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Chapter 1
Introduction

The word ‘navigation’ comes from Latin navigare which means ‘to sail’. The word
navigare itself is derived from navis, which stands for ‘ship’, and agere, meaning ‘to
drive’ (Esmat Sep 2007). Early navigation primarily dealt with vessels traveling in
sea. However, it has now permeated into every imaginable form of transportation as
well as various other applications including location-based services, search and
rescue, law enforcement, road and air travel, remote asset tracking, fleet manage-
ment, intelligence gathering, sports, public safety, and environmental assessment
and planning (ElI-Rabbany 2002). Advances in microelectronics and miniaturization
of integrated circuits have facilitated the production of inexpensive inertial sensors,
global positioning system (GPS) receivers and powerful computers. This has placed
navigation systems within easy reach of low cost applications.

Navigation is a technique for the determination of position and velocity of a
moving platform with respect to a known reference, but it can also include the
attitude of the platform (Groves Dec 2007). A navigation system can either be
autonomous or be dependent on external sources, or in some cases a combination
of the two. The fusion of the two systems is traditionally based on the technique of
Kalman filtering, developed in 1960 mainly for navigating in space. The sensors
for a navigation system typically include accelerometers, gyroscopes and radio
receivers. There are two fundamental methods for finding a navigation solution:
position fixing and dead reckoning (DR). Position fixing is based on the infor-
mation of external sources with known locations, with GPS being a typical
example. On the other hand, dead reckoning is autonomous and relies on
knowledge of the initial location, speed and heading information. Inertial navi-
gation is a dead reckoning system which uses accelerometers and gyroscopes to
monitor translational motion and rotational motion respectively.

Position, velocity and attitude are called the navigation states. In cases where
only the position is required, the term positioning is used rather than navigation.
For this book, the term vehicle will be mostly used for the moving platform whose
position and attitude are to be determined.

A. Noureldin et al., Fundamentals of Inertial Navigation, Satellite-based 1
Positioning and their Integration, DOI: 10.1007/978-3-642-30466-8_1,
© Springer-Verlag Berlin Heidelberg 2013



2 1 Introduction

1.1 General Classification of Positioning Techniques

According to Borenstein et al. 1997, positioning techniques (either indoor or
outdoor) are divided into seven categories falling in two groups.

1.1.1 Techniques Using Relative Measurements
(Known as DR)

1.1.1.1 Odometry

The odometry data is obtained by using sensors that measure the rotation of the
wheel axes and the steer axes (e.g. high resolution encoders). Wheel rotation is
translated into linear displacement. The advantages of this method are that it has
short term accuracy, is low cost and allows high sampling rates. But it cannot take
into account wheel slippage. For a specified initial position estimate, the task is to
integrate incremental motion information over time. This leads to the disadvantage
that any small constant error increases without bound. In particular, orientation
errors can cause large position errors that increase with the distance traveled, thus
impairing the long term accuracy of the solution.

1.1.1.2 Inertial Navigation

This employs inertial sensors (gyroscopes and accelerometers) which measure the
rotation rates and the specific forces from which acceleration can be obtained.
Inertial navigation systems are autonomous, which means they are self-contained;
i.e. they don’t need external references. Starting from a known position and
orientation, measurements are integrated once for gyroscopes and twice for
accelerometers to provide orientation and position respectively. The positioning
solutions obtained tend to drift with time due to the integrations performed, which
can lead to unbounded accumulation of errors. Inertial navigation alone, especially
with low cost sensors, is thus unsuitable for accurate positioning over an extended
period of time.

1.1.2 Techniques Using Absolute Measurements
(Known as Reference-based Systems)

1.1.2.1 Electronic Compasses

Although not providing a positioning solution by its own, an electronic compass is
a device which uses magnetometers to provide heading measurements relative to



1.1  General Classification of Positioning Techniques 3

the Earth’s magnetic north by observing the direction of the local magnetic field.
To convert the compass heading into an actual north heading, the declination
angle, which is the angle between geographic and magnetic north, is needed. The
declination angle is position dependent, so it is necessary to know the position of
the compass in order to calculate the heading relative to geographic north. The
magnetic compass has the disadvantage that the local magnetic field is distorted
near power lines or metal structures such as bridges and buildings along the
trajectory of the vehicle. This can result in large and unpredictable errors in the
heading estimated by the compass, in turn making the application of this system to
vehicular navigation questionable.

1.1.2.2 Active Beacons

This approach can be used if the moving platform is to navigate in an already
known environment, and can provide accurate positioning information. However,
very precise mounting of the beacons is required in order to facilitate accurate
positioning. Furthermore, their installation and maintenance imposes a relatively
high cost. Thus the supporting infrastructure limits the utility of active beacons to
specified environments. There are several positioning algorithms that can be used
with different active beacon systems, such as the trilateration-based algorithm, the
triangulation-based algorithms, and the fingerprinting algorithms. Trilateration is
the calculation of a vehicle’s position based on distance measurements relative to a
known beacon using, for example, time-of-flight information. Triangulation is the
calculation of a vehicle’s position and possibly its orientation based on the angles
at which beacons are seen relative to the moving platform’s longitudinal axis.
Examples of active beacon systems are wireless communication systems for
positioning, such as those which use cellular networks, television (TV) networks,
ultra-wide band (UWB) networks and wireless local area networks (WLAN), the
latter also known as Wi-Fi systems.

