnitas fueran consideradas reales, el sistema sería incompatible, de hecho podría 
demostrarse que existe todo un sub-espacio lineal de dimensión 4 de soluciones posibles 
al problema de mínimos cuadrados formulado en base a la (9.78). 
 
En cambio, conocidas las ambigüedades enteras (invariantes), la solución de mínimos 
cuadrados del sistema (9.78) permite estimar instante a instante las componentes ECEF 
del vector distancia relativa ( )ur tD  con residuos centimétricos durante el tiempo en que 

ambos receptores compartan 4 o más satélites en vista. Nuevamente, la geometría de la 
constelación visible, representada por las filas de la matriz G, influirá decisivamente 
sobre la precisión final de las incógnitas reales. 
 
Sin embargo, deberá tenerse en cuenta que ni bien se modifique la constelación visible 
común, será necesario recalcular dichos enteros. Los procedimientos, con las 
provisiones necesarias que permitan seguir con precisión la línea de base entre dos 
móviles, son conocidos en la literatura como real time kinematics (RTK).  
 
La clave de los nuevos observables bajo la condición de línea de base corta es que éstos 
reducen los errores del segmento espacial y de propagación a magnitudes centimétricas. 
Esta condición es crucial para la convergencia de los métodos numéricos de 
determinación de las ambigüedades enteras (que finalmente se traducen en errores 
múltiplos de la longitud de onda) necesarios para lograr la alta precisión deseada.  Sin 
embargo, la presencia de la incógnita real arbitrariamente grande ur  se traduce en una 

dificultad numérica considerable para resolver simultáneamente las ambigüedades 
enteras y las coordenadas de la línea de base. Por esta razón, si bien existen esquemas 
de posicionamiento relativo precisos basados en diferencias simples entre receptores, las 
diferencias espacio-satelitales descriptas en el párrafo siguientes son las preferidas para 
este fin dado que suprimen toda incógnita real excepto las coordenadas buscadas.  
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9.4.2 Diferencias dobles espacio-satelitales de fase 
El observable diferencial simple (9.77): 
 

( ) , ( ) ; 1,...,i i i i
ur uu ur ur ur ur urL t c t N i s        R D


   (9.79) 

 
posee como "variables indeseadas" remanentes el sesgo relativo entre los relojes de los 
receptores urc t  y las diferencias entre su fases sincrónicas ur . Interesa destacar que 

ambos son independientes de i, de este modo, eligiendo como referencia (por ejemplo) 
al satélite 1 (ver Fig. 9.4) es posible establecer los siguientes (s-1) diferencias dobles 
espacio satelitales: 
 

1 1 1 1 1( ) ; 1,..., 1i i i T i i
ur ur ur u u ur ur urL L L N i s      R R D

 
    (9.80) 

 
En tano que observables independientes de todas las variables indeseadas excepción 
hecha de las nuevas ambigüedades enteras.  Sus residuos centimétricos quedan dados 
por: 
 

1 1 1 1 1
, ; 1,..., 1i i i i i

ur ur ur ur urR sp cm i s           (9.81) 

 

Segundo problema de resolución de ambigüedades enteras 
Usando las definiciones de los vectores de diferencias y residuos dobles: 

21 1 1d s
ur ur ur

T sL L    L     y 21 1 1Ts s
ur ur ur

s    ξ    , el sistema de ecuaciones (9.80) 

se rescribe matricialmente como: 
 

2 1 21

1
1

( )

( )

T
u u urx ur

d d
ur ury ur

s
s T

urz ur
u u

D N

D

D N

                          

G

R R

L ξ

R R

 
 

 
 
 

    (9.82) 

 

ˆ i
rR

ˆ i
uR

Referencia en Pr Usuario en Pu  

Satélite i  



Satélite 1  
(referencia) 

ur u  rD P P

1ˆ
rR 1ˆ

uR

Figura 9.4: Diferencias dobles espacio-satelitales. 
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A diferencia del caso anterior el problema consiste en resolver un sistema lineal con 
sólo 3 incógnitas reales y s-1 incógnitas enteras. Esta última formulación es la más 
usada por los algoritmos que resuelven, a la vez las incógnitas reales y las 
ambigüedades enteras. La razón es que el problema es más simple, requiriere menos 
tiempo de cómputo y la solución resulta más precisa. 
 
El condicionamiento de la matriz ( 1) 3s xG   determinará fuertemente el DOP final de 
las estimaciones y esta vez será función no sólo de la geometría de la constelación 
común a ambos receptores, sino además de la selección del satélite de referencia. La 
recomendación usual es que éste último esté lo más cercano posible a la posición 
zenital. 

9.4.3 Determinación de las ambigüedades enteras época por época. 
Dividiendo la ecuación en metros (9.82) por la longitud de onda λ, se obtiene la 
ecuación en unidades de ciclos: 
 

( ) ( ) ( )t t t  Φ FD N ξ     (9.83) 
 
que constituye el modelo más usado para el posicionamiento relativo de precisión 
basado en medidas diferenciales de la fase de portadora, entre dos receptores. En él se 
usaron las definiciones obvias para mN   y ( ) mt ξ   y 1( ) ( )d m

urt t Φ L   junto 

con 1 x3m F G   siendo 1m s  . Por las razones que veremos, en el modelo se 
explicita la época t de las medidas y residuos. En rigor, la matriz F también varía con el 
tiempo debido a los desplazamientos de los satélites en su orbita y a movimientos 
absolutos o relativos de ambos receptores a bordo de sendos móviles. Sin embargo, 
como F depende de la geometría de la constelación común y no de magnitudes 
absolutas, sus elementos son lentamente variables.  En cuanto al vector entero N, es 
supuesto constante durante las observaciones mientras los receptores permanezcan 
enganchados a un conjunto común e invariante de satélites de la constelación GPS. Por 
hipótesis, el vector de los residuos ( )tξ  es un proceso estocástico centrado tal que: 

1cov( ( )) 0t   ξ Q W  
 
El problema a resolver para una dada época t consiste en la minimización "mixta" 
(simultáneamente sobre reales y enteros) del siguiente criterio (cuadrado de la norma de 
los residuos) para un dado vector de medidas ( )tΦ


 sobre los espacios de vectores 

3D   y mN  : 
 

2

( , ; ) ( ( )) ( ( ))T

W
C       D N Φ Φ FD N FD Φ N W FD Φ N

   
  (9.84) 

 

donde 
W

 representa la norma según la matriz de covariancia positiva definida 
xm mW  .  La solución buscada, si existe es: 

 

3,

ˆ ( ) arg min ( , ; )
m

C
 


D N

D Φ D N Φ
 

 
    (9.85) 

 
Por falta de espacio no desarrollaremos aquí la solución general de este problema que en 
muchos aspectos es aún un tema de investigación. En el Capítulo 11 veremos, sin 



Martín España Comisión Nacional de Actividades Espaciales  

 229 

embargo, como es posible abordar la estimación de las ambigüedades en el contexto de 
la navegación integrada. 
 
Tal vez el más popular de los métodos de resolución del problema (9.85) usando 
exclusivamente observables diferenciales dobles de fase época por época sea el 
LAMBDA method (Least-squares AMBiguity Decorrelation Adjustment) desarrollado 
por Teunissen. Recomendamos sobre este tema: Teunissen, (1994), Teunissen, (1995), 
Teunissen, et al. (1995) o la excelente presentación en el Cap. 6 de Misra/Enge (2006).  

9.4.4 Diferencias espacio-temporales de la Fase 
Siempre bajo la condición de línea de base corta (lo cual permite, como vimos, una 
formulación lineal de los observables diferenciales de fase respecto de las componentes 
del vector línea de base), partimos del observable diferencial simple (9.77) medido en 
dos épocas distintas t t  y t y definimos las diferencias espacio-temporales  
 

( ) ( ) ( )

( ( ) ( )) ( ) ( ) ( ( ) ( ))

i i i
ur ur ur

i i T i T i
uu uu ur uu ur ur ur

L t L t L t t

t t t t t t t t

  

      R R D R D D


  
  

 (9.86) 

 
Agrupando las diferencias en el vector 1( ) [ ( ) .... ( )]s T

ur urt L t L t  urL   los residuos en el 

vector urδξ  y llamando ( ) ( ) ( )ur urt t t t   urD D D , las anteriores se rescriben 

matricialmente como sigue: 
 

1, 1, 1,

, , ,

( ( ) ( )) ( )

( ) ( ) ( )

( ( ) ( )) ( )

T T T
u u u

s T s T s T
u u u

t t t t

t t t

t t t t

      
   

       
   
         

ur ur ur ur

R R R

L D D δξ

R R R

  
  

 
  
  

 (9.87) 

 
De la anterior surge, en primer lugar, que las ambigüedades enteras no intervienen en 
los nuevos observables diferenciales y en segundo, que éstos “miden” simultáneamente 
a ( )turD  y ( )t urD . Con lo cual, no sólo tienen información de la distancia relativa en 

tiempo real, si no, además, de su variación entre dos épocas consecutivas (medida de la 
velocidad relativa). Sin embargo, evaluando cuidadosamente el primer termino de la 
expresión anterior advertimos que la sensibilidad de este observable respecto de ( )turD  

requiere un cambio importante en la geometría de la constelación en el tiempo t . 
Puesto de otro modo, una estimación precisa de la distancia relativa requiere que ambos 
receptores permanezcan inmóviles durante el tiempo necesario para asegurar un valor 
bajo de DOP. Esto sin dudas limita fuertemente el uso de un tal observable a la 
navegación de vehículos, pero en cambio encuentra un campo interesante de aplicación 
en las mediciones geodésicas. Por otro lado, para t  suficientemente pequeño el 
segundo término de la (9.87) nos dice que una buena geometría de la constelación 
común a ambos receptores habilita la determinación precisa de la velocidad relativa 
entre ambos vehículos casi época por época.  
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Capítulo 10  
Navegación Integrada 

 
Un sistema de navegación inercial, constituido por una unidad de mediciones inerciales 
(UMI: ternas de giróscopos y acelerómetros) y un algoritmo de integración numérica de 
las ecuaciones cinemáticas como los vistos en el Capítulo 7, provee estimaciones de 
posición, velocidad y orientación de un vehículo a una tasa de muestreo sólo limitada 
por la velocidad de cómputo en tiempo real abordo.  Sin embargo, como se mostró en 
ese mismo Capítulo, el desconocimiento en las condiciones iniciales, los errores de los 
sensores inerciales, las aproximaciones del modelo de gravedad y las del algoritmo de 
integración numérica hacen que el navegador inercial puro adolezca de errores que 
crecen polinomialmente con el tiempo. Clásicamente, estos errores han sido controlados 
(acotados o reducidos) usando medidas de sensores exoceptivos con las cuales se 
reinicializan las variables de navegación. Un ejemplo es el filtro estabilizador del canal 
vertical introducido en el Párrafo 5.4.1 que actualiza la altura con medidas barométricas. 
En este Capítulo se presenta un procedimiento numérico sistemático para fusionar 
óptimamente (en el sentido que oportunamente definiremos) datos provenientes de 
cualquier tipo de sensores, incluidos los sensores inerciales.  De este modo, se logra una 
navegación a la vez precisa, estable y con una alta tasa de salida de datos. 
 
Las técnicas de fusión de datos procesan medidas provenientes de diversas fuentes y 
con ellas estiman las variables deseadas. Su interés radica en que mientras más fuentes 
de información se disponga más se reduce la imprecisión de la estimación a la vez que 
aumenta la confiabilidad y disponibilidad de los estimados. La "Navegación Integrada" 
es la aplicación de estos métodos a la estimación del estado cinemático de un vehículo 
visto como un proceso estocástico continuo modelado por las ecuaciones cinemáticas 
descritas en el Capítulo 5.  La información disponible sobre el estado son: las medidas 
inerciales, suministradas a una alta tasa de muestreo o aún en tiempo continuo, las 
mediciones exoceptivas, adquiridas en instantes no necesariamente equi-espaciados ni 
siempre por los mismos instrumentos sumada a toda información recabada a priori 
sobre el estado cinemático inicial. El carácter estocástico del estado se debe a: a) 
perturbaciones en las medidas, b) incertezas en las condiciones iniciales, c) 
imprecisiones en los modelos de los sensores y d) errores de en el modelo de la 
gravedad.  
 
Una característica destacable de la navegación integrada es que juntamente con el 
estado cinemático estima en línea las incertezas paramétricas de los modelos, en 
particular los de los sensores. Esto adquiere particular relevancia en sistemas de bajo 
costo sonde los sensores suelen adolecer de pobres performance y estabilidad funcional.  
 
Los sistemas de navegación integrada habilitan de este modo un comportamiento 
adaptativo (ajustan sus propios parámetros), estable (sin las divergencias propias de la 
navegación inercial pura estudiadas en el Capítulo 6), redundante y robusto frente a 
fallas, con buena performance dinámica tanto en altas como en bajas frecuencias, capaz 
de proveer una alta tasa de datos de salida. Sumado a esto, no es menor el hecho de que 
puedan ser aplicables a configuraciones instrumentales casi arbitrarias.  
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El Capítulo se inicia formulando el problema de la navegación integrada para luego 
enmarcarlo en la teoría de la fusión de datos vía el filtrado no lineal. Una introducción a 
esta teoría se presenta en el Párrafo 10.2 desde el enfoque Bayesiano. El objetivo es 
situar el problema en un contexto general de modo de otorgar al diseñador o 
investigador la amplitud de criterio necesaria para evaluar configuraciones alternativas 
para una dada aplicación o diagnosticar las causas de deficiencias en las soluciones 
propuestas. Esto parece necesario en una tecnología cada vez más ubicua en la cual hay 
mucho para innovar en términos de aplicaciones, configuraciones instrumentales y 
algoritmos numéricos.  
 
La complejidad inherente al filtrado no lineal impone, sin embargo, el uso de 
procedimientos numéricos aproximados, la mayoría de los cuales se basan en la teoría 
del regresor lineal óptimo. Luego de presentar este concepto en el Párrafo 10.3, se 
introducen las aproximaciones más frecuentemente usadas en navegación, a saber: El 
Filtro de Kalman Extendido (EKF: Extended Kalman Filter) propuesto inicialmente por 
Jazwinski, (1970) y el Filtro de Kalman con "Puntos Sigma" (SPKF: Sigma Point 
Kalman Filter) propuesto por Julier/Uhlmann/Durrant-Whyte, (1995). Ambos son 
tratados, respectivamente, en los Párrafos 10.4 y 10.5. 

10.1 Formulación del problema  

Como se dijo, la navegación integrada es una aplicación particular del filtrado no lineal 
a la estimación del estado cinemático de un vehículo.  En el Capítulo 5 se mostró que 
dicho estado evoluciona según ecuaciones estocasticas que obedecen a un modelo 
general del tipo:  
 

0 0 0 0ˆ( , ) ( ) ; ; ( ) . .{ , ( )}kin g kin xt t t v a t  x a x p B x μ x x P    (10.1) 

 
La forma de la función vectorial ( , )kin ga x p  y la matriz Bkin(x) dependen de la terna de 

referencia elegida (ver Ecs. (5.3) (5.17) y (5.33) del Capítulo 5). El vector gp  es el 

conjunto de parámetros que condensan las incertidumbres del modelo de gravedad, en 
tanto que el estado inicial, en el instante arbitrario t0, es el vector aleatorio 0( )tx  cuyo 

valor esperado y matriz de covariancia son supuestos conocidos. El modelo resulta 
lineal respecto de la función forzante de entrada dada por el vector μ  de las magnitudes 
inerciales. 
 

10.1.1 Descripción del sistema de medida 
La Fig. 10.1 esquematiza la interrelación entre el estado cinemático continuo 
subyacente ( )tx  y las medidas accesibles en tiempos discretos (por encima de la línea 

de trazos). (t) representa el perfil temporal continuo de las magnitudes inerciales, 
cuyas medidas son entregadas por la unidad de mediciones inerciales (UMI) en los 
instantes de muestreo ts a una tasa uniforme que en la práctica oscila entre los 50 y 
300sps.  
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Por otra parte, los sensores exoceptivos (p.e.: magnetómetro, receptor GNSS, altímetro, 
star tracker, sensor de distancia, etc.) proveen las mediciones ky


 en los instantes 

discretos tk (no necesariamente equi-espaciados) vinculadas con el estado cinemático kx  

mediante un modelo del sensor correspondiente supuesto conocido y expresado como*:  
 

( ; ) ; (0, )k k k e k k kN   y h x p R
      (10.2) 

 
El índice k en kh  enfatiza el hecho de que el sensor exoceptivo no es necesariamente el 

mismo en cada instante de adquisición de una medida. El vector ep  agrupa los 

parámetros inciertos del modelo del sensor. Para simplificar la notación se evita indexar 
con k al vector ep . k  representa el ruido discreto aditivo de medida supuesto centrado, 

gaussiano e independiente con matriz de covariancia Rk.  
 
El vector de las magnitudes inerciales μ  es sólo accesible a través de sus medidas. 
Como se estableció en el Capítulo 2, el modelo que transforma las mediciones μ


 de la 

UMI en las correspondientes magnitudes inerciales, se supone de la forma (ver 
definiciones (2.11), (2.12) y (2.13) del Párrafo 2.3.1): 
 

( ; ) ( )

; ; ;

b

ib

T T TT T TT T T
f f i

 

 

 
      
 

            

ω
μ μ p ξ μ σ b ξ

f

σ σ σ b b b p σ b

  
  (10.3) 

 
El vector ip  agrupa los parámetros inciertos del modelo de los instrumentos inerciales. 

Dado que la función ( ; )iμ p
  es bilineal en sus argumentos, con el modelo de estado 

(10.1) resulta lineal tanto respecto de las perturbaciones estocásticas como respecto de 
las medidas inerciales. En el Capítulo 2 se mostró además (ver Párrafo 2.7) que la 
perturbación ξ  puede representarse mediante un modelo markoviano de la forma (ver 

definiciones correspondientes a la Ec. (2.56)): 
 

                                                
*Para simplificar la notación, las variables en instantes discretos tk podrán ser denotadas: v(tk)=vk. 

(t) 

x(t) 

( )stμ


ky


1ky


2ky


Proceso continuo 

Figura 10.1: Esquema de tiempos del sistema de medidas. 

Sistema de adquisición 
de medidas  ( )stμ

 ( )stμ


  xk-1   xk-2    xk 

   
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0; (0, ( ) ); ( ) . .(0, )

; (0, ( ) )

N t t v a

N t   

   

   
ζ ζ ζ ζζ ζ n n Q ζ P

ξ ζ n n Q

  


  (10.4) 

 
Con el único fin de no recargar la presentación, en adelante se supondrá que 0   en 
(10.4), lo que equivale a suponer que la perturbación aditiva ξ  es un ruido blanco 

continuo centrado con densidad espectral matricial Q , matriz que en la práctica es 

supuesta constante. Reconocemos sin embargo que en ciertos casos en particular 
sistemas de alta precisión esta suposición puede no ser la adecuada. En tal caso será 
necesario agregar las componentes del estado ζ  al vector de estado aumentado que se 
definirá en el próximo párrafo.  

10.1.2 Estado aumentado del sistema de navegación 

Los valores de los parámetros instrumentales ip  y ep  podrán ser los consignados en la 

hoja de datos del fabricante del instrumento o bien, de recerirse mayor precisión, podrán 
ser medidos por el usuario en laboratorios de ensayos mediante procedimientos de 
calibración instrumental adecuados a ese fin. Debido a las simplificaciones propias del 
modelado, estos parámetros pueden sin embargo exhibir inestabilidades que se verán 
acentuadas en instrumentos de bajo costo. Por esto, en la práctica no son considerados 
constantes sino procesos aleatorios. La vía más usual para captar su variabilidad 
consiste en modelarlos como procesos brownianos continuos mediante:  
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p

p p ξ

p
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
 


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

  (10.5) 

 
Donde, la condición inicial en un instante arbitrario tk es un vector aleatorio supuesto 
gaussiano de valor esperado ˆ kp  (estimación a priori) y matriz de covariancia ( )p ktP .  

El proceso vectorial continuo ( )p tξ  es supuesto independiente, gaussiano y centrado 

con pQ  una matriz diagonal conformada por los sub-bloques diagonales iQ , eQ  y gQ .  

 
El objeto de la navegación integrada es estimar para kt t  simultáneamente todas las 

componentes del vector de estado aumentado (VEA): 
 

TT T T T

i e g  χ x p p p    (10.6) 

 
Denotando:  
 

( ; ) ( , ) ( ) ( ; )

( , ) ( )( ( ) )

kin kin g kin i

kin g kin

 

  

f χ μ a x p B x μ p

a x p B x μ σ b

 





   (10.7) 
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El estado aumentado ( )tχ  resulta un proceso modelado mediante la siguiente ecuación 
diferencial no lineal estocástica que surge de combinar las Ecs. (10.1), (10.2) y (10.3).  
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

 
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 (10.8) 

 
El modelo es lineal respecto de las medidas inerciales μ


 y el ruido blanco ( )tξ ; este 

último con densidad espectral ( ) ( , )pt diag Q Q Q . El ruido de medida aditivo kη  es 

supuesto descorrelacionado de ( )tξ . Las mediciones ky


 constituyen los datos 

exoceptivos adquiridos sobre el proceso ( )tχ  en los instantes discretos tk. La condición 

inicial del VEA es un vector aleatorio con momentos: 0 0ˆ( )}E t χ χ  y 0 0( )t  P P  

0 0 0 0ˆ ˆ( ) )( ( ) ) }Tt t  χ χ χ χ  supuestos conocidos: 
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    (10.9) 

 

10.1.3 Procesos de Markov 
La propiedad fundamental que caracteriza a un proceso estocástico markoviano (Andréi 
Andréyevich Márkov, 1856-1922) se puede sintetizar como: “Dado el estado ( )ktχ  en 

un instante arbitrario tk, la densidad de probabilidad del estado en cualquier instante 
futuro kt t  condicionada al conocimiento de toda la historia temporal pasada ( kt t ) 

es igual a la densidad condicionada exclusivamente al conocimiento del estado en tk” . 
 
Formalmente: 
 

( ( ) / [ , ]) ( ( ) / ( ));k k kp t t p t t t t   χ χ χ χ     (10.10) 

 
En otros términos: el estado del proceso en cualquier instante de tiempo condensa la 
información probabilística de la historia pasada anterior a ese instante.   
 
Por esto, la densidad de probabilidad condicional: 0 0( ; ) ( ( ) / ( ))p t t p t tχ χ χ , llamada 

también "probabilidad de transición", en función de dos instantes de tiempo ordenados 

0t t , es lo que caracteriza al proceso markoviano χ . Un sistema de ecuaciones 

diferenciales estocásticas en forma de ecuaciones de estado tales como las del modelo 
(10.8) (en este contexto llamadas ecuaciones de difusión), genera un proceso 
markoviano. Como se muestra en Papoulis, (1991) (ver también Åström, 1970), la 
probabilidad de transición resulta ser la solución de un sistema de ecuaciones a 
derivadas parciales llamado de Fokker-Plank (FP), con condición de contorno la 
función densidad de probabilidad del proceso en un instante cualquiera t0: 0( ( ))p tχ . Las 
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ecuaciones de FP, también llamadas de difusión hacia adelante o de Kolmogorov, 
pueden ser obtenidas en forma directa a partir de las ecuaciones de difusión. 

10.2 Estimación óptima Bayesiana del estado aumentado 

Denotamos al conjunto de observaciones exoceptivas adquiridas hasta un dado instante 
tk como: 
 

1 2{ , , ,....}k k k k Y y y y
      (10.11) 

 
Como es sabido (ver por ejemplo Papoulis, 1991), el estimador óptimo en el sentido 
medio-cuadrático del estado aumentado ( )tχ , dadas todas las medias disponibles 

anteriores a kt t , es su valor esperado condicionado a las mediciones Yk formalmente 

escrito en función de la densidad de probabilidad condicional ( ( ) / )kp tχ Y  como: 

 

 E ( ) / ... ( ) ( ( ) / ) ;k k k kt t p t d t t
 

 

  χ Y χ χ Y χ    (10.12) 

 
El procedimiento recursivo para la determinación de este estimador a medida que se 
adquieren nuevas observaciones es la solución del llamado problema de filtrado 
continuo-discreto y se descompone en dos pasos.  

10.2.1 Fase de predicción:  

La densidad de probabilidad de transición ( ( ) / )kp tχ χ  del proceso Markoviano ( )tχ  

para kt t  es la solucion de las ecuaciones a derivadas parciales espacio temporales de 

Fokker-Plank con condicion de contorno ( / )k kp χ Y  en kt t . Con ambas densidades se 

construye la densidad de probabilidad condicional a priori, a partir de la densidad 
condicional marginal: 
 

( ( ) / ) ( ( ), / ) ( ( ) / , ) ( / )

( ( ) / ) ( / )

k k k k k k k k k

k k k k

p t p t d p t p d

p t p d

 



 


χ Y χ χ Y χ χ χ Y χ Y χ

χ χ χ Y χ
 (10.13) 

 
Donde, la 1ª igualdad es simplemente el cálculo de una densidad marginal, la 2ª es el 
resultado de aplicar la identidad bayesiana general: ( , ) ( / ) ( )p x y p x y p y  y la 3ª surge 

del carácter markoviano ( ) para kt t tχ que, cuando es condicionado al estado anterior 

kχ , resulta independiente de toda medida anterior al instante kt
*. Sustituyendo la 

(10.13) en la (10.12) se obtiene la predicción óptima de ( )tχ  para t entre dos instantes 

sucesivos de adquisición de medidas exoceptivas ( 1[ , )k kt t t  ), dadas las medidas 

pasadas disponibles Yk. 

                                                
* En efecto, siendo ( )tχ  markoviano, el conocimiento cualquier variable función del estado en un 

instante anterior a tk no agrega información alguna al conocimiento del estado en tk. 
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10.2.2 Fase de actualización: 

Con la llegada de la nueva medición 1k y


, se obtiene la densidad condicional 

1 1( / )k kp  χ Y  mediante la cual es posible calcular el nuevo estimador óptimo a 

posteriori:  
 

 1 1 1 1 1 1E / ... ( / )k k k k k kp d
 

     
 

  χ Y χ χ Y χ    (10.14) 

 
Para determinar 1 1( / )k kp  χ Y  se usa la siguiente relación bayesiana (ver p.e. Papoulis, 

1991):  
 

1 1
1 1 1 1

1

1 1 1 1 1 1

1 1

( , / )
( / ) ( / , )

( / )

( / , ) ( / ) ( / ) ( / )

( / ) ( / )

k k k
k k k k k

k k

k k k k k k k k k

k k k k

p
p p

p

p p p p

p p

 
   



     

 

 

 

χ y Y
χ Y χ y Y

y Y

y χ Y χ Y y χ χ Y

y Y y Y




 
 

 (10.15) 

 
Una vez más, en la última igualdad se usó la condición de markovianidad de ( )tχ . Para 

el cálculo de la densidad condicional 1 1( / )k kp  y χ


 se parte del modelo de la medición 

exoceptiva en el instante tk+1 dado por la 2ª de las Ecs. (10.8), para escribir: 
 

1 1 1 1 1 1 1 1

1 1 1 1 1

( , / ) ( / , ) ( / )

( ( ) ) ( )
k k k k k k k k

k k k k k

p p p

p
       

    


   

y η χ y η χ η χ

y h χ η η

 
   (10.16) 

 
En la 2ª igualdad se usó la independencia de k respecto de kχ  y el hecho de que, de 

acuerdo con el modelo (10.8), 1ky


 resulta una variable “cierta” cuando 1 1,k k η χ  están 

dados, por lo tanto, su densidad está concentrada en el único punto donde no se anula el 
“delta” de Dirac ( )   Marginalizando la expresión anterior respecto de 1k η  y usando 

nuevamente la condición de markovianidad de ( )tχ  y de independencia de k se 
obtiene: 
 

1

1 1 1 1 1 1 1 1

1 1 1

( / ) ( ( ) ) ( )

( ( ))
k

k k k k k k k k

k k k

p p d

p


       

   

   

 
y χ y h χ η η η

y h χ

 

   (10.17) 

 
Donde con 

1
( )

k
p

   se denota la densidad de probabilidad de k+1 evaluada en el 

argumento. Resta determinar la densidad condicional 1( / )k kp y Y


, para lo cual se parte 

una vez más de la relación bayesiana: 
 

1 1 1 1 1

1 1 1

( , / ) ( / , ) ( / )

( / ) ( / )
k k k k k k k k

k k k k

p p p

p p
    

  





y χ Y y χ Y χ Y

y χ χ Y

 
    (10.18) 
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La segunda igualdad resulta otra vez de la markovianidad del proceso ( )tχ . La densidad 

de probabilidad buscada se obtiene marginando la anterior respecto de 1kχ  y usando la 

relación (10.17) mediante: 
 

11 1 1 1 1 1( / ) ( ( ( )) ( / )
kk k k k k k k kp p t p d
       y Y y h χ χ Y χ

 
  (10.19) 

 
Conocida la densidad (10.19) es posible ahora obtener formalmente la predicción 
óptima de la "próxima" medida 1ky


 mediante: 

 

 1 1 1 1E / ( / )k k k k k kp d


   


 y Y y y Y y
   

    (10.20) 

 
Finalmente, la nueva densidad a posteriori 1 1( / )k kp  χ Y  surge de sustituir en la (10.15), 

las (10.19) y (10.13) para t=tk+1. Con ésta se reinicia nuevamente la fase de predicción, 
lo que asegura la recursión del procedimiento. 

10.3 Aproximaciones del estimador recursivo óptimo 

A pesar de su gran interés teórico, el procedimiento bayesiano para obtener el estimador 
optimo recursivo requiere evaluar cada vez complejas integrales como las (10.13), 
(10.14) ó (10.19). Como si esto fuera poco, necesita además resolver la ecuación 
diferencial no lineal de FP a derivadas parciales para obtener la densidad de 
probabilidad de transición buscada ( ( ) / )kp tχ χ  del proceso ( )tχ  para t>tk. Claramente, 

esto es impracticable en general, sin embargo, si tanto el estado ( )tχ  como sus medidas 

ky


 obedecen a modelos lineales y al mismo tiempo las perturbaciones y condiciones 

iniciales son gaussianas, entonces todas las variables aleatorias son también gaussianas 
y en este caso el estimador recursivo óptimo exacto es el filtro lineal (o regresor lineal 
óptimo) propuesto por Kalman (Kalman, 1960). De otro modo, cualquier solución 
viable al problema de la estimación recursiva no lineal de ( )tχ  será necesariamente 
aproximada.   
 
Llamaremos estimador a priori (o predictor), que denotamos ˆ ( )tχ , a todo estimador 

del proceso ( )tχ  que sea función de las medidas 0{ ..., , }k k-2 k -1 k, ,Y y y y y
    adquiridas 

hasta un instante tk tal que kt t . En particular, se denotará: 1 1ˆ ˆ ( )k kt
 
 χ χ  al estimador 

a priori calculado para el instante 1kt   en que es adquirida la próxima medida.  Bajo las 

mismas condiciones, denotamos 1ˆ ky  a la predicción de dicha medida. En cambio, 

denotaremos con ˆ ˆ( )k kt χ χ  al estimador a posteriori obtenido en kt t  función de las 

medidas kY  adquiridas hasta ese mismo instante.   

 
La siguiente es la estructura general de un regresor lineal: 
 

1 1 1 1 1 1 1 1ˆ ˆ ˆ ˆ( )k k k k k k k k
 

            χ χ K y y χ K y


   (10.21) 
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El segundo término del segundo miembro debe ser visto como una corrección a la 
estimación a priori 1ˆ k


χ  función de la diferencia 1 1 1ˆk k k    y y y


 entre la "nueva" 

medida en el instante 1kt   y su correspondiente predicción. Dicha diferencia se conoce 

con el nombre de innovación y la matriz 1kK  es llamada ganancia del regresor. El 

criterio de optimalidad para la  matriz 1kK  es: 

 

1 1 1
arg minˆ ( })T

k k ktraza E    
K

K χ χ     (10.22) 

 
Donde:  
 

1 1 1 1 1 1ˆk k k k k k


          χ χ χ χ K y    (10.23) 

 
Como puede verse, por ejemplo en Kailath (1983) o también Jazwinski (1970), la 
ganancia óptima que cumple el criterio (10.22) existe, y es la única que satisface la 
condición de "ortogonalidad": 
 

 1 1( ) 0T
k kE    χ y    (10.24) 

 
Sustituyendo en la condición anterior la expresión (10.21) se obtiene  
 

 1 1 1( 1) ( 1)T
y k k k yk E k
       P χ y K P    (10.25) 

 
Donde, la covariancia del error de predicción de la medición es:  
 

 1 1( 1) T
y k kk E    P y y    (10.26) 

 
De la Ec. (10.25) surge la expresión de la ganancia óptima del regresor lineal: 
 

1
1 ( 1) ( 1)k y yk k
   K P P     (10.27) 

 
La expresión (10.27) expresa el hecho "natural" de que el peso de la innovación sea 
mayor cuanto mayor sea su correlación con el estado, expresada por la covariancia 

( 1)y k P  y, por otra parte, que el peso se reduzca con la imprecisión de la medida 

caracterizada por la covariancia ( 1)y k P .  

 
Finalmente, a partir de la Ec. (10.23) y usando la condición (10.24) se obtiene 
fácilmente la covariancia del error de estimación a posteriori del estado, óptima en el 
sentido (10.22): 
 

 1 1 1

1

( 1) ( ) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1)

T
k k k y

y y y

k E k k

k k k k


     

 
  

       

     

P χ χ P K P

P P P P
  (10.28) 
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Donde  1 1( 1) ( )T
k kk E  

    P χ χ  es la covariancia del error de predicción del estado 

en tk+1. 
 
Conviene detenerse un momento en este punto para destacar un hecho que muchas 
veces suele pasarse por alto. La Ec. (10.27) nos dice que, aunque el sistema sea no 
lineal, siempre será posible obtener un estimador lineal óptimo del estado a condición 
de poder calcular los momentos de primer y de segundo orden correspondientes (valor 
medio a priori 1ˆ k


χ  y covariancias ( 1)y k P  y ( 1)y k P ).  Este estimador no es 

necesariamente el mejor de todos los posibles en el sentido bayesiano más amplio, a 
menos que, como se mencionó, todos los procesos sean gaussianos. En este caso 1kK  

es la llamada ganancia de Kalman y los estimados resultan los óptimos, es decir, tal 
como surge de las Ecs. (10.12), (10.14) y (10.20) se corresponden con las esperanzas 
matemáticas condicionales: ˆ ( ) { ( ) / },k kt E t t t  χ χ Y , 1 1 1ˆ { ( ) / }k k kE t  χ χ Y ; 

1 1ˆ { ( ) / }k k kE t y y Y . El correlador lineal óptimo es en este caso el filtro de Kalman.  

 
Sobre las conclusiones anteriores, el lector podrá consultar una extensa literatura 
disponible. Entre los clásicos citamos a: Kalman, (1960); Jazvinski (1970), Kailath, 
(1983) y Papoulis, (1991).  
 
La enorme significación teórica y práctica de lo anterior es lo que explica que la mayor 
parte de las aproximaciones al filtrado no-lineal propuestas en la literatura calquen la 
estructura del regresor lineal óptimo. La diferencia esencial entre los procedimientos 
suele radicar tan sólo en como son aproximados los momentos de primer y segundo 
orden durante la fase de predicción entre dos instantes consecutivos 1k kt t  .  

 
Las aproximaciones de filtrado no lineal más usadas en navegación integrada son: el 
Filtro de Kalman Extendido (EKF) y el Filtro de Kalman con "Puntos Sigma" (SPKF). 
En el EKF, el primer momento es calculado usando el Principio llamado de 
Equivalencia Cierta (que introduciremos oportunamente), en tanto que los momentos de 
segundo orden se obtienen propagando la matriz de covariancias entre dos instantes 
consecutivos 1k kt t   con base en una linealización de las ecuaciones de difusión del 

proceso estocástico.  En cambio, el SPKF calcula empíricamente ambos momentos a 
partir de las imágenes en 1kt   producidas por el flujo de la ecuación de estado (10.8) de 

un conjunto de puntos elegidos sobre el dominio de todas las variables probabilizadas 
en el instante kt . Estos puntos junto con ciertos parámetros de ponderación son 

llamados σ-puntos y de allí el nombre del método.  
 
Cualquiera sea la aproximación al filtro ideal usada, importa destacar una propiedad de 
las innovaciones y es que, cuando el filtro está bien "sintonizado", en otros términos, 
cuando el modelo estocastico del proceso haya sido adecuadamente caracterizado, se 
espera que la secuencia de las innovaciones sea centrada y descorrelacionada 
(autocorrelación impulsiva).  Si bien esta afirmación tiene un riguroso sustento 
matemático, el lector advertirá que, de no ser así, habría cierta capacidad remanente de 
predicción de la medición exoceptiva que no está siendo aprovechada, lo que sugiere 
una pobre caracterización del proceso a estimar. De lo anterior surge un método práctico 
de validación del filtro que consiste en medir la función de autocorrelación de las 
innovaciones. 
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En los párrafos siguientes se introducen los procedimientos EKF y SPKF. 

10.4 El filtro de Kalman extendido (EKF)  

Consideremos el modelo del estado aumentado (10.8) a partir del último instante de 
adquisición de datos exoceptivos kt . Denotamos:  

 
( ; [ , ], [ , ], ( ))

( ; [ , ], [ , ], ( )) ;( ; [ , ], ( ))

( ) ˆ( ) . .{ , }( )

k k k
k k k

p k k

k
k k k

k

t t t t t t
t t t t t t t t t t

tt v at

    
    

x μ ξ χ
χ μ ξ χ p ξ p

xχ χ Pp




  (10.29) 

 
al proceso estocástico vectorial continuo (flujo markoviano) solución de dicho modelo, 
cuando, [ , ]kt tμ


 y [ , ]kt tξ  son, respectivamente, los segmentos de las medidas adquiridas 

y de la realización del ruido ξ  con 1[ , ]k kt t t   y la condición inicial en kt  un vector 

aleatorio caracterizado como en las (10.9). 
 
La esencia del EKF (Jazwinski, 1970) consiste en proponer como estimador a priori 
para 1[ , )k kt t t   a la solución determinista del modelo (10.8) cuando todas las variables 

aleatorias son sustituidas por su estimados. En particular: ( ) 0t ξ  y ˆ( )k kt χ χ . Esta 

hipótesis central del método es denominada principio de equivalencia cierta (PEC) (ver 
también Åström/Wittenmark, (1995) o Van Der Water/Willems, 1981 sobre una 
discusión acerca del uso de este principio).  
 
En consecuencia, introducimos la "versión determinista" (ó PEC) de las ecuaciones 
(10.7) y (10.8)*. 
 

ˆ ( )( , ; [ , ])
ˆ( , [ , ]); ( )

( )0
kkin k k

k k k
k

tt t
t t t

t

    
        

    

xf x p μx
χ χ μ χ χ

pp

 
    (10.30) 

 
cuya condición inicial en el instante kt  se corresponde con la mejor estimación 

disponible del estado en ese instante. 

10.4.1 Fase de predicción: Propagación del estimador a priori  
Importa destacar que las soluciones del "modelo determinista" (10.30) son precisamente 
las que calcula el algoritmo numérico de navegación strapdown entre 1yk kt t  en 

cualquiera de las versiones vistas en el Capítulo 7, cuya forma y complejidad 
específicas dependen de la terna de navegación elegida. Denotamos la solución de la 
(10.30) para todo instante kt t  como: 

 
ˆ( ; [ , ], )ˆ( ) ( ; [ , ], ) ˆ

k k
k k

k

t t tt t t t      
x μ χχ χ μ χ p


   (10.31) 

 

                                                
En el vector p  se incluyen todos los parámetros  
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El EKF supone al estimador a priori o predictor del estado en 1kt   igual a la solución 

(10.31) en ese instante, así:  
 

1 1 1ˆ ˆ( ; [ , ), )k k k k kt t t
  χ χ μ χ

     (10.32) 

 
En cuanto a la predicción de la medición exoceptiva 1ˆ ky , ésta resulta de sustituir 1ˆ k


χ  

en la segunda ecuación (10.8) suponiendo 1 0k η .   

 

1 1 1 1 ˆˆ ( ( ; [ , ), )k k k k k kt t t   y h χ μ χ


    (10.33) 

 
A continuación definimos las desviaciones (fluctuaciones respecto de la componente 
determinista) ( )tχ  entre la solución del modelo estocástico de la Ec. (10.8) y la 
solución (10.31) del modelo determinista (10.30).  
 

1( ) ( ) ( ); [ , ]k kt t t t t t   χ χ χ     (10.34) 

 
Notar que de acuerdo con las (10.29) y (10.30), ( )} 0kE t χ  y ( ) ( ) }T

k k kE t t  χ χ P . 

Suponiendo las funciones ( , )   y 1( )k h  suficientemente diferenciables, a partir de 

las Ecs. (10.8), (10.30) y (10.33) los modelos de las desviaciones (10.34) y de la 
innovación 1 1 1ˆk k k   y y y

  resultan: 

 

2

2

1 1 1 1 1 1 1, 1 1 1
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t t t t t

t t t TOS

t
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

          

   

    

   
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χ χ μ χ μ B x ξ

χ μ χ B x ξ χ

χ χ χ χ

y h χ h χ η h χ χ η χ

 




 


(10.35) 

 
Donde,   y 1,k h  son los jacobianos respecto de χ  evaluados en los argumentos 

conocidos ( );tχ  ( )tμ


.  Con el fin de simplificar la notación, usaremos:  
 

1 1, 1

ˆ ˆ( , ; ) ( , ; )
( ) ( ( ), ( ))

0 0

( ) 0
( ) ( ( ))

0

( )

x k p k

kin

k k k

t t t

t t
I


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 
  
 

 
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f x p μ f x p μ
A χ μ

B x
B B χ

H h χ

 








    (10.36) 

 
La hipótesis de diferenciabilidad de las funciones anteriores permite asegurar que, para 
desvíos iniciales kχ  y potencia de las perturbaciones ξ  suficientemente pequeños, los 

términos de orden superior 
2

( )TOS χ  de las Ecs. (10.35) sean despreciables y, en tal 

caso, que las desviaciones (10.34) puedan aproximarse mediante las soluciones de las 
siguientes ecuaciones estocásticas lineales variantes en el tiempo para  1,k kt t t  .  
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1 1 1 1 1 1
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k
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t N t t
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xx
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ξ Q

y H χ η η R


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


 (10.37) 

 
Las Ecs. (10.37) son las ecuaciones de sensibilidad del estado frente a perturbaciones 
estocásticas, errores de medida, errores paramétricos y errores en las condiciones 
iniciales. Estas ecuaciones fueron establecidas en el Capítulo 6 para las distintas ternas 
de navegación (ver Ecs. (6.17)/(6.18), (6.22)/(6.23) y (6.63)). 
 
Denotamos la covariancia de las desviaciones ( )tχ  para kt t , como: 

 

 ( ) ( ) ( )Tt E t t  P χ χ     (10.38) 

 
Vistas las Ecs. (10.37) y lo expuesto en el Apéndice C (ver Ec. (C.10)) la covariancia 

( )tP , para kt t , es la solución de la ecuación diferencial matricial lineal: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ; ( )T T

k kt t t t t t t t t      P A P P A B Q B P P  (10.39) 

 
El EKF adopta la solución de la Ec. (10.39) en el instante tk+1 como la covariancia a 
priori (momento de 2º orden) del proceso en el instante de la nueva medida. Es decir: 
 

1( 1) ( )kk t
  P P     (10.40) 

 
A partir de la 2ª Ec. (10.37) evaluamos:  
 

   
 

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

( ) ( )( )

( ) ( )

T T

y k k k k k k k k k

T T T T

k k k k k k k k k

t E E

E t t

        

          

      

     

P y y H χ η H χ η

H χ χ H R H R R H


 (10.41) 

 

Como se demuestra en el próximo capítulo la correlación:  1 1 1( ) T
k k kt E    R χ η  

puede ser distinta de cero en algunas aplicaciones. En el Apéndice C se evalúa este 
término para una situación usual en la práctica. El EKF usa como covariancia de la 
innovación la que se obtiene sustituyendo la (10.40) en la (10.41); es decir: 
 

1 1 1 1 1 1 1 1( 1) ( ) ( ) ( )T T T

y k k k k k k k kk t t t             P H P H R H R R H  (10.42) 

 
Una vez evaluados los estimados de 1ˆ , ( 1)k k 

  χ P , 1ˆ y ( 1)k y k y P , el procedimiento 

continúa con la fase de actualización. 

10.4.2 Fase de actualización: Regresor lineal óptimo 
La fase de actualización consiste esencialmente en la aplicación de la formula del 
regresor lineal (10.21), para lo cual, es necesario evaluar la ganancia 1kK . Para esto, 

teniendo en cuenta la expresión para 1ky  en la Ec. (10.37), evaluamos: 
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 1 1 1 1 1( 1) ( ) ( )T T

y k k k k kk E t t           P χ y P H R    (10.43) 

 
a partir de las Ecs. (10.27), (10.42) y (10.43), se evalúa la ganancia mediante: 
 

1

1 1 1 1 1 1 1 1 1 1 1 1

1

1 1 1 1 1 1

( ( ) ( ))( ( ) ( ) ( ) )

( ) ( ( ) )

T T T T

k k k k k k k k k k k k

T T

k k k k k k

t t t t t

t t


                


       

   



K P H R H P H R H R R H

P H H P H R




(10.44) 

 
La segunda expresión podrá usarse en el caso en que 1( ) 0kt  R , condición que, por 

razones de simplicidad, supondremos válida en el resto del este Capítulo. Para facilitar 
la notación, en lo que sigue se usará: 1 1( )k kt


  P P  para el aproximante de la 

covariancia a priori y 1kP  para el aproximante de la covariancia a posteriori 

determinada sustituyendo los estimados correspondientes en la Ec. (10.28): 
 

1 1 1 1 1

1
1 1 1 1 1 1 1 1 1

( 1)

( )

T
k k k k k

T T
k k k k k k k k k

k  
     

    
        

  

 

P P P K P H

P P H H P H R H P




  (10.45) 

 
Donde, la segunda expresión surge de sustituir (10.44) en la primera.  
 
Usando la identidad matricial: 
 

1 1( )  -1 -1 -1 -1A + BCD A - A B(C + DA B)DA ,    (10.46) 
 
es posible mostrar que la Ec. (10.45) admite la forma alternativa: 
 

1 1 1
1 1 1 1 1( ) T

k k k k k
   
     P P H R H      (10.47) 

 
La inversa de la matriz de covariancia es usualmente denominada matriz de 
información. Dado que la matriz 1

1 1 1
T

k k k


  H R H en la Ec. (10.47) nunca es negativa, esta 

ecuación refleja una consecuencia natural de la actualización y es que a posteriori de la 
nueva medición, la covariancia del estimador del estado siempre se reduce a menos que 

1k  R , en cuyo caso, como se advierte de la (10.44), 1 0k  K  y la innovación es 

desechada por el filtro. 

10.4.3 Implementación numérica del EKF 
Para determinar la ganancia de Kalman (10.44) en el instante de la nueva medición 
exoceptiva, es necesario calcular previamente la covariancia a priori 1k


P  solución de la 

ecuación diferencial matricial lineal (10.39) en el instante tk+1.  Siguiendo por ejemplo a 
Zadeh/Desoer, (1963) puede demostrarse por simple sustitución que esa ecuación tiene 
por solución: 
 

( ) ( , ) ( , ) ( , ) ( ) ( ) ( ) ( , )
k

t
T T T

k k k t
t t t t t t Q t d            P P B B   (10.48) 

 1( , ) ( ) ( , ) ; ( , ) ; , ,k kt t t I t y t t t            A    (10.49) 
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Donde ( , )t   es la matriz de transición de estado entre los instantes  y t    del  

sistema lineal variante en el tiempo (10.37). Para el cálculo de ( )tP  subdividimos el 

intervalo entre dos medidas  1,k kt t   en Mk sub-intervalos de longitud Ts igual a la del 

ciclo exterior del algoritmo (INS) empleado (por ejemplo alguno de los estudiados en el 
Capítulo 7) para integrar las ecuaciones deterministas (10.30). Denotamos: 
 

,

1

; 0,...,k n k s k

k k s k k

t t nT n M

T M T t t

  

  
     (10.50) 

 
Nótese que el intervalo entre medidas Tk no se supone constante. Esto permite 
considerar datos provenientes de instrumentos diversos con tasas diferentes y no 
uniformes en el tiempo. 

 
A partir de la solución general (10.48) es posible demostrar que en el sub-intervalo de 
Tk: , , 1,k n k nt t    , la matriz de covariancia a priori progresa como: 

 

, 1 , 1 , 1 , , 1 , 1 ,0( ) ;T
k n k n k n k n k n k n k kt   

          P P P Q P P   (10.51) 

 
Donde: , 1 , 1 ,( , )k n k n k nt t    es la solución de la ecuación diferencial matricial (10.49) 

para t=tk,n+1, =tk,n junto con , ,( , )k n k nt t I  , en tanto que: 

 
, 1

,
, 1 , 1 , 1( , ) ( ) ( ) ( ) ( , )

k n

k n

t T T
k n k n k nt

t t d


         Q B Q B   (10.52) 

 
Introduciendo la aproximación:  
 

, , , , 1( ) ( ) . ,k n k n k n k nt t const t t t      A A A     (10.53) 

 

Sensores 
Inerciales 

(t) 

Hardware 
Software 

( )kty  

Vehículo 
x(t) 

( )tμ


 

Sensores 
exoceptivos. 

ˆ ( )kty  

( )i ktp  ( )e ktp

  

ˆ ( )tμ  

( )kty
  

Modelo de 
calibración.

ˆˆ ( ; )iμ μ p


 

- 
+ 

Modelo sensores 
exoceptivos 
ˆ ˆ ˆ( , )k ey p h x  

ˆ ( )i ktp   ˆ ( )p g kt  
ˆ ( )e ktp   

Figura 10.2: Esquema de la navegación integrada.  

,
ˆ

k nx  

INS 
ˆˆ ˆ ˆ ˆ( , ) ( )

kin king x a x p B x μ

ˆ ˆ ˆ( , )f mx x  

ˆ( ), ( )x pk g kt t 

 
       Filtro fusión de datos ,Pk n  
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escribimos para , , 1,k n k nt t     : 

 
2

, 1 , , 1 , , 1 , 1

2
, 1 , 1 , , ,

, ,

( , ) ( ( )) ( ) ( )

( , ) ( ) ( )

( ) ( )

k n k n k n k n k n k n

k n k n k n k n s k n s s

k n k n

t exp t I t TOS t

t t exp T I T TOS T

t

   

 

           

     

  

A A

A A

B B B

  (10.54) 

 
Substituyendo las (10.54) en la (10.52) se tiene que , 1k nQ  puede expresarse como: 

 
2

, 1 , , , ( )T
k n k n k n k n s sT TOS T  Q B Q B     (10.55) 

 
La Fig. 10.2 muestra el esquema general de un sistema de navegación integrada en la 
cual se distinguen los elementos de software de los de hardware. Con referencia a esta 
figura, a continuación resumimos el procedimiento de cálculo entre dos instantes 
consecutivos tk y tk+1de adquisición de medidas exoceptivas. 
 

10.4.4 Cálculo recursivo del algoritmo de navegación con el EKF 

1. Inicialización 
En cualquier instante de adquisición de una medida exoceptiva el algoritmo se re-
inicializa con la mejor estimación disponible del vector de estado aumentado junto con 
su matriz de covariancia. 
 

k k k k k

ˆ ( )
ˆ

ˆ ˆ ˆ ˆ ˆ; ( ) ; )( ) }
ˆ

ˆ ( )

i k
k T

k e k k
k

g k

t

t E

t

 
               

p
x

χ p p P χ χ χ χ
p

p

  (10.56) 

 
Al inicio de la navegación (k=0) se usa el conocimiento disponible a priori del estado, 
posiblemente provisto por instrumentos exoceptivos tales como GPS, magnetómetros, 
inclinómetros, etc., junto con una estimación de la banda de incertidumbre de los 
instrumentos  

2. Propagación de la estimación a priori del estado cinemático  
En los instantes intermedios tk,n, n=1,…,Mk, dentro de un intervalo [tk,tk+1) entre dos 
medidas externas, se calcula el estimador del estado aumentado, solución de la Ec. 
(10.30), expresado mediante la (10.31) como  
 

, , ,
ˆ( ) ( ; [ , ], )k n k n k k n kt t t tχ χ μ χ


    (10.57) 

 
Para esto se usan los algoritmos descritos en el Capítulo 7.  Esta operación está 
representada por el bloque INS en la Fig. 10.2 cuya entrada es el vector de medidas 
inerciales corregido con el modelo de calibración determinista: 
 

 1ˆˆ ( ) ( ( ); ( )); ,i k k kt t t t t t  μ μ p
     (10.58) 

3. Propagación de la matriz de covariancia a priori 
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En cada instante tk,n del ciclo de integración de las ecuaciones cinemáticas se calculan: 
 

a) El jacobiano , , ,( ( ), ( ))k n k n k n= t tA χ μ
  (Ec. (10.36)); 

b) La matriz ,k nB = ,( ( ))k ntB x  (Ec. (10.36)); 

c) La matriz de transición , 1 ,( )k n k n sexp T  A  (Ec. (10.54)); 

d) La covariancia del ruido discretizado , 1 , , ,
T

k n k n k n k n sTQ B Q B  (Ec. (10.55)) 

 
Con los valores anteriores, mediante la recursión (10.51) se determina la covariancia de 
los estimados , 1k n


P  al final de cada paso. Al final del ciclo se tendrá: 1 , kk k M

 
 P P . 

 
Las salidas del sistema de navegación, indicadas en la Fig. 10.2 son el estimador del 
estado , ,ˆ ( )k n k nt x x  y su correspondiente matriz de covariancia teórica ,Pk n ; ambos son 

provistos en los instantes ts (entre dos instantes consecutivos de adquisición de medidas 
exoceptivas 1yk kt t  ) a la tasa de integración 1/Ts de las ecuaciones cinemática (10.30) y 

de la covariancia (10.51). 

4. Cálculo de la innovación 

Para kn M , en el instante , 1kk M k k kt t T t    : 

a) Se adquiere la nueva medida exoceptiva 1k y


. 

b) Se sustituye el predictor (10.57) calculado en el paso 2. en el modelo del sensor 
exoceptivo activo en ese instante para obtener 1ˆ k y  mediante la Ec. (10.33). 

c) Se calcula la innovación: 1 1 1ˆk k k   y y y
 . 

5. Cálculo del jacobiano del modelo del sensor exoceptivo 

Usando la predicción 1 1 1
ˆ( ) ( ; [ , ], )k k k k kt t t t  χ χ μ χ


 calculada en el paso 2. para kn M  y 

ˆ ( )e ktp  se evalúa el jacobiano 1kH  dado por la 3ª Ec. (10.36). 

6. Cálculo de la ganancia del EKF 

Se determina introduciendo en la (10.44) los valores de 1 1( )k kt

  P P  y 1kH  

calculados previamente, además de 1kR  que caracteriza al ruido de medida. 

7. Cálculo de la corrección del estado a posteriori de la medida 
Mediante la formula del regresor lineal (10.21) se corrige la predicción para obtener la 
nueva estimación a posteriori del estado aumentado: 1ˆ k χ . Este valor, junto con la 

covariancia a posteriori determinada en el siguiente paso, devienen las condiciones 
iniciales del nuevo ciclo que se reinicia en el paso 1. Notar que en este paso se 
actualizan a la vez el estado cinemático, el vector de los parámetros instrumentales y el 
modelo de gravedad (ver líneas punteadas en la Fig. 10.2).  

8. Actualización de la matriz de covariancia a posteriori 

Finalmente, el ciclo se completa con la determinación de 1kP  sustituyendo 1k K , 1k

P  

y 1kH  en la Ec. (10.45). 1kP  es llamada la covariancia teórica a posteriori en tk+1 de 

los estimados: 1ˆ k x , 1ˆ ( )i kt p , 1ˆ ( )e kt p  y 1
ˆ ( )g kt p . 
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10.5 El filtro SPKF 

La versión EKF del filtrado no-lineal aproxima los momentos de 1º y 2º orden 
aplicando el principio de equivalencia cierta (PEC). Esto equivale de hecho a usar una 
aproximación lineal para la transición de estado entre dos instantes sucesivos (10.29) 
(linealización del flujo Markoviano del modelo (10.8)). Sin embargo, cuando las no-
linealidades del proceso markoviano son importantes, esta aproximación puede 
introducir sesgos en la estimación de los dos primeros momentos lo suficientemente 
importantes como para deteriorar la perfomance del filtro o incluso provocar su 
divergencia. Lamentablemente, en un vehículo genérico es difícil asegurar condiciones 
homogéneas de validez de la linealización local en todo tramo de toda posible 
trayectoria. Pero aún si esto fuese posible, las perturbaciones estocásticas y la 
acumulación de errores numéricos pueden provocar desviaciones en las variables de 
estado que superen los umbrales de validez de la linealización.  
 
El esquema de filtrado no-lineal llamado Sigma-Point-Kalman-Filter (también conocido 
como Unscented Kalman-Filter) usa, en cambio, la llamada transformación unscented 
(TU), propuesta por Julier/Uhlmann/Durrant-Whyte (1995 y 1996) para estimar los 
momentos de 1º y 2º orden del estado de un proceso Markoviano. La TU transforma o 
propaga, en el sentido que veremos, los primeros momentos del estado en un dado 
instante en los correspondientes en un estado futuro de tal modo que se reducen en 
teoría errores de segundo orden en la estimación de los momentos, superando 
sensiblemente, en este sentido, a la aproximación lineal empleada por el EKF.   
 
Para comprender mejor su uso, antes de utilizar el concepto en filtrado, introducimos su 
significado en el contexto general de la transformaciones entre espacios de variables 
aleatorias. 

10.5.1 Transformación unscented (TU) 
Sea T:X→Y una aplicación no necesariamente inyectiva entre espacios de dimensión 
finita MX    e NY   . Sean ( )x  un vector aleatorio definido sobre X e 

( ( )) ( ( ))T  y x x  el vector aleatorio imagen de x bajo la aplicación T.   
 
Supuestos conocidos los 1º y 2º momentos de la distribución de x, respectivamente, 

}E x x  y cov( )xx P x , siempre es posible elegir al menos 2M+1 elementos 

, 0,...,2i X i M    y pesos iw  tales que:  

 
2 2

0 0
0 0

; ( )( )
M M

T

i i xx i i iw w       x P    (10.59) 

 
Todo conjunto de parejas }i iX w     que satisfaga (10.59) es llamado “conjunto de 

σ-puntos”. En particular, es posible mostrar que (10.59) es satisfecha si, junto con los 
pesos 1/ 2iw M , 0,..., 2i M , se elije el siguiente conjunto de elementos del espacio 

muestreal de X ubicados simétricamente respecto del valor medio x . 
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 
 

0 ;

; 1,

; 1, 2

i xx
i

i xx
i

M i M

M i M M

 

   

    

x

x P

x P

    (10.60) 

 

donde  xx
i

MP  es la i-ésima columna de la raíz cuadrada de   T

xx xx xx
M M MP P P . 

En este sentido, los σ-puntos constituyen una representación de los dos primeros 
momentos de la distribución del vector x.   
 
Se llama transformación unscented (TU) al procedimiento que consiste en usar las 
imágenes ( ); 0,...,2i iT i M     junto con los pesos iw  para determinar los promedios 

ponderados:  
 

2 2

0 0

ˆˆ ˆ ˆ; ( )( y)
M M

T

i i yy i i iw w       y P y     (10.61) 

 
El resultado de interés tanto teórico como práctico (Julier/Uhlmann/Durrant-Whyte 
(1995) y (1996)) es que dado cualquier conjunto finito de σ-puntos que "codifique" los 
dos primeros momentos en el sentido (10.59), los dos primeros momentos calculados 
con (10.61) constituyen aproximaciones de segundo orden de los dos primeros 
momentos de la variable aleatoria imagen ( ( ))y x  .  
 
Dicho de otro modo, las estimaciones (10.61) agregan correcciones de segundo orden a 
los sesgos que normalmente introduce la aproximación obtenida mediante la 
transformación lineal de momentos (usada en el EKF): 
 

( ); ( ) ( )T

yy xxT y x P J x P J x


     (10.62) 

 
Donde ( )J x  es el jacobiano de la aplicación T:X→Y evaluado en el valor medio. Como 
se advertirá, la transformación de momentos (10.62) es el resultado de la aplicación del 
PEC a la transformación T.   
 
La ventaja suplementaria de usar la TU es que no se necesita exigirle a T que sea 
localmente diferenciable. Es más, la TU no requiere de un modelo analítico de la 
aplicación, por lo cual, puede ser de naturaleza discreta, por ejemplo, el resultado de 
algún experimento o determinada un algoritmo numérico.  

10.5.2 Aplicación de la TU al flujo Markoviano de una ecuación de difusión 
El flujo markoviano (10.29), solución de la ecuación de difusión (10.8), puede ser visto 
como una aplicación desde el espacio conjunto (cruz) de las condiciones iniciales en tk y 
de las realizaciones del ruido 1[ , ]k kt t ξ , sobre el espacio de los estados en 1kt  , es decir 

1( )kt χ  para el caso. Sin embargo, la complicación para generar una TU sobre esta 

aplicación es evidente puesto que el espacio muestreal de las realizaciones de un ruido 
continuo en cualquier intervalo finito de tiempo tiene dimensión infinita. En la práctica 
es necesario entonces comprimir la dimensionalidad de la realización del ruido. Esto se 
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logra evaluando el efecto integral de cada realización, a lo largo de un dado intervalo de 
tiempo, sobre los dos primeros momentos del estado al final de dicho intervalo. 
 
Para ver esto conviene definir "la fluctuación" del proceso (10.8)/(10.29) respecto de la 
solución determinista (10.30)/(10.31) como: 
 

( , ) ( ; [ , ], [ , ], ) ( ; [ , ], );k k k k k k kt t t t t t t t t t t t w χ μ ξ χ χ μ χ
    (10.63) 

 
en la cual la condición inicial ( )k kt χ χ  es supuesta cierta y común para ambos 

términos. Claramente, el proceso ( , )kt tw  es una desviación que satisface la misma 

ecuación (10.35) salvo por el vector de condiciones iniciales que en este caso es el 
vector cierto nulo, es decir, ( , ) 0k kt t w . Asimismo, cuando la norma de la perturbación 

ξ  sea lo suficientemente pequeña el proceso podrá modelarse con las mismas 

ecuaciones de sensibilidad (10.37) que aquí reproducimos para el caso: 
 

( , ) ( ) ( ) ; ( , ) 0

(0, ( ) ( ))
k k kt t t t t t

N t t

  


w A w B ξ w

ξ Q




     (10.64) 

 
La anterior tiene por solución (ver Ecs. (C.8) del Apéndice C): 
 

( , ) ( , ) ( ) ( )

( , ) ( ) ( , ); ( , )

k

t

k

t

k k k k

t t t d

t t t t t t t I

    

 

w Φ B ξ

Φ A Φ Φ
     (10.65) 

 
Dada una sucesión de instantes discretos }kt , adoptaremos por simplicidad la notación: 

1( , )k k kt tw w . Siendo ξ  centrado e independiente, de la Ec. (10.65), resulta 

claramente que la secuencia { }kw  es independiente y descorrelacionada, es decir: 

) ) } 0T

k lE  w w  para k l . Por lo demás, de la Ec. (10.64) junto con la Ec. (C.10) del 

Apéndice C, se tiene que , ) ) }T

w k k kE Q w w  es la solución en tk+1 de: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ; ( ) 0T T

w w w w kt t t t t t t t t   Q A Q Q A B Q B Q  (10.66) 

 
Donde la condición inicial ( ) 0w kt Q  se debe al supuesto en (10.64) de que 

( , ) 0k kt t w  es conocido.   

 
Teniendo en cuenta que la Ec. (10.66) tiene la misma forma que la Ec. (10.39), la 
solución de la primera tiene la misma expresión que la (10.48) salvo por la condición 
inicial nula.  De este modo, para 1kt t  , escribimos: 

 
1

, 1 1( , ) ( ) ( ) ( ) ( , )
k

k

t
T T

w k k kt
t t d



        Q B Q B     (10.67) 
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Cuando el intervalo entre dos medidas exoceptivas consecutivas 1k k kT t t   sea lo 

suficientemente pequeño como para validar las aproximaciones utilizadas en el 
desarrollo que lleva de la Ec. (10.52) a la (10.55), la (10.67) admite, del mismo modo, la 
siguiente aproximación, a menos de términos de 2º orden en kT :  

 

, ( ) ( ) ( )T
w k k k k kt t t TQ B Q B     (10.68) 

 
Retomando la definición (10.63), escribimos el estado del proceso en 1kt   dado el estado 

en kt : ( )k kt χ χ  y la realización del ruido 1[ , ]k kt t ξ : 

 

1 1 1 1 1( ; [ , ], [ , ], ) ( ; [ , ], )k k k k k k k k k k kt t t t t t t t     χ μ ξ χ χ μ χ w
 

  (10.69) 

 
De este modo, la transición de estado entre dos instantes consecutivos de adquisición de 
datos se descompone en dos partes: 
 

1) La transición determinista (10.31) desde la condición inicial kχ  calculable 

mediante un algoritmo de integración numérica de las ecuaciones 
cinemáticas (10.30) 

2) La perturbación integral que produce el ruido continuo ξ  a lo largo del 

intervalo 1[ , ]k kt t   ahora concentrada en el vector aleatorio kw  cuyos dos 

primeros momentos son: } 0kE w  y ,}T
k k w kE w w Q . 

 
La TU para el flujo Markoviano (10.8)/(10.29) se establece en base a la función de 
transición de estado discreta y estocástica (10.69) y la expresión del modelo de la media 
exoceptiva escritas a continuación: 
 

1 1 1 ,

1 1 1

( / ) ( ; [ , ], ) ; (0, )

( ( / )) ; (0, )
k k k k k k k k w k

k k k k k k k

t t t t

t
  

  

 

 

χ χ χ μ χ w w Q

y h χ χ η η R

 


  (10.70) 

 

10.5.3 Algoritmo SPKF aplicado a la navegación integrada 

El algoritmo considera el vector aleatorio ampliado: M

k
z   con 

2dim( ) dim( )
k

M  χ y  y tal que: 

 

.

, ,

,

0 0ˆ
; { } 0 ; {( )( ) } 0 0

0 0 0

T
kk k

k k k k zz k k k k k w k

k k

E E




    
         
        

Pχ χ
z w z z P z z z z

η
Q

R
  (10.71) 

 
Donde ˆ

k
χ  y 

.kP , respectivamente, la estimación a posteriori del estado aumentado y su 

covariancia están calculadas en el instante tk. De las anteriores, se determinan los 2M+1 
σ-puntos y sus pesos relativos: 

,
( , ) ( , ); 0,..., 2k k

i ik zz k
w i M z P  con el procedimiento 

(10.60).  
 
 



Martín España Comisión Nacional de Actividades Espaciales  

 252 

10.5.4 Cálculo recursivo del algoritmo de navegación con el SPKF  
El pseudo código del algoritmo podría adoptar finalmente la siguiente forma: 

Inicialización: 
Se parte de los dos primeros momentos del estado aumentado en el instante inicial: 
 

0

,0
0

( ) 0
ˆ { ( )};

0 ( )
xx

o o
pp

t
E t

t

 
   

 

P
χ χ P

P
    (10.72) 

 

Desde k=0 hasta fin de navegación  

1. Determinar 2M+1 -puntos mediante las (10.60) 
 

,
( , ) ( , ); 0,..., 2k k

k zz k i i
w i M z P     (10.73) 

 
2. Propagación temporal de los 2M+1 puntos mediante la primera de las 

(10.70) a tk+1=tk+Tk usando el método de integración numérica de las 
ecuaciones de navegación (algoritmo INS). El resultado son los 2M+1 
puntos imagen: 

 

1 1 1( / ) ( / ) ; 0,...2i i i i
k k k k k kt t i M
    χ χ χ χ χ w    (10.74) 

 
3. Cálculo de los momentos a priori de 1° y 2° orden de los estimados del 

estado aumentado: 
 

2

1 1
0

2

1 1 1 1 1 1
0

ˆ

ˆ ˆ( ) ( )( )

M
k i

k i k
i

M
k i i T

k k i k k k k
i

w

t w

 
 



     
     





   





χ χ

P P χ χ χ χ

   (10.75) 

 
4. Cálculo de los momentos a priori de 1° y 2° orden de los estimados de las 

mediciones: 
 

1 1 1

2

1 1
0

2

1 1 1 1
0

ˆ ( ) ; 0,...,2

ˆ ˆ

ˆ ˆ ˆ ˆ( 1) ( )( )

i i i
k k k k

M
k i

k i k
i

M
k i i T

y i k k k k
i

i M

w

k w


  

 


   


  



   





y h χ

y y

P y y y y



   (10.76) 

 
y de la covariancia cruzada:  
 

2

1 1 1 1
0

ˆ ˆ ˆ( 1) ( )( )
M

k i i T
y i k k k k

i

k w  
   



   P χ χ y y    (10.77) 
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5. Adquisición de la medición y actualización del estimador y de su covariancia 
a posteriori previo cálculo de la ganancia de Kalman. 

 
1

1

1 1 1 1 1

1

( 1) ( 1)

ˆ ˆ ˆ( )

( 1) ( 1) ( 1)( ( 1)) ( 1)

k y y

k k k k k

y y y

k k

k k k k k



   





    

 

  

  

      

K P P

χ χ K y y

P P P P P


 (10.78) 
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Capítulo 11  
Ejemplos de Aplicación  

de Navegación Integrada 

Dedicamos este capítulo a demostrar el uso de los conceptos expuestos en los capítulos 
precedentes con algunos ejemplos elegidos. Por una cuestión de espacio, solo nos 
referimos el uso del EKF como filtro de fusión de datos. Se deja como ejercicio al lector 
adaptar la formulación aquí expuesta al uso del SPKF. 
 
Definido el tipo de vehículo y especificados la terna de referencia y el modelo de 
gravedad, quedan fijadas las ecuaciones cinemáticas o de navegación (Capítulo 5). En 
cuanto al modelo de la UMI, una versión suficientemente general es la propuesta en los 
Capítulos 2 y 10 (Ecs. (2.13) ó (10.3)).  
 
Por lo dicho anteriormente, algunos módulos del código de cualquier sistema de 
navegación que incluya una UMI quedarán fijados independientemente de la 
instrumentación exoceptiva que reclame la aplicación específica. Nos referimos a 
aquellos que forman parte de la fase de predicción o determinación del estimador a 
priori del filtro de fusión de datos, a saber: a) La integración numérica de las ecuaciones 
cinemáticas usada para el cálculo de la transición de estado (métodos expuestos en el 
Capítulo 7 y Ec. (10.31)); b) El cálculo de las matrices del modelo lineal de las 
desviaciones del estado cinemático y c) el cálculo de la propagación en el tiempo de los 
momentos a priori  de 1° y de 2° orden.   
 
Los módulos antes mencionados podrán (y deberán) ser validados y verificados antes de 
incorporar los módulos correspondientes a la fase de actualización de la estimación a 
posteriori. Esta fase se diseña en base a la configuración de sensores exoceptivos propia 
de la aplicación. Lo que cambia de una configuración a otra es, esencialmente, el 
modelo (10.2) de las medidas ky


 adquiridas en los instantes tk (ver Fig. 10.1), esto 

incluye el modelo probabilístico de los errores de medida y el vector de parámetros de 
calibración ep  que formará parte del vector de estado aumentado. Restando de la 

medida real la calculada con el modelo 1 1 1 ˆ( ( ; [ , ), )k k k k kt t t  h χ μ χ


 (Ec. (10.33)), se 

obtiene la innovación. Con ésta y la ganancia de Kalman se calcula la corrección a 
aplicar a la estimación a-priori del estado aumentado, obteniéndose como resultado la 
estimación a posteriori del mismo. Tanto para el cálculo de la ganancia de Kalman 
como para el de la covariancia a-posteriori (Ec. (10.45)) es necesario linealizar el 
modelo (10.33) lo que conduce a calcular la matriz jacobiana 1 1, 1( )k k k=   H h χ  (Ec. 

(10.36)). 
 
Gran parte de este capítulo está dedicada a ilustrar un procedimiento, más a menos 
sistemático, para implementar las funciones mencionadas en el párrafo anterior en 
distintos casos de aplicaciones prácticas. Dicho procedimiento requiere establecer: a) el 
modelo de las desviaciones de las medidas inerciales, b) el modelo de las medidas 
exoceptivas y sus innovaciones y c) el modelo de las desviaciones del estado 
aumentado.  
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Con el objeto de demostrar distintos aspectos del diseño y de la evaluación de un 
sistema de navegación real, el Párrafo 11.8 presenta un desarrollo completo aplicado al 
SAR aerotransportado de la CONAE. Los datos experimentales adquiridos en una serie 
de vuelos de prueba son analizados con herramientas numéricas usuales para evaluar la 
performance de varias configuraciones instrumentales. De los resultados se extraen 
conclusiones sobre las relaciones de compromiso que surgen en la práctica entre la 
complejidad del SW y la calidad de la instrumentación.  
 
En su forma general el modelo de las desviaciones de la UMI está dado por las Ecs 
(6.15) que aquí reproducimos para referencia: 
 

( ) ( )

( ) 0 0
( )

0 ( ) 0

i

i
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b
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L I
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



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                      

 
  
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p

σ

ξ σω
μ μ σ b B μ ξ

ξ bf
b

ω
B μ

f
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


 



  (11.1) 

 
El vector ip  agrupa las desviaciones de los parámetros de calibración de la UMI. En 

ciertas aplicaciones específicas, el diseñador podrá adoptar una versión simplificada de 
esta formulación. 
 
En base a la definición del estado aumentado (Ec. (10.6)) y la última de las Ecs. (10.37), 
la estructura general del modelo de las innovaciones resulta: 
 

1 1 1 11i e

i

k x p p g k k kk
e

g

H H H H   

 
           
  

x

p
y η H η

p

p

  (11.2) 

 
En los párrafos que siguen se exponen distintos ejemplos que ilustran el cálculo de las 
sub-matrices xH , 

ipH , 
epH  y gH  y cuando sea necesario la descripción probabilística 

del ruido discreto kη . En el último subcapítulo se presenta el desarrollo completo de 

una aplicación real y se analizan los resultados experimentales.  
 

11.1 Filtro estabilizador del canal vertical 

Al final del Capítulo 5 se demostró que el lazo de gravedad de la componente vertical 
de las ecuaciones cinemáticas es intrínsecamente inestable. Esto hace que la navegación 
3D puramente inercial sea muy sensible al ruido, a los errores instrumentales y los 
errores iniciales. En la industria aeronáutica, este efecto ha sido clásicamente paliado 
incluyendo un sensor baro-altimétrico dentro de un lazo de estabilización del canal 
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vertical cuyo diseño fura ilustrado en el Párrafo 5.4.1. Sin embargo, al no estar 
planteado como un filtro de fusión de datos, ese diseño no contempla el compromiso 
entre la potencia del ruido sobre la estimación y la velocidad de seguimiento de las 
variaciones en altura. En efecto, a mayor velocidad de respuesta, mayor ancho de banda 
y mayor el ruido promedio en el estimador (y viceversa). En este párrafo retomamos 
este diseño en el contexto de la navegación integrada mediante un filtro de fusión de 
datos.  
 

Desviaciones de las medidas inerciales 
La magnitud inercial que interesa para este ejemplo es la fuerza específica en la 
dirección vertical para la que se supone el siguiente modelo de medición.  
 

; (0, ( ))

; (0, ( )))

f f f

b b b

n n
z z z

z

f f q t

q t

b

b

    

    





      (11.3) 

 
El único parámetro del modelo es la componente vertical del sesgo acelerométrico (es 
decir: 

i zbp ) cuya evolución es modelada como un proceso browniano. Notar que 

todo error proveniente de usar la aproximación normal de la gravedad ( , )n

z h   en lugar 

de un modelo más preciso, se suma a zb  (ver Fig. 5.6), por lo cual, dicho error puede 

considerarse incluido en este último parámetro.  El modelo de las desviaciones de las 
medidas inerciales (Ecs. (11.1)), en este caso, adopta la forma: 
 

; (0, ( ))f f f

n
z zf q tb            (11.4) 

 

Desviaciones del estado aumentado 
Bajo las hipótesis simplificadoras usadas en el Párrafo 5.4, las Ecs. cinemáticas (5.46) 
del canal vertical resultan ser:  
 

0 0

0

; ( )

( , ) ( , ) ; ( )

z

n n n o
z z x y z z z z

h V h t h

V c V V h f V t V

 

     


     (11.5) 

 
Donde , ,x yV V   y ( , )n

z x yc V V  se suponen determinados sin error por el módulo del 

canal horizontal.  Siguiendo el procedimiento delineado en el Capítulo 10, denotamos 

( , ) ( , ) /n

h z h
h h h


      , agregamos el modelo browniano de la desviación 

paramétrica bzb     y, teniendo en cuenta que ( , ) 0n
z x yc V V  , establecemos las 

ecuaciones para las desviaciones del estado aumentado  T

z zh V b     (Ec. 

(10.37)).  
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  (11.6) 

 

Medida exoceptiva y modelo de las innovaciones 
Suponiendo la medida del baro-altímetro insesgada y perturbada por un ruido centrado 

y aditivo, es decir: k k kh h  


, el modelo de las innovaciones resulta: 

 

 ˆ 1 0 0k k k k k k k

k

y h h h         
H


       (11.7) 

Estimación a posteriori de las variables de navegación y los parámetros 
Las Ecs. (11.6) y (11.7) completan el modelo a partir del cual el EKF propaga la matriz 
de covariancia y calcula la ganancia de Kalman. Esta última, junto con la innovación, 
permiten calcular la corrección del estado aumentado y, consiguientemente, su 
estimación a posteriori. 
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  (11.8) 

 

11.2 Integración de una UMI con datos de radar 

 
La Fig. 11.1 muestra un vehículo cuyo punto de navegación P (en este caso el centro 
geométrico de la UMI) está ubicado, en un instante dado, a la distancia vectorial d 
respecto del centro de fase de una antena de radar fija a la Tierra ubicada en el punto de 
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Figura 11.1: Navegación integrada radar/inercial 
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coordenadas ECEF conocidas Pe
a .  La terna de navegación es la terna geográfica local 

{g} (LGV-ENU) en el punto de navegación. El modelo cinemático está dado por las 

Ecs. (5.33) para n g , con gρ  dado por las (5.34) y (5.35). Estas ecuaciones se 
suponen integradas mediante un algoritmo de tipo strap-down como el descrito en el 
Párrafo 7.1 del Capítulo 7. Por razones de simplicidad se supondrá que el modelo de 
gravedad es sin error. 
 

Desviaciones de las medidas inerciales 
En este ejemplo sólo se supondrán desconocidos los sesgos b  y fb  del modelo de 

calibración de la UMI (Ec (10.3)). Así, éste y el modelo de las desviaciones (11.1) 
resultan: 
 

6;
f






         
    

i

b
μ μ b p b b

μ b

 
    (11.9) 

 
El ruido ξ  se supondrá blanco, lo cual, en la (10.4) corresponde a 0   y 

(0, ( ) )N t Q   ξ n  .* 

Modelo del sensor exoceptivo 
En la Fig. 11.1, la terna de la antena {a} está centrada en Pa y es paralela a la terna 
geográfica local LGV-ENU en ese punto. Las coordenadas cartesianas en terna {a} del 
vector d  se escriben como sigue en función de las coordenadas ECEF del vehículo y de 
la antena: 
 

( )
E

a a e e a e a
N e a e a

U

d

d

d

 
      
  

d C P P C P P     (11.10) 

 
La MCD a

eC  es conocida puesto que la posición de la antena está dada. La estación de 

radar determina las siguientes magnitudes respecto de la terna de la antena:  
 

 
 

2 1/2

1

1

( ) ] ;

/ ;

/

i

U H

E N

distancia : d d

elevación tg d d

azimut tg d d

:

:









=[

=

=

    (11.11) 

 
Las medidas de estos datos, se suponen perturbadas por un ruido discreto, independiente 
vectorial k y trasmitidas al vehículo en forma instantánea. El modelo de las medidas 
exoceptivas tomadas a bordo en los instantes tk es: 
 

                                                
*Se sugiere al lector extender este ejemplo al caso en que se desconozcan otros parámetros de los modelos 
de calibración o de la gravedad. 



Martín España Comisión Nacional de Actividades Espaciales  

 260 

( ) ( )

( ) ( ) ; (0, )

( ) ( )

y η η R
k k

k k k k k k

k k

d t d t

t t N

t t

   
          
       


 


   (11.12) 

 
y no depende de ningún parámetro desconocido, es decir, en este ejemplo, i p p b . 

Desviaciones del estado cinemático y del estado aumentado 
Las desviaciones del estado cinemático están dadas por la Ec. (6.68) del Ejemplo 6.1 en 
el Capítulo 6: 
 

9; ;

g

E H

g g g

N

g h
h

   
                      

  θ
V π

π

x 


    (11.13) 

 
y satisfacen las Ecs. (6.83) con 0g g  (puesto que la gravedad se supone conocida) 
que rescribimos a continuación por conveniencia sustituyendo μ  de la Ec. (11.9):  
 

ˆ 0

ˆ0

0 0 0

ˆ( , ; ) ( )( )

g
bV

g g g
V b

V

g g g
k

 

 





               
    

   

CΦ Φ Φ

V V V C μ

Π Π

F x b μ x B x b ξ

x x




    (11.14) 

 
Las matrices ( )g F  y ( )g B  están evaluadas en la solución (10.31) del sistema 
determinista (10.30). A la ecuación anterior se le agrega la desviación del modelo 
paramétrico browniano b b ξ  para obtener finalmente la ecuación para el estado 

aumentado (10.37): 
 

( ) ( )

( ) (0, ( ) ( )); ( ) (0, ( ) ( ));

g

b

b b

t t

t N t t t N t t



 

   
          

 

ξx
χ A χ B

ξb

ξ Q ξ Q

 

 
   (11.15) 

 
Donde las matrices ( )tA  y ( )tB  son: 
 

15 15 15 6
ˆ ( ) 0( , ; ) ( )

( ) ; ( )
00 0

gg g
kt t

I
 

   
      

     

B xF x b μ B x
A B


    (11.16) 

 

Modelo de la innovación. 
Procedemos a calcular la matriz jacobiana 1kH  del modelo de las innovaciones (11.2) 

que, de acuerdo con la partición del estado aumentado en las (11.13) y (11.15), se 
descompone según: 
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  3 15
1 v1 1k x b bk k

H H H H H H 
   
    H    (11.17) 

 
A partir del modelo de las medidas (Ecs. (11.10) a (11.12)) y, teniendo en cuenta que 

a
eC  es conocida, el modelo de la innovación resulta: 

 

ˆ ˆ

, , , ,
ˆ

k k

a a e
k k k k e k

E N U E N U

d d

d d d d d d
 

     
          

     
y y y d C P


 (11.18) 

 

Usando ˆ e
gC  y ˆ gP  calculados por el sistema de navegación, evaluamos eP  mediante: 

 
ˆˆ( )e e g e g e g

g g g      P C P C P C P     (11.19) 

 
ˆ gP  puede ser aproximado como (ver Fig. 11.2 y Ec. (4.22) del Capítulo 4). 

 

2

2

0
ˆˆ ( ) ( )

1 ( )

g
nR h o

o

 
     
   

P     (11.20) 

 

 
Con lo cual, despreciando las variaciones del radio de curvatura normal Rn en la zona de 
alcance del radar se tiene: 
 

2

2

0 0

( ) 0

1 ( )

g h o

o h

   
           
        

P     (11.21) 

 

Substituyendo gˆ ( )g g  e eC C S θ  y la anterior en la Ec. (11.19), obtenemos: 

 

nR h

2( )o  

U 
N 

P  
Elipsoide normal 

Figura 11.2: Pv en coordenadas geográficas. 

Eje 
terrestre 

O n vR h



Martín España Comisión Nacional de Actividades Espaciales  

 262 

g

( )0
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R h
R h

h h

R h
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    
         
      

  
     
  

eP C C P C

C π π

θ

  (11.22) 

 
De ésta ecuación y la (11.18), resulta que la matriz kH  adopta la forma: 

 

  3 150 0 0k k
H 

 H      (11.23) 

 
Con  

, , a
e pA A A

E N U

d
H L

d d d
  


  

C     (11.24) 

 
Nos resta determinar el jacobiano en la Ec. (11.24). A partir de las Ecs. (11.11) las filas 
de éste último resultan: 
 

 

 

 

1
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1
( ) ( ) ( ) ( ) ( )
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E N U
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E N U

d
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dd d d
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dd d d

cos dcos sen dcos
d d d

           


       
  


    

  


 (11.25) 

 
Finalmente H  en (11.24) resulta: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) / ( ) ( ) / ( ) /

( ) / ( ( )) ( ) / ( ( )) 0

a
e p

cos sen cos cos sen

H sen sen d sen cos d cos d L

sen dcos cos dcos


     
         
      

C   (11.26) 

 

Estimación a posteriori del estado aumentado 
Una vez completado el cálculo de kH  (Ec. (11.17)), se calcula la ganancia de Kalman y 

con ésta y la innovación se determina la corrección del estado aumentado: 
 

1 1 1 1 1
ˆ( ) ( ) ;( ) ;( ) ;[ ]g T g T H T T

k k k k kh          χ K y y V θ     (11.27) 

 

Con  H

E N   θ  se conforma [( ( )) , ]Tg H T

U Ntg      θ θ . De la Ec. 

(3.45) y las definiciones de θ  y   en las Ecs. (6.28) y (6.39), se determinan las MCD 
a posteriori mediante: 
 

 ˆ ˆ ˆexp( ( )) ( )g gg g

e e

g

e I       C S C S C     (11.28) 
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 ˆ ˆ ˆexp( ( )) ( )gg g g g

b b b
I     C S C S C      (11.29) 

 
A continuación se calculan las correcciones en las coordenadas curvilíneas geodésicas: 

ˆ; / cos
E N

        (ver Ec. (6.30)) que permiten calcular la estimación a 

posteriori de la posición en coordenadas curvilíneas: 
 

ˆ ˆ

ˆ ˆ

ˆ ˆ

h h h

 

 

   

    

         (11.30) 

 
La velocidad a posteriori se calcula mediante: 
 

ˆ ˆg g g g     V V V V     (11.31) 
 
Finalmente, también se actualiza la estimación a posteriori de los sesgos de la UMI:  
 

1 1 1

ˆ ˆ ˆ
ˆ ˆ ˆ

f f fk k k

 
  
 

  

                

b b b
b b b

    (11.32) 

 

11.3 Integración INS-GPS débilmente acoplada en coordenadas GEO 

Se considera el mismo ejemplo anterior pero, en lugar de un radar, se usa un receptor 
GPS a bordo del vehículo que provee posición y velocidad (PV) simultáneas en 
coordenadas ECEF. Esto equivale a disponer de dos sensores exoceptivos 
independientes. Es usual denominar a este esquema débilmente acoplado por oposición 
a la versión fuertemente acoplada (que veremos más adelante) en la cual se usan los 
observables primarios del receptor. En la actualidad un receptor GPS puede entregar 
datos PV a una tasa de entre 10Hz a 20Hz toda vez que tenga en vista al menos 4 
satélites de la constelación. Ciertos receptores proveen además las matrices de 
covariancias teóricas de sus propios estimados. 
 
Tal como en el ejemplo anterior: a) se adoptan como modelo de la UMI y de sus 
desviaciones las Ecs. (11.9), b) la navegación se realiza en terna {g} (LGV-ENU), c) las 
desviaciones del estado cinemático y sus ecuaciones diferenciales son las (11.13) y 
(11.14) y d) dado que como veremos, las medidas exoceptivas no agregan parámetros 
desconocidos, las desviaciones del estado aumentado también obedecen a las Ecs. 
(11.15) y (11.16). Además, el procesamiento de la innovación para la obtención de la 
estimación a posteriori se efectúa con las mismas Ecs. (11.27) a (11.32). Lo que cambia 
son los modelos de las medidas exoceptivas y consiguientemente el de las innovaciones.  

Medidas exoceptivas y modelo de las innovaciones 
En este ejemplo se supondrá que el centro de fase de la antena del receptor GPS 
coincide con el centro geométrico de la UMI. Los modelos de las medidas exoceptivas 
de posición y velocidad en terna ECEF son:  

 



Martín España Comisión Nacional de Actividades Espaciales  

 264 

( ) ( ) ; (0, )

( ) ( ) ; (0, )

e e
k k gp gp p

e e
k k gv gv v

t t N

t t N

   

   

P P R

V V R







    (11.33) 

 
Los errores de las medidas GPS se suponen modelados, respectivamente, para la  
posición y velocidad, como ,(0, )gp p kN R  y ,(0, )gv v kN R . Se recordará del 

Capítulo 9 que el desvío estándar típico de la posición GPS es de orden métrico en tanto 
que el de la velocidad puede ser de algunos cm/seg. 
 
Como los modelos (11.33) no tienen parámetros desconocidos, también aquí el vector 
de parámetros del estado aumentado es i p p b . La matriz del modelo de las 

innovaciones adopta la estructura: 
 

  6 12
p p p
x b x

k x b v v v
x b

H H H
H H

H H H

   
      
      

H     (11.34) 

 

La desviación de la posición está dada por la misma expresión (11.22) e

pL P π , con 

lo cual, 3 30p

b xH   y 3 9

3 3 3 30 0p x

x x x pH L     . En cuanto a la desviación de 

velocidad, ésta se obtiene perturbando la relación e e n
nCV V , usando 

( )ge e
g g  C C S θ  junto con la relación g H

gHT  θ θ  dada por la Ec. (6.67): 

 
( )

( ) ( ) H

gH

g g g g ge e e e e
g g g g

g g g g ge e e e
g g g gT

S

S S

 

  

      

    θ

V C V C V C θ V C V

C V θ C V C V C V
  (11.35) 

 
Con lo cual:  
 

    3 9
3 3 3 3 3 1

ˆ ˆ0 ; 0 0v v e e n x
b x x g g gHH H C C S T 

    V   (11.36) 

 
De las anteriores resulta finalmente:  
 

3 3 6 12

3 3

0
;

0

p
x x x
vk
x x

H

H

 
  
  

H       (11.37) 

 
Esto completa la formulación matemática de este ejemplo. 

11.4 Integración INS-GPS débilmente acoplada en coordenadas ECEF 

Consideramos el mismo Ejemplo 11.3 pero referido a la terna de navegación ECEF en 
lugar de la LGV.  El modelo cinemático está dado por las Ecs. (5.17). Para vehículos no 
orbitales será posible usar alguna aproximación para el modelo de gravedad tal como las 
expresadas por las Ecs. (4.48), (4.51) ó la (5.20) basada en el modelo (4.55). Las 
ecuaciones cinemáticas son integradas mediante un algoritmo de tipo strap-down como 
el descrito en el Párrafo 7.2 del Capítulo 7. Para hacer más realista la aplicación, el 



Martín España Comisión Nacional de Actividades Espaciales  

 265 

centro de fase de la antena del receptor y el centro geométrico de la UMI se supondrán 
separados por el brazo de palanca l (ver Fig. 11.3) cuyas coordenadas en la terna {b} 
pueden ser vistas como parámetros del sensor exoceptivo y por lo tanto susceptibles de 
ser estimadas. 
 

 
Dado que el receptor GPS calcula y entrega, normalmente, la posición P y la velocidad 
V en terna ECEF, el uso de esa terna simplifica el modelo de la innovación respecto de 
usar la terna GEO. Otra ventaja de adoptar la terna ECEF es que la integración inercial 
es más rápida que en una terna LGV y además mucho más precisa en vehículos rápidos 
(ver discusión al respecto en el Párrafo 7.3 del Capítulo 7). 
 
Como en los dos ejemplos anteriores adoptamos el modelo de las medidas inerciales y 
de sus desviaciones dados por las Ecs. (11.9). 

Modelo de las medidas exoceptivas. 
Sean ,e e

a aP V  y ,e eP V  las posiciones y velocidades en terna ECEF, respectivamente, de 

la antena del receptor y del centro de la UMI. Teniendo en cuenta que 
b b b b b
eb ib ie ib e eC        , para un instante arbitrario, de la geometría de la Fig. 11.3 

surge:  
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


     (11.38) 

 
Con lo cual, el modelo de las medidas exoceptivas resulta en este caso función de la 
medida giroscópica. 
 

 
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

     (11.39) 

 
 

 

 
IMU 

l

Antena GPS 

,e eP V

,e e
a aP V

Figura 11.3: Brazo de palanca entre la antena GPS y la UMI 
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Modelo de las desviaciones del estado aumentado 
Las ecuaciones cinemáticas en terna ECEF del centro de coordenadas de la UMI están 
ahora dadas por las Ecs. (5.17), en tanto que las desviaciones del estado cinemático, 
definidas por las Ecs. (6.21): 
 

e

e e
e

e

 
    
  

φ

x V

P

,   (11.40) 

 
satisfacen la ecuación diferencial lineal (6.23) del Sub-capítulo 6.4 en la cual μ  está 
dado por la Ec. (11.9) 
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C
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  (11.41) 

 
El vector de desviaciones del estado aumentado se define como: 
 

16;

e

e

l

 
    
  


x

χ b       (11.42) 

 
Cuando los parámetros son modelados como procesos brownianos, χ  obedece a las 
ecuaciones estocásticas (ver Ecs. (10.37)): 
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0 0 0 0 0 0 0 0

( ) ( ) ( )

(

f

e e e ee
e f fe

f

b

ff
b

l
t t

t

B B B B

I

I

Il

t t t

N





 








 
                                                       

   


A B

Fx

b
χ χ

b

A χ B




 


 

 0, ( ) ( )); , , , , ; ( ) (0, ( ) ( ( )))ft t f b b l t N t diag t       Q Q
 (11.43) 

 

Modelo de las innovaciones 

Con T T T
f     b b b , las innovaciones en posición y velocidad adoptan la forma:  
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6 16

;

e
ep e e

pk a a
kv e e

vk a a

p p p p
x f l x
v v v vk
x f l

l

H H H H

H H H H




 
                       

 
  
  

x
ηy P P

H b
ηy V V

H






    (11.44) 

 
Perturbando la primera de las (11.39) la innovación en la posición resulta como sigue 
con p gpη η : 

 
ˆ ˆ ˆ( ) ( )p e e e b e b e e b e

k b b p b pl l l            y P S C C η P S C η   (11.45) 

 
La aproximación se debe a que el desconocimiento bl  suele ser de orden centimétrico 
y por tanto quedar subsumido en los errores de orden métrico en la posición GPS. De la 
expresión anterior y de la partición del estado cinemático dada por la (11.40) resultan 
los elementos de la primera fila de kH : 

 
3 9

3 3 3 3 3 3 1
ˆ( ) 0 ; 0 ; 0p e b x p p p

x b x f x l xH l I H H H       S C    (11.46) 

 
Por otra parte, perturbando la segunda de las Ecs. (11.39) se obtiene: 
 

 
 

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ ˆ( ( )) ( ) ( )

v e e e b e b e e e b
k b ib b ib b

e b e e b
b ib b gv

e e b b e e b b e b b
b ib b ib b ib gv

l

l

l l l

           

     

           

y V S C S C S S S C

C S S C η

V S C C S C S η

 (11.47) 

 
En este caso, se consideran despreciables los términos ( ) 0e e e

e el l      . 

Sustituyendo b
ib      ω b , el modelo de la innovación de la velocidad resulta: 

 
v v e v v v b v
k x f f l gvH H H H l H             y x b b η ξ   (11.48) 

 
donde las submatrices de la segunda fila de kH  se definen como: 

 
3 9

3 3 3

3 3
3 3

3 3

ˆ- ( ( )) 0

ˆ- ( ) ; 0

ˆ ( )

v e b b x
x b ib x

v e b x v
b f x

v e b x
l b ib

H l I

H l H

H



    

  

  

S C ω

C S

C S

 


 

    (11.49) 

 
La perturbación sobre la innovación de velocidad es ahora ( )e b

v gv b l     C S .  

 
De las Ecs. (11.45) y (11.47) se extraen algunas observaciones de interés relativas a la 
presencia del brazo de palanca: 
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a) Tanto la innovación de posición como la de velocidad aportan información 
directa sobre las componentes del error de orientación e  no paralelas a l.  

b) La innovación de velocidad aporta información (giroscópica) sobre las 
componentes del error en la velocidad angular b

ib  no paralelas a l. Esto puede 

incidir en la mejora de la calibración en vuelo de todos los instrumentos. 
c) La, en general, buena precisión de la medida de la velocidad (algunos cm/seg), 

hace que el término ( )e b b
b ib l C S  permita ajustar las componentes del brazo de 

palanca ortogonales a b
ib  en vehículos suficientemente ágiles. 

d) El ruido giroscópico se refleja en la perturbación de la innovación de velocidad 
mediante v

v gv H      , por lo cual ambos procesos no pueden ser 

considerados independientes. Esto obliga a considerar la correlación R  en la 

Ec. (10.41).  

 

Correlación entre los ruidos de las medidas. 
Llamamos  
 

0 0 0 0 0

0 0 0 0vL
H

 
  
  

,    (11.50) 

para escribir: 
0gpp

gv
gvv

L
H 

    
             

ηη
η η

ηη
    (11.51) 

 
Teniendo en cuenta la Ec. (11.43) y la independencia entre y gξ η evaluamos  

 
( , ) { ( )( ( ) ( )) }

{ ( ) ( ) } ( ) ( )

T

g

T T T

t E t L t

E t L t diag L





   

     

R ξ η ξ

ξ ξ Q
   (11.52) 

 
Usando el resultado dado por la Ec (C.15)  del Apéndice C, se obtiene: 
 

0 ˆ ˆ( )
0 01 1

( ) ( ) ; 0
0 02 2

0
0 0

e vT

e b b

b e

T e vT

B H
l

t t diagQ L B H

  



    

 
  
       
      

Q
C Q S C

R B Q  (11.53) 

 
Este término, resultado de la presencia de l, deberá introducirse en las Ecs. (10.42) y 
(10.43). Respecto de la primera, el término de corrección adopta la forma:  
 

1 1

01

2

p e vT v eT pT

x xT T
p e vT v eT pT v e vT v eT vTk k
x x x x

H B H H B H

H B H H B H H B H H B H
     

   
           

 
      

Q Q
H R R H

Q Q Q Q
(11.54) 
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Estimación a posteriori de las variables de navegación y los parámetros 
Actualizadas la matriz H y la ganancia de Kalman junto con la innovación se determina 
la corrección del estado aumentado: 
 

1 1 1 1 1
ˆ( )

TeT eT eT T

k k k k k
l    

         χ K y y φ V P b


,  (11.55) 

 
mediante la cual se actualizan: 
 

 ˆ ˆ ˆexp( ( )) ( )e e e e

b b b

e I    C S C S φ Cφ      (11.56) 

ˆ ˆe e e   V V V      (11.57) 
ˆ ˆe e e   P P P      (11.58) 
ˆ ˆ   b b b      (11.59) 
ˆ ˆb b bl l l         (11.60) 

 

11.5 Integración INS-GPS fuertemente acoplada 

Consideramos ahora la integración de una unidad inercial (UMI) con los observables 
primarios de código (pseudo-rango) y Doppler (delta-pseudo-rango) medidos por un 
receptor GPS por cada satélite visible de la constelación. Esta configuración es 
usualmente denominada INS-GPS fuertemente acoplada para distinguirla de la 
configuración débilmente acoplada que, como vimos en el ejemplo anterior, procesa los 
datos secundarios de posición y velocidad determinados por el módulo de navegación 
del receptor.  

 
La Fig. 10.4 describe la geometría del problema con brazo de palanca antena-UMI para 
un satélite de la constelación visible. Para simplificar, l se supondrá conocido.  Por los 
mismos motivos que en el ejemplo anterior, se elije la terna de referencia ECEF con lo 
cual las ecuaciones cinemáticas son también las (5.17) y el vector desviación del estado 
cinemático e

ex  está dado por la (11.40). 

UMI 

l

Antena 
GPS 

eP

iR

i
aR

ir


Satélite i 

ˆ iP

Figura 11. 4. 

e
aP
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i
ar
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Modelo de las medidas exoceptivas 
Reintroducimos los modelos de los observables de código y Doppler establecidos en el 
Capítulo 9 (Ecs. (9.35)) para s satélites visibles de la constelación:  
 

; ( ) (0, )
1,...,

; ( ) (0, )

i i i i i
a a a k i

i i i i
a a a D D k i

R c t sp t N
i s

R cD t N

  



        
     

R

R 


 

  (11.61) 

 
Donde, ( )i i i i

u u isp E c I T t     engloba los errores de propagación y del segmento 

espacial; i i i
acM     es el error residual de la medición del pseudo-rango, en tanto 

que i
D  lo es de la medida de la frecuencia Doppler que incluye: las derivadas 

temporales sE , s
uT , s

uI , la deriva del reloj satelital, el error de medida y los efectos de 

las reflexiones múltiples (ver definiciones en el Párrafo 9.1 del Capítulo 9).  
 
Denotamos /i i i i

a a aR r R r
 

 al versor de apuntamiento al satélite i. Para velocidades no 

orbitales, la derivada temporal de este versor puede despreciarse. Bajo estas 
condiciones, de la Fig. 10.4 se obtienen: 
 

ˆ ˆ( )

ˆ ˆ( ) ( ) ( )

i i i i i i i
a a a a a a

i i T i i i
a a a a

R

R

    

  

R P P r P P r R

r V V r V V

   
   

    (11.62) 

 
Se supondrá que en los instantes tk se obtienen s pares de mediciones independientes de 
los observables: 
 

( )
( ) ; 1,...,

( )

i
a k

i k i
a k

t
t i s

t

 
   

y



    (11.63) 

 
El modelo de las mediciones (11.61)/(11.63) es función del vector que agrupa el 
conjunto de parámetros inciertos: 
 

1 2Ts s
e a ac t cD sp sp    p        (11.64) 

 
Destacamos que en la presente configuración los errores isp  no forman parte de los 
residuos de las medidas de código, por lo cual estos últimos quedan reducidos a su 
mínima expresión (1-5mts, ver Párrafo 9.1.1). Una estimación inicial gruesa del vector 

ep  puede obtenerse a partir del mensaje de navegación del GPS.  

 
El siguiente modelo vincula el desvío del reloj con su deriva temporal: 
 

a ac t cD     (11.65) 

 
De acuerdo con la Fig. 10.5 la distancia de la antena al satélite i en coordenadas 
terrestres resulta: 
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ˆ( ) ( )i i e e e b
a bl  R P P C    (11.66) 

Desviación del estado aumentado 
El ejemplo contempla incertezas tanto en el modelo de los instrumentos inerciales: 

TT T

i
     p σ b , como en las mediciones exoceptivas GPS: ep . De acuerdo con las 

Ecs. (10.6) y (11.40) (ó (6.21)) definimos el siguiente vector desviación del estado 
aumentado: 
 

9

( )

( ) ( ) ; ;

( )

e

e e
i

e
e

t

t t

t

  
       
      


x φ

χ p x V

p P

       (11.67) 

 
Las desviaciones ip  se vinculan con los errores en las medidas inerciales μ  a través 

de la ecuación (11.1). 

Modelo de las innovaciones. 
Teniendo en cuenta que ( )i i i i i i i i i

a a a a aR        r R r R r R r R
      ⊥ , perturbando 

las Ecs. (11.61) se obtienen: 
 

ˆ

iT i i i
i a a

i i
i i i a a D

sp c t

R c D

          


        

r R


   
     (11.68) 

 

Por otra parte, perturbando la (11.66) y usando ˆ( )e e e
b b C S C  calculamos: 

 
ˆ ˆ( ) ( )i e e b e e e b e e b e

a b b bl l l          R P C P S C P S C   (11.69) 

 

En la anterior se usó el hecho de que l es conocido sin error y además ˆ 0i P  dado que 
los errores de efemérides (o de posicionamiento) del satélite i ya fueron incluidos en el 
término spi. Así, el modelo de la innovación en pseudo-rango resulta: 
 

( )

ˆ( ( ) )

ˆ( ) 0 1 0 1

T e e b e i i
i i b a

T e b T e i
i b i i e

y S l c t sp

l






         

           

r P C

r S C r x p



   


  (11.70) 

 

Donde de la (11.64), 1T s
e a ac t c D sp sp       p  .  Por otra parte, a partir de la 2ª 

Ec. (11.62), establecemos: 
 

i i i i i
a a aR    R r r R

          (11.71) 

 

Derivando la Ec (11.66), usando ˆˆ e e b
eb b ib e ω C ω Ω


 y luego de despreciar el producto 

vectorial e elΩ  se tiene: 
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ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )i i e e b b e b i e e b b
a b ib e b b ibl l l        R P V C ω S Ω C P V C ω

    (11.72) 

 
Perturbando esta expresión y usando el mismo argumento empleado para las (11.69), 

que aquí justifica usar ˆ 0i P


, calculamos: 
 

ˆ( ) ( )

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ( )) ( )

i e e b b e b b
a b ib b ib

e e e b b e b b
b ib b ib

e e b b e e b b
b ib b ib

l l

l l

l l

        

     

     

R V C ω C ω

V S C ω C S ω

V S C ω C S ω









    (11.73) 

 
Por otra parte, de la definición del versor /i i i

a aRr R


 junto con la (11.69) resulta: 

 
1 1 ˆ( ) ( ) ( ) ( ) ( )i i i iT i i i iT e e b e

a a a bR I R I l           r r r R r r P S C
       (11.74) 

 

Llamamos ˆ ˆe e b
bl l C  y definimos los vectores fila: 

 
ˆ ˆ( ) ( ) / ( ( )); 1,...,i iT i iT e i iT e b b

a a b ibI l R l i s    c R r r S r S C ω
        

 
Usando esta definición, sustituimos las (11.72) a (11.74) en la Ec. (11.71) para, luego de 
algunas manipulaciones, obtener:  
 

1 ˆ( ) ( ) ( )i i e iT e i iT i iT e iT e b b
a a a b ibR R I l

        c r V R r r P r C S ω
       (11.75) 

 
Finalmente, introduciendo la anterior en la 2ª de la Ec. (11.68), resulta la expresión 
lineal en ex , b

ibω  y ep  de la innovación para los observables Doppler, i=1,...,s:  

 

 ˆ(1 ) / ( ) 0 1D i iT i T i iT i e T e b b i
i a a i b ib e Dy R l             c r R r r x r C S ω 0 p

      (11.76) 

 

A través de los términos ˆ ˆ( )e e e el l S    y ( )b b b b
ib ibl l  S ω ω , el brazo de palanca 

hace que las innovaciones sean sensibles a las componentes del error de actitud e  y del 

error giroscópico b
ibω  ortogonales al vector l. Sensibilidad que se manifiesta en 

presencia de las velocidades lineal y angular: i
aR  y ˆ ibω . Este hecho ofrece a esta 

configuración potencial tanto para la determinación de la orientación como para la 
calibración de los giróscopos a bordo de vehículos suficientemente ágiles. Más aún, 
como el lector advertirá, usando más de una antena con brazos de palanca no paralelos, 
las innovaciones Doppler podrán aportar información directa sobre todas las 
componentes del error de actitud y de todos los parámetros giroscópicos que, de acuerdo 
con la Ec. (11.1), se relacionan con b

ibω  mediante: 

 

( )b b
ib ib iL I      ω ω 0 0 p ξ


    (11.77) 

 
El modelo de las innovaciones de ambas medidas del receptor GPS en relación a cada 
satélite i y para cada instante tk, se resume en las siguientes ecuaciones: 
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Donde, con base en las Eqs. (11.70) y (11.76) las sub-matrices de i

kH  se definen como: 
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    

     (11.79) 

Ecuación de las desviaciones del estado aumentado. 
La ecuación de la desviación del estado cinemático (11.41) para este ejemplo se escribe:  
 

( ) ( )e e e e b e e b e e
e ib f f f f eL L               x F x B ω σ B b B f σ B b B ξ

  (11.80) 

 
La ecuación para los parámetros del modelo de calibración de la UMI es: 
 

; (0, ( ) )i i i iN t  p ξ ξ Q       (11.81) 

 
En tanto que el modelo de las desviaciones de los parámetros de los observables GPS 
es: 
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   (11.82) 

 
Como se muestra en la Ec. (11.78), tal como en un ejemplo anterior, la presencia del 
brazo de palanca hace que las ecuaciones del error del estado cinemático (11.80) y la 
medición externa de Doppler compartan el mismo ruido aditivo ξ  con lo cual los 

procesos kχ  y kη  no podrán considerarse independientes. Esto obliga una vez más a 

evaluar el término correctivo ( )tR  en función de 0 R  tal como en las (11.52) y 

(11.53) e introducirlo en las ecuaciones del EKF: (10.42) a (10.44). 
 
Por lo demás, es un sencillo ejercicio que se deja al lector demostrar que a partir de las 
(11.80) a (11.82) se obtienen tanto la matriz de la dinámica del error del vector de 
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estado aumentado ( )tA  como la matriz ( )tB  de las Ecs. (10.36). Las mismas serán 
luego usadas para el diseño del EKF. 

Estimación a posteriori de las variables de navegación y los parámetros 
Con los modelos de H, de la dinámica de las desviaciones y de las estadísticas de los 
ruidos, el procedimiento EKF permite determinar la ganancia de Kalman y con ésta la 
corrección del estado aumentado 1kχ  como en (11.55).  Las variables de navegación 

se actualizan usando las Ecs. (11.56) a (11.58) y, finalmente, los parámetros 
instrumentales mediante: 
 

ˆ ˆ

ˆ ˆ
i i i

e e e

 

 

  

  

p p p

p p p
   (11.83) 

 
Importa desatacar que con la 1ª Ec. (11.83) se calibran los instrumentos inerciales y con 
la 2ª se estiman los errores de propagación y satelitales y, muy importante, se corrige el 
reloj del receptor, más aún se estima su deriva en el tiempo (ver Ec. (11.64).  
 

11.6 Débilmente acoplado vs fuertemente acoplado 

Si bien su complejidad es mayor, en términos de calidad de navegación la configuración 
fuertemente acoplada tiene grandes ventajas respecto de la débilmente acoplada. En 
efecto, la primera utiliza medidas generadas por el receptor sobre la constelación visible 
de la mayor calidad posible. En primer lugar, por que los residuos son los óptimos y, en 
segundo, porque todos los observables son medidas independientes con lo cual sus 
residuos también lo son. En cambio, la opción débilmente acoplada (llamada también 
INS-GPS-PV) usa estimados de P y V calculados por el receptor época por época 
ignorando la correlación temporal debida al movimiento del vehículo que es registrado 
por la UMI. A esto se agrega que la estimación de la posición puede estar fuertemente 
segada (ver discusión a continuación de la Ec. (9.47)) y basada en residuos de muy 
pobre calidad. El resultado es una reducción tanto en la calidad como en la cantidad y la 
tasa de información disponibles. 
 
Otras características de gran importancia práctica de la configuración fuertemente 
acoplada tanto desde el punto de vista algorítmico como metodológico son: en primer 
lugar, como cada una de las 2s medidas (11.63) es independiente de las demás, el filtro 
de fusión (EKF o SPKF) puede procesarlas una a una como si procediesen de 
instrumentos independientes (de hecho lo son) aunque lleguen todas en el mismo 
instante. Esto reduce significativamente la dimensionalidad del cálculo y por ende la 
complejidad global del algoritmo. Más específicamente, véase la influencia de la 
dimensionalidad de 1kH  sobre: a) la actualización de la co-variancia a posteriori dada 

por las Ecs. (10.45) ó (10.47), b) el cálculo de la ganancia K (Ec. (10.44)) y c) la 
actualización, a partir de la innovación, del estado aumentado (Ec. (10.21)). Otra 
ventaja de gran interés práctico (sobre todo en ambientes donde la visibilidad de la 
constelación puede ser variable o reducida (ej. cañones urbanos, maniobras con cambios 
rápidos y de gran amplitud en la orientación del vehículo, interferencia etc.) es que 
contrariamente a la configuración débilmente acoplada, esta configuración no requiere 
que el receptor tenga en todo momento 4 o más satélites adquiridos (salvo posiblemente 
al inicio de la navegación). En cambio, el algoritmo de navegación, siempre mejorará la 
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estimación disponible cada vez que el receptor procese y provea el pseudo-rango o 
Doppler de al menos un satélite.  
 
Por último y no por esto menos significativo se destaca la importancia de posibilitar 
transferir al receptor el tiempo preciso GPS a partir de incluir en el vector de parámetros 
el sesgo del reloj del receptor. 

11.7 Navegación relativa con fase diferencial  

Una condición necesaria para la aplicación de las técnicas diferenciales a la navegación 
relativa entre dos o más vehículos es la existencia de un enlace de comunicaciones entre 
los vehículos con tiempos a bordo debidamente sincronizados. Cuando esta condición 
se cumpla y el vector distancia entre dos receptores satisfaga 700 ,ur mD  se podrá 

considerar el uso de observables de diferencias de fase dobles con residuos 
centimétricos lo cual posibilita, en principio, la estimación de las ambigüedades propias 
de todo observable de fase. Como se vio en el Párrafo 9.4 del Capítulo 9, con estos 
observables es potencialmente posible alcanzar la más alta precisión y exactitud 
disponibles en los sistemas de navegación GNSS. Las complejas técnicas numéricas de 
real time kinematics (RTK) introducidas en el Párrafo 9.4.3 son el único recurso que 
permite determinar "época-por-época" las ambigüedades de fase, sin embargo, como a 
continuación demostraremos, esto no es necesario cuando los mencionados observables 
forman parte de un esquema de navegación integrada en el cual las ecuaciones 
cinemáticas permiten correlacionar su estado actual con el de toda época pasada. Dentro 
de un tal esquema, las ambigüedades son consideradas parámetros a estimar del modelo 
de las medidas de dobles diferencias de fase. La configuración paramétrica del 
navegador se mantendrá en tanto cada pareja de receptores permanezca enganchada a un 
sub-conjunto común de satélites visibles de la constelación GNSS. Si bien el monitoreo 
de los satélites comunes y la consiguiente actualización del modelo son tareas que 
comparten el enfoque "navegación integrada" y el esquema RTK, este tema no será, sin 
embargo, objeto de este párrafo. 
 
Consideramos como ejemplo una plataforma de referencia fija a la Tierra y un vehículo 
que se mueve en torno a la primera.  Las posiciones de los centros de fase de las antenas 
de los receptores de referencia y a bordo del vehículo se expresan en las coordenadas 
terrestres {e}, respectivamente, como e

rP  y e
vP . El interés de usar esta terna de 

navegación particularmente con medidas GNSS fue ya señalado en el Ejemplo 11.4. Se 
supondrá por simplicidad que el centro geométrico de la UMI coincide con e

vP . 

Modelo de las de las ecuaciones cinemáticas 
Para la navegación relativa, lo que interesa es la dinámica del vector 

 [ ]e e e T
v r x y zd d d  d P P  entre el vehículo y la referencia. Dado que esta última se 

supone fija a la Tierra, en este caso se tiene que e e e
vv d P  .  El dominio acotado de 

los desplazamientos (|d| ≤700m) permite suponer, en primer lugar, que la gravedad 
abordo del vehículo es aproximadamente constante e igual a ( )[0 0 - ( )]e e T

g r r g C P P  

(ver, por ejemplo, la expresión (4.48)) y, en segundo, que su velocidad sea lo 
suficientemente reducida como para despreciar la fuerza de Coriolis   
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Bajo las condiciones anteriores, las ecuaciones cinemáticas para ed (ver Ecs. (5.17)) 
adoptan la forma reducida. 
 

0 0 0

0 0 0

,0

ˆ) ; ( ) ( , (0))

ˆ) ; ( ) ( , (0))

) ( ) ; (0) exp( ( (0)))

e e e e e
d

e e b e e e e
b v

e e b e e
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 

  

    

d v d d d P

v C f g v v v P

C C S C C S

 
 


  (11.84) 

 
Donde ( )eb t  es el ángulo de la rotación instantánea de la terna {b} a la {e} y además 

resulta: eb ib e    . Las Ecs. (11.84) pueden ser integradas mediante un algoritmo 

strap-down derivado del presentado en el Párrafo 7.2 del Capítulo 7.  

Modelo de las desviaciones del estado cinemático  
La pequeña rotación eφ  definida como el error angular sobre la terna "de llegada" del 

ángulo ( )be t  permite escribir la diferencial de la MCD:  

 
( ) ( )e e e b b e

b b e e     C S φ C C C S φ      (11.85) 

 
Perturbando las Ecs. (11.84), se obtienen: 
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 (11.86) 

 
Donde bf  es el error de medida de la fuerza específica y eg  el desconocimiento de la 
gravedad. Por otro lado, evaluamos: 
 

( ) ( ) ( )
e

e e e e bb
b b eb

d

dt


  

C
S φ C S φ C S     (11.87) 

 
Luego de igualar las dos últimas ecuaciones y premultiplicarlas por b

eC  se obtiene la 

dinámica del error de alineamiento:  
 

( ) ( )e e b b
b eb e

e e b
b eb

  
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S φ C S C

φ C




    (11.88) 

 
Suponiendo conocimiento perfecto de e  ( 0e  ) calculamos:  

 
( )

( ) ( )

b b b b b
eb ib ie ib e e

b b e b b e
ib e e ib e e

         

       

C

C S φ C S φ
   (11.89) 

 
Introduciendo la Ec. (11.89) en la Ec. (11.88), resulta la expresión del modelo del 
desalineamiento: 
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( )e e e b
e b ib    φ S φ C     (11.90) 

 
Luego de las sustituciones apropiadas y combinando las Ecs. (11.86) a), b) y (11.90) se 
obtiene finalmente el modelo de las desviaciones del estado cinemático: 
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 (11.91) 

Modelo del sensor exoceptivo 
Éste consiste en el modelo lineal (9.82) de las diferencias doble de fase, formulado en el 
Capítulo 9, que reproducimos a continuación:  
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  (11.92) 

 
Donde G es una matriz conocida en todo instante dependiente de la geometría de la 
constelación. Como se dijo, los residuos kη  de esta medida son de orden centimétrico 

cuando las ambigüedades, agrupadas en el vector 1sa  , son consideradas parámetros 
del modelo de medidas exoceptivas. De este vector se supondrá conocida una 
estimación inicial al inicio de cada intervalo de tiempo en que los receptores comparten 
un conjunto dado de satélites en línea de vista. Al comienzo de la navegación podrá 
usarse un estimado obtenido a partir de las soluciones SPS en cada receptor.  

Estado aumentado y modelo de sus desviaciones  
La componente paramétrica del estado aumentado dependerá de la complejidad del 
modelo de la UMI adoptado (Ecs. (11.1)) y del número de satélites compartidos. Una 
vez más, para simplificar la presentación elegimos para el primero la representación 
(11.9). De este modo, el vector de las desviaciones del estado aumentado y su modelo 
resultan:  
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    (11.93) 
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Modelo de las innovaciones. 
Siguiendo la estructura general dada por la Ec. (11.2) se tiene:  
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Estimados a posteriori. 
A partir de la innovación y de la ganancia de Kalman calculadas para el instante 1kt  , tal 

como en la Ec. (11.27), se determina la corrección del estado aumentado: 
 

1 1( ) ;( ) ;( ) ; ;[ ]e T e T e T T T T

k k      χ φ v b ad    (11.96) 

 
y con ella, tal como en las Ecs. (11.56) a (11.60), se actualizan las estimaciones a 
posteriori: 
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11.8 Sistema de navegación para una plataforma SAR aerotransportada 

Este párrafo tiene por objeto describir el desarrollo de un sistema de navegación para 
una aplicación específica enfatizando aspectos del diseño del HW de adquisición de 
datos y de los métodos usados para el análisis de la performance y la validación del 
sistema a partir de los datos experimentales.  
 
Un sistema de adquisición SAR consiste de una antena de radar junto con la electrónica 
encargada de digitalizar y almacenar los ecos recibidos de los pulsos emitidos mientras 
la antena es transportada por una plataforma aérea o espacial. Los ecos de los pulsos son 
procesados coherentemente, con lo cual, el efecto resultante equivale a un arreglo de 
elementos radiantes de una antena virtual que puede llegar a ser cientos de veces más 
larga que la antena física y, por tanto, con una resolución proporcionalmente mayor. Lo 
sorprendente de esta tecnología es que, contrariamente a la observación óptica, la 
resolución espacial de una imagen SAR resulta independiente de la distancia entre la 
antena y la escena (Curlander/McDonough, (1991)). Gracias a ello es posible adquirir 
imágenes SAR de alta precisión a muy grandes distancias (p.e. desde una altura de 1000 
Km en el caso de una plataforma satelital).   
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Otra notable característica de la observación remota SAR es que, en tanto que sistema 
activo, su operación no requiere de la iluminación de la escena, más aún, en gran 
medida la calidad de las imágenes es independiente de las condiciones atmosféricas, 
puesto que las nubes son transparentes para este tipo de radiación. 
 
La correcta formación de las imágenes SAR requiere, sin embargo, conocer con cierta 
precisión la trayectoria de la plataforma que transporta la antena. Las plataformas 
satelitales poseen un movimiento muy predecible, sin embargo las plataformas 
aerotransportadas están sometidas a perturbaciones de origen atmosférico que impactan 
estocásticamente sobre la trayectoria alejando a éstas de las condiciones nominales 
supuestas por los algoritmos numéricos de procesamiento de los datos SAR. Cuando la 
trayectoria real es mal conocida, la imagen puede sufrir diversos tipos de distorsiones, 
siendo el más notorio el llamado desenfoque que consiste en la dificultad para 
discriminar fronteras entre zonas adyacentes de una misma escena, principalmente, en la 
dirección azimutal (ver Fig. 11.5). El resultado es un deterioro de la calidad de la 
imagen, especialmente en alta resolución. 
 
Por esta razón, los procesadores SAR son normalmente asistidos por un sistema de 
navegación ad-hoc que permite determinar en tiempo diferido el estado cinemático de la 
plataforma durante la adquisición de datos. Las componentes del estado cinemático así 
reconstruidas alimentan al procedimiento de autoenfoque, llamado también de control 
de movimiento, acoplado al procesador SAR que genera la imagen. En los sistemas 
aerotransportados, la precisión del sistema de navegación determina en buena parte la 
calidad final de la imagen. 
 
En este apartado se describe el sistema de navegación integrada INS/GPS/MAG 
desarrollado para la CONAE que asiste al procesamiento de los datos de una antena 
SAR en banda L aerotransportada (SAR-AT) a bordo de un avión Beachcraft B200. El 
SAR es de tipo longitudinal, es decir produce imágenes de una franja lateral terrestre 
paralela a la trayectoria aproximadamente rectilínea recorrida con velocidad casi 
uniforme por la plataforma aérea o satelital (ver Fig. 11.5).  

 

Figura 11.5: Esquema SAR aerotransportado 
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La reconstrucción de la trayectoria de una plataforma SAR la realiza usualmente un 
algoritmo de navegación integrada que fusiona datos provenientes de un receptor GPS y 
una UMI. Veremos el interés de incluir un magnetómetro como instrumento exoceptivo 
suplementario. 
 
La temporización y sincronía entre los datos SAR y los datos de navegación es crucial 
en todo el procedimiento. Para esto, ambos conjuntos de medidas son etiquetadas por un 
único tiempo común abordo sincronizado con los pulsos PPS (pulse per second) 
provistos por el receptor GPS.  
 
El esquema en bloques de la Fig. 11.6 ilustra el uso de un sistema de navegación en el 
procesamiento y enfoque de una imagen SAR. A este esquema responde el SAR 
aerotransportado (SARAT) de la CONAE.  
 

 
A continuación describimos el sistema de navegación desarrollado por el grupo de 
electrónica del Instituto Argentino de Radioastronomía (UNLP-CONICET, Berazategui, 
Argentina) bajo convenio con la CONAE 

Configuración de instrumentos de navegación: 
1.- Unidad inercial Motion Pack de Systron Donner (SD/MP): UMI triaxial analógica 
MEMS (táctica), de 6 canales inerciales y sensor de temperatura interior. Para 
compensar los efectos de la temperatura se desarrolló un horno termo-estabilizado 
electrónicamente a 65 ±1ºC que alberga a la UMI durante su uso.  
 
La calibración y caracterización estocástica de la unidad inercial SD, fue realizada a 
partir de datos experimentales adquiridos en el laboratorio de ensayos de la CONAE 
para distintas temperaturas de operación. Los datos fueron luego procesados con los 
algoritmos expuestos en G. Marinsek (2011) (ver Tablas 3.5 a 3.8 de Marinsek, (2011)) 
suponiendo un modelo como el de las Ecs. (2.11) y (2.12). El algoritmo de navegación 
usa como valores nominales los parámetros determinados durante la calibración a una 
temperatura nominal de funcionamiento de 65ºC. La Tabla 7.1 muestra los desvíos 
estándar de algunos de esos parámetros que resultan del procedimiento. Estos desvíos 
fueron usados para probabilizar las desviaciones iniciales ip  del modelo de las 

Antena 
SAR 

UMI 

GPS 

Otros instr. 
de naveg. 

Procesador 
SAR 

Trayectoria 
estimada.  

Figura 11.6: Diagrama en bloques del procesamiento de datos SAR-AT 

Autoenfoque 
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desviaciones (11.1) ( 0( )i tP  en la Ec. (10.5)). En la misma tabla se consignan las 

estadísticas de los ruidos, que más afectan a la unidad, caracterizados mediante el 
procedimiento de la Variancia de Allan descrito en los Párrafos 2.6 y 2.7 del Capítulo 2 
de este volumen. 
 
 

PARÁMETRO GIROS X/Y GIRO Z ACELS. X/Y ACEL. Z 

Rango 100(º/s) 200(º/s) 10 (g) 15(g) 

Error f/escala 1σ <1,24x10-4 <1,24x10-4 <0.44 x10-4 <0.6 x10-4 

Error sesgo 1σ <0,24x10-2(º/s) <1x10-2 (º/s) 
0,26x10-3 

(m/seg2) 
0,4x10-3 
(m/seg2) 

Error desalin. 
1σ  

<0,5 x10-3 rad <2 x10-3 rad <0.8 x10-4 rad <1,2 x10-4 rad 

Ancho de banda 75 Hz 75 Hz 900 Hz 900 Hz 

BI 1.7 x10-3(º/s) 4x10-3(º/s) 7x10-4 (m/seg2) 1.7x10-3 (m/seg2) 

ARW/VRW 7 x10-3 (º/√s) 4 x10-7 (º/√s) 1.7x10-4ms-3/2 3,2x10-4ms-3/2 

Tabla 7.1: Parámetros de la UMI SD/MP 
 
2.- Magnetómetro HMC6343 de Honeywell triaxial de estado sólido. Posee sensores 
magneto-resistivos, anisotrópicos de baja sensibilidad cruzada entre ejes integrado y un 
acelerómetro triaxial MEMS. El instrumento mide, a una tasa configurada a 10Hz, el 
rumbo de su eje principal proyectando el vector magnético sobre el plano horizontal 
local. Tanto la orientación del plano de montaje respecto de la vertical local como la del 
rumbo son determinadas por un algoritmo embebido en un microprocesador que usa las 
medidas acelerómetricas a modo de inclinómetro. Este modo de funcionamiento hace 
que sus medidas de rumbo no sean válidas durante movimientos acelerados del avión, 
por lo que sólo son tenidas en cuenta por el filtro con el avión en tierra o durante los 
tramos de vuelo casi uniforme. Si bien la exactitud del rumbo es de 2 a 3º, su 
repetibilidad es ≤0,3º y el ruido en el ancho de banda ≤0,1º rms. Esto constituye una 
precisión más que aceptable comparada con otros dispositivos miniaturizados. Una 
interfase de comunicación permite ingresar la declinación magnética local.  
 
3.- Receptor GPS Hemisphere Crescent (EOM-Board): de 12 canales (puede seguir 
hasta 12 satélites simultáneamente) de bajo consumo con 20gr de peso, mide 7x4 cm, y 
provee datos P/V en terna ECEF a una tasa de 10Hz. 

Sistema de adquisición de datos 
Consiste en dos bloques, uno es la unidad central de manejo y almacenamiento de datos 
(UC) y el otro la unidad de digitalización de los datos inerciales generados por la UMI-
S/D (UMI-D).  
 
La unidad central (UC en la Fig. 11.7) consta de un bloque de control y manejo de datos 
desarrollado en base a un dispositivo de lógica programable (FPGA) que incluye un 
micro-procesador con sistema operativo Linux embebido. Dicho módulo maneja el bus 
de datos y valida todas las medidas antes de almacenarlas en memoria.  La UC incluye, 
además, el magnetómetro, el receptor GPS, la interfaz de comunicaciones con la UMI-D 
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y un enlace de ethernet que permite al operador configurar y supervisar la adquisición 
desde una PC. La memoria tiene capacidad para almacenar hasta 10hs de medidas 
inerciales (a 100Hz), de PV del GPS (a 10Hz) y del yaw magnetométrico (a 10Hz). 
Toda esta información es pos-procesada por un algoritmo ad-hoc de navegación 
integrada como el indicado en la Fig. 11.6. 
 

 
El módulo UMI-D incluye el recinto termo-estatizado que alberga a la UMI, la 
electrónica de acondicionamiento térmico y la de digitalización de los datos. Esta última 
está compuesta por 6 canales inerciales (3 aceleraciones y 3 velocidades angulares) más 
otro de temperatura.  El HW de los primeros 6 canales (ver Fig. 11.8) lo conforman un 
filtro antialias (FAA) de 600Hz, un ADC con datos de salida de 24 bits a 60Kbs y un 
módulo FPGA que: a) genera las magnitudes integrales Δα, Δv con 16 bits (incluido el 
signo) a 100sps y b) comanda la comunicación serie de los datos hacia la UC a través de 
un canal RS-422.  
 

 
El flanco ascendente del pulso por segundo (PPS) del receptor GPS indica el inicio del 
segundo del sistema GPS. Con esta señal se etiquetan los datos del magnetómetro al 
interior de la UC. Accesible desde el exterior vía un canal RS232, la misma señal es 
usada para etiquetar las medidas inerciales digitales la UMI-D, para sincronizar la 
electrónica de generación de pulsos SAR y, finalmente, para temporizar los ecos.  

11.8.1 Modelos de las desviaciones del estado y de las innovaciones 
La reconstrucción de la trayectoria de la plataforma se realiza mediante un algoritmo de 
navegación integrada que procesa en tiempo diferido los datos almacenados en la UC. 
La terna de navegación usada es la ECEF con lo cual la ecuaciones de navegación 
resultan dados por las Ecs. (5.17) y el algoritmo strap-down el expuesto en el párrafo 
7.2. El vector de las desviaciones del estado cinemático e

ex , definido en la Ec. (11.40), 
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Figura 11.7: Arquitectura del sistema de adquisición de datos  
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es solución de las Ecs. (6.3). La integración con el GPS es del tipo débilmente acoplada, 
es decir, se usan los observables secundarios de posición y velocidad que calcula el 
receptor GPS en coordenadas ECEF.  
 

Modelo perturbacional de los sensores inerciales 
Dado que el procesamiento diferido de los datos permite liberar al algoritmo de 
navegación de las restricciones propias de las aplicaciones en tiempo real, se decidió 
privilegiar la precisión de la estimación a la intensidad de cómputo y adoptar el modelo 
general de la IMU expresado por la Ec. (2.13) con 2x(9+3)= 24 parámetros y cuya 
versión perturbacional esta dada por las Ecs. (6.15) y (11.1). 
 

( , ) ; (0, ( ) )

; ( ) (0, ( ) )

i

b
b bib

p ib ib
f

i i i i

N t

t N t


  

  
         

  

ξω
B ω f p ξ ξ Q

ξf

p ξ ξ Q

 

 
  (11.98) 

Modelos de las innovaciones.  
Las innovaciones de las mediciones GPS de posición y velocidad en terna ECEF se 
modelan como sigue (ver definiciones en la (11.44)). 
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  (11.99) 

 
La formulación del modelo de la innovación de la medida magnetométrica del yaw 
( y

ky ) requiere mayor elaboración.  Como modelo de esta medida adoptamos: 

 
 ( )y g e

k mdm dm      y P


     (11.100) 

 
en la cual, ( )edm P  es el modelo (posiblemente tabulado) de la declinación magnética 

en función de la posición, dm  el error local del modelo y m  el error de medición. 

Perturbando la anterior el modelo de la innovación resulta: 
 

y

x

y g e
k m e mHdm dm            y x     (11.101) 

 
En lo que sigue determinaremos la matriz y

xH . Consideramos como punto de partida la 

Ec. (6.43) para n=g, que vincula el error angular de plataforma respecto de la terna 
geográfica (ENU) g  con las desviaciones en roll ( ), pitch ( ) y yaw ( g ).  
 

-sen( ) / cos( ) -cos( ) / cos( ) 0
-cos( ) sen( ) 0

-sen( ) tan( ) -cos( ) tan( ) 1

g g

g g g g

g g g

N
N
N







       
          
            

 (11.102) 
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Recordando las diferenciales matriciales (6.20), (6.28) y (6.39): ( )e e e
b b C S φ C , 

( )g g g
e e  C S θ C  ( )g g g

b b  C S C  que, para n=g, establecen, respectivamente, el error 

angular de plataforma: g , el error angular eφ  y el error angular de posición gθ  
evaluamos: 
 

( ) ( )

( ) ( )

g g g g e

b b e b

g e g e g g g e e

e b e b b e b

    

      

C S C C C

C C C C S θ C C S φ C
   (11.103) 

 
De éstas se obtiene: 
 

( ) ( ) ( )g g g e e

e g

g g g e

e

    
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S S θ C S φ C

θ C φ
    (11.104) 

 
El siguiente paso consiste en expresar el error de posición angular gθ  en función del 
error de posición en coordenadas ECEF: e

ex . Para esto, siguiendo el desarrollo de G. 

Castillo (2011), partimos de las siguientes expresiones establecidas en el Apéndice A de 
esa referencia (se indican al margen las ecuaciones de donde fueron extraídas):  
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(11.105) 

 

Donde se usó: 2 2( ) ( )e e
xyr x y , 

Te e e ex y z      P , 2 2 2( ) sen ( )cos ( )a      

con a el radio ecuatorial terrestre y   la excentricidad del elipsoide normal (ver Cap. 4).  
Las anteriores se condensan en la siguiente expresión:  
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A continuación modificamos trivialmente la segunda expresión (6.67) y teniendo en 
cuenta la anterior, escribimos: 
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   (11.107) 

 
Con lo cual, g  en (11.104) resulta:  
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( ) ( )g g e e e

e h      C N M P P      (11.108) 

 
Finalmente, a partir de la (11.102) escribimos: 
 

( ) ( )g g g e e e

e hN N N           C N M P P     (11.109) 

 
Si ahora llamamos dm  al error en el conocimiento de la declinación magnética local, 
el modelo de la innovación de la medida del yaw se expresa como: 
 

,

, ,; (0, )

y g

k k y k

e
y y y y e

V P dm y k y k yk

dm

x
H H H H N

dm

      

         

y

Q
 (11.110) 

 
Con las sub-matrices en (11.110) dadas por:  
 

; ( ) ( ); 0;y g y e y y

e P h V dmH N H N H H I        C N M P   (11.111) 

11.8.2 Resultados experimentales 
A continuación se presentan y analizan los resultados de la navegación integrada 
obtenidos para vuelos del Beachcraft B200 realizados durante 2011 con la 
configuración instrumental descrita más arriba. Inicialmente se muestran resultados de 
la fusión de datos UMI(S/D)-GPS sin usar magnetómetro.  

 
Una trayectoria típica comienza con el avión inmóvil cercano al hangar, continúa con su 
desplazamiento hacia la cabecera de pista (~10min), luego el carreteo que dura unos 
11seg. y a continuación la maniobra de despegue. Una vez adquirida la altura de 

Figura 11.9: Reconstrucción de la trayectoria del avión en coordenadas 
curvilíneas con datos UMI/SD + GPS. 
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operación (~20min), se inicia la misión SAR, la cual comporta vuelos rectilíneos, 
uniformes y nivelados sobre tramos pre-establecidos por la programación de la 
adquisición SAR. Concluida la misión, siguen las maniobras de descenso y aterrizaje.  
 
La Fig. 11.9 muestra la reconstrucción de la trayectoria en coordenadas curvilíneas 
terrestres, en tanto que la Fig. 11.10 representa la proyección de la misma trayectoria 
sobre el plano horizontal local. Una ampliación de esta última figura cerca del 
aeropuerto permitiría observar los desplazamientos hacia y desde el hangar cercano a la 
pista del aeropuerto. En el perfil de altura de la primera figura se advierte el ascenso y 
vuelo en la altura de operación (6000m en este caso), luego el descenso y el aterrizaje.  
Las adquisiciones SAR ocurren al interior de los segmentos de vuelo que exhiben una 
variación lineal en latitud y en longitud y que se corresponden con trazos 
aproximadamente rectilíneos en la Fig. 11.10.  
 

 
 
La Fig. 11.11 muestra la orientación del vehículo que calcula el SW de navegación, en 
ángulos de Euler yaw, pitch y roll respecto de la terna geográfica local. El yaw se 
representa módulo 180º. Típico en vuelos "coordinados", las variaciones positivas y 
negativas en pitch se corresponden con los ascensos y descensos del avión, en tanto que 
los giros o cambios en yaw se correlacionan con variaciones en el ángulo de roll o 
guiñada. 
 
Nótese en particular el viraje en pleno ascenso que el avión realiza desde el rumbo 
(aprox.) -150º a (aprox.) -60º. Esta maniobra se ejecuta durante los primeros 2 minutos 
del despegue manteniendo el pitch en unos 15º y el roll de unos 20º. Una vez alcanzada 
la altura de operación es posible visualizar tramos de adquisición SAR caracterizados 
por un perfil de yaw aproximadamente constante. 
 
 

Aeropuerto 

Figura 11.10: Trayectoria del avión proyectada sobre el plano horizontal 
local con datos UMI/SD + GPS. 
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De acuerdo con lo expuesto al final del sub-Capítulo 10.3, usamos como herramientas 
de diagnóstico del funcionamiento del filtro la función de auto-correlación de las 
innovaciones de las medidas exoceptivas: posición y velocidad GPS. Las gráficas de la 
Fig. 11.12 permiten constatar el carácter casi impulsivo de dichas funciones alrededor 
del cero. Sólo se muestra la componente Z dado que las otras exhiben un 
comportamiento similar (por el resto ver Catillo, (2011)).  
 

 
La Fig. 11.13 muestra la evolución del proceso de las innovaciones de posición (a) y de 
velocidad (b) de las medias GPS junto con sus cotas "2σ" (95%), siendo σ2 el 
correspondiente elemento de la diagonal de la matriz de covariancias ( )y kP  evaluada 

mediante la Ec. (10.42). La comparación entre ambas curvas permite advertir una 
variancia teórica en exceso conservativa para la posición y mejor ajustada para la 
velocidad. Esta constatación a posteriori pudo haber sido utilizada para mejorar la 

Autocorrelación de la innovación de la velocidad en el eje Z 

Autocorrelación de la innovación de la posición en el eje Z 

Figura 11.12: Auto-correlaciones de las innovaciones de las medidas 
GPS de posición y velocidad según el eje Z (ECEF). 

Tiempo (s)   x104 

Figura 11.11: Orientación en vuelo respecto de la terna geográfica 
local con datos UMI/SD + GPS. 
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sintonía del filtro. En todo caso, ambos resultados demuestran la consistencia estadística 
de las covariancias teóricas determinadas por el EKF. 

 
En la Fig. 11.14 se expone la evolución de los desvíos estándar teóricos de los ángulos 
de Euler estimados al inicio de un vuelo. Se observa que cuando el vehículo está quieto, 
la acción de la gravedad g (medida por los acelerómetros) es suficiente para reducir la 
incerteza inicial en roll y en pitch, en tanto que la incerteza del yaw crece 
monótonamente.  

 
Esto último se debe a que siendo el la UMI-SD de calidad a penas táctica, resulta 
incapaz de medir la rotación angular terrestre, por lo tanto, no hay aporte de 
información del yaw del avión mientras éste permanece inmóvil. Al mismo, tiempo, las 
perturbaciones hacen que la incertidumbre de ese parámetro crezca indefinidamente. El 
crecimiento se revierte suavemente cuando el vehículo inicia su desplazamiento hacia la 

Innovación de la velocidad GPS en el eje Z (ECEF) (m/seg) 

Innovación de la posición GPS en el eje Z (ECEF) (m) 

Figura 11.13: Innovaciones de las medidas GPS de posición y velocidad 
según el eje Z (ECEF) comparadas con sus cotas teóricas de 2σ. 
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Figura 11.14: Desvíos estándar teóricos de la orientación previo al despegue. 
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cabecera de pista. La razón: la información aportada por el GPS revela la dirección de 
su movimiento y, por tanto, el azimut hacia el que apunta la nariz del avión. Al 
momento de iniciarse el carreteo sobreviene una drástica reducción de la incertidumbre 
en el yaw debido a que ahora, una componente importante de la aceleración apunta en la 
dirección de la nariz lo que incrementa, a través de los acelerómetros, la información 
disponible en yaw y pitch. De este modo, en apenas 11segs., el filtro reduce y equipara 
las incertidumbres de esos 2 ángulos de Euler. 

 

 

con mag. 

con mag. 

sin mag. 

sin mag. 

Figura 11.15: Perfil del yaw y de su desvío estándar en torno al carreteo 
(rojo: con mag., azul: sin mag.). 

Carreteo 

Despegue 

Figura 11.16: Perfil del yaw  y de su desvío estándar a lo largo del vuelo para las 
configuraciones con y sin magnetómetro (azul: con mag., rojo: sin mag.). 
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En lo que sigue se ilustran los efectos de incluir el magnetómetro. La Fig. 11.15 
compara los perfiles del yaw y su desvío estándar teórico para las configuraciones con y 
sin magnetómetro* durante un intervalo de tiempo que comprende: a) 4 min. con el 
avión parado en cabecera de pista, b) el carreteo y c) los primeros instantes del despegue 
y ascenso. Como era de esperarse, el magnetómetro suprime el crecimiento de la 
incerteza sobre el yaw previo al carreteo. Ambas estimaciones convergen durante el 
despegue mientras el avión vira alrededor de 100º hacia la derecha. Al final de la 
gráfica, se observa la persistente mayor precisión de la estimación del yaw con la 
configuración que incluye al magnetómetro. 
 
La Fig. 11.16 compara las estimaciones del yaw para ambas configuraciones (con y sin 
magnetómetro) durante todo el vuelo. Además de la pronunciada divergencia durante 
los primeros 4 minutos ya referida, se observan diferencias durante los tramos de vuelo 
uniforme en que la configuración sin magnetómetro pierde calidad de información. Esto 
explica las fuertes divergencias entre ambos desvíos estándar teóricos en dichos tramos 
ilustradas en el gráfico de la parte inferior de la figura.  
 
Lo anterior permite concluir que, precisamente durante los tramos de adquisición SAR, 
el magnetómetro aporta una importante mejora a la calidad de navegación. 
 

Navegación INS-GPS sin calibración de la UMI-SD 
La calibración en vuelo de la unidad inercial requiere alta intensidad de cómputo y 
complejidad del algoritmo y de los métodos de validación del SW. En vista de esto, a 
continuación se evalúa la performance del sistema de navegación sin calibrar de la UMI, 
es decir congelando el modelo nominal (11.9) provisto por el fabricante o bien 
identificado por los métodos del Capítulo 2. Como medida de performance, la Fig. 
11.17 muestra la función de autocorrelación de las innovaciones de posición y velocidad 
GPS de la configuración IMU/SD-GPS sin calibración. Comparando con la Fig. 11.12 
se advierte claramente el deterioro de la performance del filtro.   

                                                
*Los datos del magnetómetro sólo se usan hasta el inicio del carreteo. 

Figura 11.17: Autocorrelaciones de las innovaciones de las medidas GPS de 
posición y velocidad según el eje Z (ECEF) (sin calibración de UMI-SD). 

Autocorrelación de la innovación de la velocidad en el eje Z 

Autocorrelación de la innovación de la posición en el eje Z 

Tiempo (s)   x104 
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Completando el análisis, la Fig. 11.18, muestra la evolución de las innovaciones en 
posición y velocidad del GPS junto con su intervalo de confianza teórico del 95%. De la 
comparación de esta última figura con la Fig. 11.13, constatamos, en primer lugar, un 
importante incremento en la magnitud de las innovaciones lo que refleja la dificultad del 
filtro de predecir la medida exoceptiva y, en segundo lugar, que la evolución del 
proceso se mantiene sistemáticamente fuera de su intervalo de confianza teórico. Se 
concluye así sobre la necesidad de calibrar la UMI-SD con datos de vuelo.  

Comparación con instrumentación inercial de alta performance 
Durante la experimentación en vuelo del sistema de navegación también se registraron 
datos inerciales con una unidad inercial iNAV-FJI fiber optic gyro (de clase navegación) 
montada sobre el avión. La diferencia más notable con la unidad UMI-SD (de clase 
táctica) son los giróscopos de tecnología IFOG de muy alta performance de la primera. 
En la Tabla 7.2 se consignan los principales parámetros para su comparación con los 
indicados en la Tabla 7.1 par la UMI/SD. 

 
 
 
 
 
 
 
 
 
 
 
 

Tabla 7.2: Parámetros de la unidad inercial IFOG: iNAV-FJI. 
 

PARÁMETRO GIROS  ACELS.  

Rango 100(º/s) 10 (g) 

Error f/escala  50ppm 100ppm 

Error de alin. 1σ  <10-4 rad <10-4 rad 

Ancho de banda 500 Hz 500 Hz 

BI <10-6(º/s) <5x10-5 (m/seg2) 

ARW/VRW 1,6x10-5 (º/√s) 8x10-5ms-3/2 

Innovación de la velocidad GPS en el eje Z (ECEF) (m/seg) 
 

Figura 11.18: Innovaciones de las medidas GPS de posición y velocidad 
según el eje Z (ECEF) comparadas con sus cotas teóricas de 2σ (sin 
calibración de UMI-SD). 

Innovación de la posición GPS en el eje Z (ECEF) (m) 
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Las Fig. 11.19 y 11.20 muestran la evolución de las innovaciones en posición y 
velocidad del GPS junto con su intervalo de confianza teórico del 95%, 
respectivamente, para los casos sin y con calibración de la unidad inercial iNAV-FJI.  

 
Comparando ambos registros, sólo se advierte una ligera reducción en la potencia del 
proceso de innovación en el segundo caso y al mismo tiempo un desplazamiento de su 
valor medio hacia el valor nulo, más acorde con lo esperado para un proceso de 
innovación. El escaso aporte de la calibración en línea observado en ese caso es 
consecuencia de la gran estabilidad de los parámetros de esta UMI de clase navegación. 
Podrá afirmarse entonces que una reducción en la calidad (y el costo) de la 
instrumentación inercial puede, en parte, ser compensada con un aumento en la 
intensidad del cálculo. De este modo, cuando la aplicación involucre una gran cantidad 
de unidades podría preferirse asumir el costo del desarrollo, la puesta a punto y la 
validación del SW de algoritmos de navegación más complejos, inversamente, cuando 

Innovación de la velocidad GPS en el eje Z (ECEF) (m/seg) 
 

Figura 11.19: Innovaciones de las medidas GPS de posición y velocidad en 
el eje Z (ECEF) comparadas con sus cotas teóricas de 2σ (sin calibración de 
UMI iNAV-FJI). 

Innovación de la posición GPS en el eje Z (ECEF) (m), 

Innovación de la velocidad GPS en el eje Z (ECEF) (m/seg) 
 

Figura 11.20: Innovaciones de las medidas GPS de posición y velocidad en 
el eje Z (ECEF) comparadas con sus cotas teóricas de 2σ (con calibración de 
UMI iNAV-FJI). 

Innovación de la posición GPS en el eje Z (ECEF) (m) 
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se requieran sólo algunas pocas unidades la decisión podrá ser de usar instrumentación 
inercial de mayor calidad. 
 

 
En la Fig. 11.21 se comparan las performances de la navegación integrada sin usar 
magnetómetro con calibración de ambas unidades inerciales. Interesa destacar que a 
pesar de que los errores en la medición de posición GPS sean métricos, en ambos casos 
el filtrado hace que la imprecisión teórica de la posición resulte decimétrica.  

 

Figura 11.22: Desvío estándar teórico del yaw usando la unidad de 
iNAV-FJI  con (azul) y sin (rojo) magnetómetro. 

Carreteo 

Inicio magnetómetro 
[º] 

a) 

b) 

Desvío est de la velocidad en el eje Z (m/seg) 
 

Figura 11.21: Comparación de desvíos estándar teóricos de yaw, posición y 
velocidad con calibración de iNAV-FJI (rojo) y de SD (azul). 

Desvío estd. de la posición en el eje Z (ECEF) (m) 

Desvío estd. del yaw en el eje Z (LGV)(º) 

Desvío estd. de la velocidad en el eje Z (ECEF) (m/seg)  
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Como es de esperar, para los registros de las tres variables elegidas, la imprecisión 
teórica a lo largo de todo el vuelo es sensiblemente mayor cuando se usa la unidad 
iNAV-FJI que con la SD. El comportamiento resulta similar para el resto de las 
variables (ver Castillo, 2011). En el perfil correspondiente a la SD de la primera gráfica, 
se observa el deterioro, ya comentado, en la precisión del yaw durante los minutos en 
que el avión permanece inmóvil. En cambio, durante el mismo lapso, el desvío estándar 
del yaw decrece cuando se usa la unidad iNAV-FJI. Esto se debe a que el sistema de 
navegación gana información del yaw gracias a que la alta resolución de esta unidad le 
permite medir con precisión la velocidad angular terrestre. 
 
En la Fig. 11.22 se estudia el efecto de incluir o no el magnetómetro en la configuración 
instrumental con la unidad iNAV-FJI. La ampliación del inicio del vuelo en la gráfica a) 
(compararla con la Fig. 11.15) permite apreciar que el magnetómetro aporta desde el su 
inclusión información útil que complementa a la que surge de medir la velocidad 
angular terrestre reduciendo, en consecuencia, considerablemente la imprecisión en la 
estimación del yaw. La nueva información aportada por el GPS durante el carreteo 
equipara finalmente la precisión entre ambas estimaciones.  
 
En cambio, la gráfica b) (compararla con la Fig. 11.16) muestra que, ya en vuelo, el 
magnetómetro no aporta sustantivamente a la calidad de la navegación ni siquiera en los 
tramos críticos de vuelo uniforme.  Importa destacar que el desvío estándar del yaw que 
resulta en este caso es casi un orden de magnitud inferior al obtenido usando la SD con 
el magnetómetro. 
 
Como ya se indicó, la buena performance demostrada por la configuración con la 
unidad iNAV-FJI se explica por su alta resolución que aporta información del yaw aún 
en los tramos de vuelo uniforme. Pero, sumado a esto, la excelente estabilidad de sus 
parámetros hace que una vez calibrados (al principio del vuelo incluido el carreteo) 
éstos no requieran casi recalibración durante el vuelo preservando la alta performance 
aún en los tramos en que la trayectoria no aportaría información relevante sobre esos 
parámetros (ver discusión sobre reconstructibilidad y observabilidad en 
Carrizo/España/Giribet, 2014).  

Consistencia relativa de las estimaciones  
El hecho de disponer sobre la misma serie de vuelos de dos calidades muy dispares de 
unidades inerciales motiva a preguntarse en que sentido las estimaciones provenientes 
de ambas configuraciones son consistentes entre sí. Como la variable más crítica resulta 
ser el yaw durante los intervalos de vuelo uniforme, este caso fue usado como testigo. 
En la Fig. 11.23 se grafican, para ambas configuraciones, los intervalos de confianza 
alrededor de los estimados del yaw en tramos de vuelo casi uniforme. En rojo se 
representan los resultados con la SD y en azul los correspondientes con la iNAV-FJI (la 
separación entre las cotas para esta última configuración es a penas perceptible en la 
escala elegida).  Se advierte en todos los casos que el intervalo de confianza de la 
estimación de mayor precisión queda totalmente contenido en el correspondiente a la de 
menor precisión. Si bien este resultado no podría considerarse como una validación 
experimental del desempeño adecuado de ambos diseños de sistemas de navegación, sí 
demuestra la consistencia relativa entre ambas configuraciones. 
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Conclusiones  
En lo que respecta a fusión INS-GPS se demostró que cuando la unidad inercial es de 
calidad táctica su pobre estabilidad paramétrica exige complejizar el algoritmo de modo 
de incluir la calibración en tiempo real de la unidad. Cuando la unidad sea de clase 
navegación, ese requerimiento podría obviarse aunque la performance global siempre se 
vera mejorada en caso de aplicarlo. Más aún, la calibración en tiempo real sumado a la 
alta estabilidad paramétrica que caracteriza a estas unidades asegura un excelente 
desempeño, aún en los tramos en que la dinámica del vehículo torna inobservable 
muchos de sus parámetros.  Esto se vio claramente en los intervalos de vuelo uniforme 
del avión en los cuales el desvío estándar teórico del yaw diverge significativamente con 
la UMI-SD.  En este último caso, la inclusión de un magnetómetro deviene crucial para 
estimar adecuadamente la orientación del avión en cualquier régimen de vuelo, en 
cambio, cuando la UMI es de clase navegación su aporte resulta casi irrelevante. La 
razón es que una UMI de esta clase puede medir con precisión la velocidad angular 
terrestre y por tanto obtener información de yaw a partir de ello. Se demostró además 
que si bien el magnetómetro mejora la performance de la Systron Donner, el desvío 
estándar teórico del yaw se mantiene un orden de magnitud superior al que resulta de 
usar la iNAV-FJI, aún sin magnetómetro.  
 
Por último, La posibilidad de registrar datos inerciales con dos UMI de clases diferente 
permitió validar por comparación la consistencia estadística en las salidas del sistema 
desarrollado.  
 
 
 

Figura 11.23: Intervalos de confianza para el yaw con SD(rojo) e 
iNAV-FJI  (azul) en tramos de vuelo nivelado. 
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Apéndice A  
Modelo del Potencial  

Gravitacional Terrestre 

 

El potencial gravitacional V(P) en un punto P del espacio 3 está descrito por la 

ecuación de Poisson: 
 

( ) 4 ( )V P G P        (A.1) 
 
donde  indica el operador laplaciano, G la constante de gravitación universal y  la 
densidad de masa en el punto considerado.  Cuando P es exterior a la corteza terrestre 
(P) = 0 (despreciando la densidad de la atmósfera) y la ecuación de Poisson se reduce 
a la ecuación de Laplace:  
 

( ) 0V P     (A.2) 
 
Consideremos la esfera Sa de radio a centrada en el centro de gravedad terrestre que 
contiene al volumen que ocupa la Tierra. Cuando el potencial gravitacional sobre la 
superficie de Sa es usado como condición de borde, las soluciones de la (A.2) describen 
el potencial gravitacional terrestre exterior a dicha esfera. La condición de borde 
constituye la única información física requerida por el modelo. Por razones que 
apreciaremos más adelante convendrá introducir el potencial gravitacional terrestre 
normalizado:  
 

( ) ( )
T

a
V P V P

GM
    (A.3) 

 
siendo MT la masa nominal de la Tierra. Claramente, ( )V P  también satisface (A.2) para 
los puntos exteriores a la esfera de radio a. 
 
Vista la simetría, lo más natural es adoptar coordenadas esféricas geocéntricas (ver 
Párrafo 4.2.2) para las cuales el laplaciano (A.2) se escribe como:   
 

 
2

2

2 2 2 2 2

1 1 1
cos 0

cos cosc

c c c c

V V V
r

r r r r r

       
               

  (A.4) 

 
Ensayamos en la Ec. (A.4) una solución hipotética del tipo: 
 

( , , ) ( ) ( , );c cV r R r Y r a      ,    (A.5) 

 
que permite separar en factores la dependencia radial de la dependencia angular de las 
soluciones. Los factores de la (A.5) satisfacen, respectivamente, las siguientes 
ecuaciones: 
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21 R
r K

R r r

    
  

    (A.6) 

 
2

2 2

1 1
cos

cos cosc

c c c c

Y Y
K

Y Y

            
   (A.7) 

 
siendo K una constante arbitraria llamada de separación.  Como se comprueba 
fácilmente por sustitución, las soluciones de (A.6) requieren que sea K= n(n+1) y 
resultan de dos tipos:  
 

( 1)

( ) ; 0
n

n

r
R r n

r

 
 


    (A.8) 

 
Veremos más adelante que n debe ser un entero positivo. Dado que las soluciones rn 
contemplan efectos de masa a grandes distancias exteriores al volumen de cualquier 
esfera de radio finito, el modelo gravitacional debido exclusivamente a la masa terrestre 
sólo incluye soluciones del tipo r-(n+1).   
 
Por otra parte, las soluciones Y(c, de (A.7) pueden obtenerse separando nuevamente 
la solución en factores de tal modo que sustituyendo Y(c,=F(c)L() en (A.7) e 
introduciendo una nueva constante de separación M se obtiene, por un lado, la ecuación 
para la función de la longitud:  
 

2

2
0

L
ML


 


    (A.9) 

 
y por otro la correspondiente a la latitud: 
 

2

1
cos ( 1) 0

cos cosc

c c c c

F M
n n F

                 
  (A.10) 

 
La condición de continuidad de las soluciones en longitud de (A.9) sobre la esfera, i.e.: 
L()=L(+2) impone que M m  entero, por lo que sus soluciones resultan: 
 

cos( ), sen( ); enterom m m      (A.11) 
 
Para M=m2, la ecuación de la latitud (A.10) es la llamada ecuación asociada de 
Legendre en coordenadas polares. Introduciendo el cambio de variables x=sen(c), que 
transforma: [-/2,2]→[-1,1] y usando la relación válida para toda función ( )cG  :  

 
( ( ))

cos( ) c
c

c

dG xdG

d dx


 


      

 
la Ec. (A.10) se rescribe según su forma clásica en función de la coordenada lineal x 
como: 
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2

2

2
(1 ) ( 1) 0

1

F m
x n n F

x x x

           
     

   (A.12) 

 
Las únicas soluciones acotadas de la ecuación asociada (A.12) en el intervalo x  [-1,1] 

(c  [-/2,2]) resultan ser para n y m enteros tales que 0n m  .  Estas soluciones 

son llamadas funciones asociadas de Legendre y pueden generarse mediante la formula 
de Rodrigues (Wahr, 1999; Arfken/Weber, 1995): 
 

2
2

/ 2

,

(1 )
( ) ( ) ( 1) ; 0

2 !

m n m
n

n m n n m

x d
F x P x x n m

n dx






       (A.13) 

 
Donde los enteros n y m son respectivamente el orden y el grado de , [ 1,1] : [ 1,1]n mP - -   

A.1 Propiedades de las funciones asociadas de Legendre (Arfken/Weber, 1995) 

Las funciones asociadas de Legendre incluyen a los polinomios de Legendre de orden n 
para m=0 generados mediante:  
 

2

,0

1
( ) ( ) ( 1)

2 !

n
n

nn n n

d
P x P x x

n dx
      (A.14) 

 
Paridad/imparidad respecto del origen: 
 

, ,( ) ( 1) ( )n m
n m n mP x P x      (A.15) 

 
Cambio de signo del grado m: 
 

,,( )

( )!
( ) ( 1) ( )

( )!
m

n mn m

n m
P x P x

n m


 


   (A.16) 

 
Condición de los extremos:  
 

, ( 1) 0; 0

( 1) ( 1)

n m

n

n

P m

P

  

  
   (A.17) 

 
Relaciones de recurrencia:  
 

2 1 / 2

, 1, 1,

, 1, 1 1, 1

2( 1) ( ) ( 1)

2( 1)(1 )

n m n m n m

n m n m n m

n xP n m P n m P

n x P P P

 

   

     

   
   (A.18) 

 
A continuación introducimos los polinomios y las funciones de Legendre normalizados, 
(ambos soluciones de la Ec. (A.13)), respectivamente: 
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, ,

( ) (2 1) ( ),

2(2 1)( )!
( ) ( )

( )!

n n

n m n m

P x n P x

n n m
P x P x

n m



 






    (A.19) 

 
Es posible demostrar que los polinomios de Legendre normalizados conforman una base 
ortonormal del espacio de Hilbert L2[-1,1] y que las funciones generalizadas de 
Legendre son ortonormales en [-1,1], es decir: 
 

1

,

1

,, , ,, ( ) ( ) ; ,n m n ml m l m n lP P P x P x dx n l m


        (A.20) 

 
O en coordenadas polares sobre el círculo (x=sen(c)):  
 

/ 2

, ,

/ 2

,, ,, (sen( )) (sen( ))cos( ) ; ,n m c c c c n ln ml m l mP P P P d n l m




           (A.21) 

 
De las definiciones (A.13), (A.14) y (A.19) resultan las primeras funciones de Legendre 
normalizadas para x=sen(): 
 

 

 

0,0 1,1

1,0 2,1

2 2

2,0 2,2

(sen( )) 1 ; (sen( )) 3 cos ( )

(sen( )) 3sen( ) ; (sen( )) 15 cos ( )sen( )

5 15
(sen( )) 3sen( ) 1 ; (sen( )) cos ( )

4 4
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P P

P P
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      

      

  (A.22) 

 

A.2 Funciones Armónicas Esféricas 

Con base en lo anterior definimos como funciones armónicas esféricas sobre 
[ / 2, / 2] [0, 2 ]-    , n m  al siguiente conjunto de soluciones de la parte angular del 
laplaciano (A.7):  
 

c c

c c

, ,

, ,

( , ) (sen( ))cos( )

( , ) (sen( ))sen( )

n m n m

n m n m

P m

P m

   

   







    (A.23) 

 
A partir de las definiciones (A.23) y usando la propiedad (A.21) es posible comprobar 
la ortogonalidad del conjunto de las funciones armónicas esféricas según el siguiente 
producto escalar definido sobre la esfera unitaria:  
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1

1

,

2 / 2

,

0 / 2

,

2 / 2

,

0 / 2

, , ,

, , ,

, , ,

, , ,

, ,

, ( , ) ( , )

( , ) ( , )cos( ) 4

, ( , ) ( , )

( , ) ( , )cos( ) 4

, 0; , , ,

n m

S

n m

n m

S

n m

n m k l k l

k l n k m l

n m k l k l

k l n k m l

n m k l

ds

d d

ds

d d

n m k l

 



 



     

          

     

          

   



 



 





   

 

   

 

 

  (A.24) 

 
En las cuales cos( )ds d d     constituye el diferencial de superficie de la esfera 

unitaria S1 y ,n k  es el “delta” de Kronecker. Pero, el aspecto de mayor importancia que 

hereda el conjunto de estas funciones de las funciones de Legendre y de las funciones 
trigonométricas es que constituye una base completa de las funciones definidas sobre S1 
(Arfken/Weber, 1995). De este modo, toda función Y(c,):[ / 2, / 2] [0, 2 ]-       
“suficientemente continua” (no necesariamente continua en todas partes) puede 
expandirse mediante la siguiente doble sumatoria de funciones armónicas esféricas 
llamada serie de Laplace:  
 

, c , c
0 0

, ,( , ) ( , ) ( , )
n

c n m n m
n m

n m n mY C S


 

             (A.25) 

 
Donde, gracias a la ortogonalidad de las funciones armónicas esféricas, los coeficientes 
Cn,m y Sn,m se calculan mediante: 
 

1

1

, , ,

, , ,

1 1
, ( , ) ( , )

4 4

1 1
, ( , ) ( , )

4 4

n m n m n m

S

n m n m n m

S

C Y Y ds

S Y Y ds

       
 

       
 





 

 
   (A.26) 

 

En particular para m=0 y según las Ecs. (A.19) se tiene  n0: 

 

1

,0

,0

1
( , ) ( ( ))

4

0

n n

S

n

C Y P sen ds

S

   





    (A.27) 

 

A.3 El Potencial Gravitacional  

Cuando la función (A.25) describe el potencial normalizado sobre la esfera Sa 
mencionada más arriba, i.e.: ( , ) ( , , )c cY V a     , el potencial gravitacional en los 

puntos situados a una distancia ra del centro de gravedad terrestre corresponde a la 
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solución del llamado problema de Dirichlet y resulta de las (A.25), (A.5) y la 1ª de las 
(A.8): 
 

, c , c
0 0

1

, ,( , , ) ( , ) ( , )
n

n m n m
n m

n

c n m n m
a

V r C S
r



 


                  (A.28) 

 
En efecto: en primer lugar, la serie (A.28) es claramente convergente para ra dado que 
su mayorante (A.25) lo es; en segundo lugar, ( , , )cV r    cumple la condición de borde: 

( , , ) ( , )c cr a
V r Y


      y en tercer lugar, de acuerdo con (A.5) y la primera de las 

(A.8), cada término de la serie convergente (A.28) satisface la ecuación (A.4) la cual, 
dada la linealidad del operador laplaciano, también es satisfecha por ( , , )cV r    (y por 

( , , )cV r   ).  

 
Junto con la (A.3) y las (A.27), la expansión en armónicos esféricos de ( , , )cV r    para 

ra resulta en consecuencia:  
 

,0 , ,,
0 1

( , , ) ( , , )

(sen ) (sen ) cos( ) sen( )

T
c c

T
n n m n m

n n

n c n m c
n m

GM
V r V r

a

GM a
C P P C m S m

r r



 

     

                    
 

 (A.29) 
 
Usando la integral volumétrica de Poisson es posible (ver Hofmann-Wellenhof/ Moritz, 
2006) transformar las integrales de superficie (A.26) en las siguientes integrales 
volumétricas: 
 

, ,

, ,

1
( , )

(2 1)

1
( , )

(2 1)

n

n m n m
T Tierra

n

n m n m
T Tierra

r
C dm

n M a

r
S dm

n M a

      

      





 

 
   (A.30) 

 
En las cuales ( , , )dm r dv     es el elemento de masa de la Tierra ubicado en el punto 

de coordenadas esféricas ( , , )r    y 2 cosdv r drd d     el correspondiente elemento 
de volumen con densidad ( , , )r   .  
 
Las Ecs. (A.30) permiten visualizar el significado geométrico de los primeros 
coeficientes Cn,m y Sn,m. Usando las (A.23) y las (A.22) obtenemos las siguientes 
expresiones en coordenadas cartesianas de los primeros integrandos de las Ecs. (A.30). 
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0,0 0,0 1,0

1,0

1,1

1,1

2 2
2,1

2 2
2,1

1; 0, 0

( , ) 3 sen( ) 3

( , ) 3 cos ( ) cos( ) 3

( , ) 3 cos ( )sen( ) 3

( , ) 15 cos ( )sen( )cos( ) 15

( , ) 15 cos ( )sen( )sen( ) 15

r

r r z

r r x

r r y

r r zx

r r zy

  

    

     

     

      

      

  











    (A.31) 

 
De las anteriores resulta en primer lugar que 0,0 1A   y además que los siguientes 

momentos de 1º orden son nulos cuando el centro de coordenadas coincide con el centro 
de masa de la Tierra 
 

 1,0 1,1 1,1

1 1 1
; ;

3 3 3Tierra Tierra TierraT T T

C zdm C xdm S ydm
aM aM aM

      (A.32) 

 
Por otra parte, dado que el eje z nominal de la Tierra coincide con el eje que maximiza 
su momento de inercia respecto de él, los siguientes momentos cruzados también son 
nulos.  
 

2,1 2,1

3 1 3 1
;

5 5T TTierra Tierra

C zxdm S zydm
M M

        (A.33) 

 
El resultado es la siguiente expresión para la expansión (A.29): 
 

,0 c , , ,
2 2

( , , )

1 (sen( )) (sen ) cos( ) sen( )

c

n n
T

n n n m c n m n m
n m

V r

GM a
C P P C m S m

r r



 

  

                     
 

 (A.34) 
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Apéndice B  
Matriz Jacobiana  

de la Aproximación J2 

 
A continuación se indican las expresiones analíticas de los coeficientes de la matriz 
jacobiana para la aproximación J2 de la gravedad normal: 
 

2 2

2 2
22 2

2 2

2 2
2 22 2

3 2 2

2 2
22 2

2 2

3 15
(1 ( / ) )

2 2
3 15

( ) ( ) (1 ( / ) )
2 2

0
9 15

(1 ( / ) )
2 2

e e e e e T
J gJ c

J a J a
z r x

r r x
GM J a J a

z r y y
r r r

J a J a
z r z

r r

   
  
            
    

    

γ P γ P  (B.1) 

 
Cuya matriz jacobiana se expresa según: 
 

2 2 2
( ) / / / ( ) ( )e e e e e e e e e

J J gJ c g c          J P γ P γ P γ P J P J P   (B.2) 

 
Con: 

2

1 0 0

( , , ) 0 1 0

0 0 0
c x y z

 
   
  

J Ω     (B.3) 

 
Las entradas de la matriz ( )e

gJ P = ( , , )g x y zJ  están dadas por: 
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Apéndice C  
Momentos de 1º y 2º orden 

de Procesos Estocásticos Continuos Lineales 
 

Sea un proceso markoviano que responde al siguiente modelo de estado lineal variante 
en el tiempo para t>t0:  
 

( ) ( ) ; ;n mt t   χ A χ B ξ χ ξ       (C.1) 
 
Donde 0( )tχ  es un vector aleatorio de valor esperado 0ˆ ( )tχ  y covariancia:  

 

 0 0 0 0 0ˆ ˆ( ( ) ( ))( ( ) ( ))TE t t t t P χ χ χ χ     (C.2) 

 
Por su parte el ruido continuo ( )tξ  es supuesto centrado e independiente con densidad 
espectral ( )tQ  y covariancia ( ) ( )t t Q  donde ( )t  es el delta de Dirac que satisface: 
 

( ) ( ) ( ) ( ) ( )
t

t

t d t d t









        Q Q Q     (C.3) 

 

De la Ec. (C.1) y las características de ( )tξ  surge que  ˆ ( ) ( )t E tχ χ para tt0 es la 

solución de la siguiente Ec. homogénea: 
 

 0 0ˆ ˆ ˆ( ) ; ( ) ( )t t E t dado χ A χ χ χ     (C.4) 

 
Entre las (C.1) y (C.4) escribimos el modelo del proceso incremental ˆ χ χ χ  según: 
 

 0( ) ( ) ; ( ) 0t t E t     χ A χ B ξ χ     (C.5) 

 
Por su parte, para la matriz de covariancia del proceso (C.1) se expresa como:  
 

   ˆ ˆ( ) ( ( ) ( ))( ( ) ( )) ( ) ( ))T Tt E t t t t E t t    P χ χ χ χ χ χ  (C.6) 

 
Con base en la anterior calculamos usando el modelo (C.5): 
 

   
   
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T T

T T

T T T T
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E t t t t t E t t t t t
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     

       

     

P χ χ χ χ

A χ B ξ χ χ A χ B ξ

A P P A χ ξ B B ξ χ

  

 (C.7) 
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Para evaluar el último término de la ecuación anterior, partimos de la solución general 
del sistema (C.5): 
 

0

0 0

0 0 0 0

( ) ( , ) ( ) ( , ) ( ) ( )

( , ) ( ) ( , ); ( , )

t

t

t t t t t d

t t t t t t t I

       

 

χ Φ χ Φ B ξ

Φ A Φ Φ
    (C.8) 

 
Dada la independencia entre ( )tξ  y 0( )tχ  y usando las (C.8) y la definición del delta de 

Dirac tiene: 
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0 0
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0 0
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2
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T T T T T

t t

t tt
T T

t

T T

E t t t t E t d t t t t d t

t d t t t d t t

t d t t t t t







            

         

    

 

 



χ ξ B Φ B ξ ξ B Φ B Q B

B Q B B Q B

B Q B B Q B

 (C.9) 
 
Finalmente,  puesto que ( ) ( )Tt tQ Q , sustituyendo el resultado anterior en la Ec. (C.7) 
se obtiene la ecuación diferencial matricial que describe la propagación temporal de la 
matriz de covariancia del proceso ( )tχ . 
 

0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ; ( )T Tt t t t t t t t t dada  P A P P A B Q B P   (C.10) 

Correlación con la observación del proceso 

Consideramos la observación del proceso (C.1) perturbada por el ruido ( )t  y su 
desviación: 
 

( ) ( ) ( ) ( ) ( ) ( )t t t t t t        y Hχ y H χ     (C.11) 
 
y la covariancia cruzada  ( ) ( ) ( )T

y t E t t   P χ y  

 

   ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T

y t E t t E t t t t        P χ χ H χ P H R  (C.12) 

 
El término de la correlación  ( ) ( ) ( )Tt E t t   R χ  se evalúa partiendo de la solución 

(C.8) para obtener, siguiendo los pasos de la (C.9): 
 

 
0 0

( ) ( , ) ( ) ( ) ( ) ( , ) ( ) ( , )
t t

T

t t

t t E t d t t d             ξR Φ B ξ Φ B R   (C.13) 

 
Cuando los ruidos ( ), ( )t tξ  sean centrados y descorrelacionados entre sí, 

0 0   R R . En ese caso se tiene:  
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( ) ( ) T

y t t P P H    (C.14) 

 
Cuando pueda considerarse que ( , ) ( )t t     ξ ξR Q , un desarrollo similar al que 

conduce a la Ec. (C.9) permite mostrar que: 
 

1
( ) ( )

2
t t  ξR B Q    (C.15) 

 
Con lo cual en este caso se tiene: 
 

1
( ) ( ) ( )

2
T

y t t t   ξP P H B Q    (C.16) 
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