1.1.2.3 Global Navigation Satellite Systems

GNSS is mainly a technology for outdoor navigation. Currently, the most popular
example is GPS, which is a constellation of satellites that transmit encoded radio
frequency (RF) signals. By means of trilateration, ground receivers can calculate
their position using the travel time of the satellites’s signals and information about
their current location, this being included in the transmitted signal. Calculation of
the receiver’s latitude, longitude and altitude is possible when its exact distance
from a number of satellites is known, three being the theoretical minimum number
and four being able to correct for clock bias in the receiver. GPS provides good
absolute localization for outdoor navigation, so long as there is sufficient satellite
coverage. However, it is normally not available in deep indoor environments.
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1.1.2.4 Landmark Navigation

This approach can be used if the moving platform is to navigate in an environment
that is well known. Landmarks are distinct objects or features such as geometric
shapes that can be detected and distinguished by appropriate sensors on a vehicle.
They can be either natural or artificial. Artificial landmarks are objects added to
the environment specifically for positioning and navigation, whereas natural ones
are already present in the environment. Each landmark must have a fixed position,
and the vehicle requires a database of their characteristics and locations. Some
landmarks may include additional information like bar-codes. The vehicle must be
able to recognize landmarks reliably from its sensor inputs and process the data in
a manner that determines its own position.

1.1.2.5 Map-Based Positioning (Or Model Matching)

This approach can be used if the moving platform is to navigate in a specific
mapped environment. In this approach, the moving platform uses its sensors to
perceive its local environment, and this perception is then compared to a map
previously stored in its memory. If a match is found, then the vehicle can calculate
its position and orientation in this specific environment. Cameras and laser range
finders are examples of sensors that can be used with this type of positioning. The
stored map of the environment can be an already available model, or it can be
constructed from prior sensor data. This approach can be used only in a structured
environment, which means indoor environments and some outdoor environments.
There is a somewhat similar technique known as map matching that is normally
used together with GPS to determine the position of a vehicle within a street map
structure. Although there are similarities between the two techniques, the latter is
used to constrain another positioning solution such as GPS, it is not a standalone
positioning technique and is not the one discussed in this subcategory.

1.1.3 Combined Systems

For the first category that uses relative measurements (i.e. dead reckoning) the
determination of the current vehicle position uses the knowledge of the previous
position and the measurement of its latest movements. For the second category of
absolute measurements (i.e. reference-based systems) the current vehicle position
is calculated by measuring to known reference points but without knowledge of its
previous trajectory. Usually two methods or more, involving at least, one from
each group, are combined in order to obtain a reliable navigation solution.
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1.2 GNSS-Based Positioning Techniques

A GNSS such as GPS is currently popular for outdoor positioning. These systems
calculate the position of the receiver by ranging to several visible satellites with
known locations using trilateration. The United States’ GPS is the most widely
used. Another one is the Russian GLObal’naya NAvigatsionnaya Sputnikovaya
Sistema (GLObal NAvigation Satellite System, in English), GLONASS, which is
similar to GPS in concept but uses different technical standards. The first satellite
of this system was launched in 1982. Like GPS, GLONASS offers a position and
navigation service to civilians and an encrypted service to military users (Space-
Based Positioning, Navigation and Timing 2008). As of the time of writing, there
are 31 satellites in space, 24 of which are operational (FSA 2012).

Galileo is another navigation system being developed by the European Union.
The first test satellite was launched in December 2005 and the second in April
2008, primarily to occupy the allotted frequencies and test some of the important
technologies. Two operational satellites were launched together in October 2011,
with two more are to follow in 2012. The system is expected to reach its initial
operational capability (IOC) around mid-decade and its full operational capability
(FOC) by the end of this decade (ESA 2012). It is primarily intended for civilian
use and will provide two services, at least one of which will be freely available to
any user. The final satellite constellation will include 30 satellites.

China has also developed an experimental satellite navigation system known as
BeiDou-1 (BD-1) in Chinese for ‘compass navigation satellite experimental
system’. It was developed by the China academy of space technology (CAST), a
subsidiary of the China aerospace science and technology (CASC). The system
provides all-weather two-dimensional positioning, navigation and communication
for both military and civilian users over most of the East Asia region. It comprises
two main BeiDou-1 satellites and one backup. The launch of the third satellite in
May 2003 made the system fully operational (Beidou 1 2012). The full navigation
system called ‘compass navigation satellite system’ (CNSS) or BeiDou-2 (BD-2)
is in the development stage. It will consist of a constellation of 25-35 satellites,
including four in geostationary orbits, and will provide complete coverage of the
Earth (Beidou-2 2012). The free service is expected to provide an accuracy of
10 m but the licensed service will be more accurate.

India and Japan are also developing satellite based navigation systems known
as the Indian regional navigational satellite system (IRNSS) and the quasi-zenith
satellite system (QZSS) respectively.

Since GPS is the most widely used satellite navigation system and has matured
since its inception in 1973, it will be the focus of our discussion.
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Fig. 1.1 The GPS satellite
constellation

X X
X
1.2.1 Global Positioning System

The US Navy introduced the world’s first satellite navigation system in 1961 with the
launch of the experimental Transit satellite. This system became operational in 1964.
The construction of the global positioning systems (GPS) started in 1973, and it
achieved IOC in 1993. It provides accurate position, navigation and timing infor-
mation on a worldwide basis free of charge to anyone with a GPS receiver, although
initially the military service was more accurate than the civilian one.

GPS consists of a nominal constellation of 24 satellites orbiting the Earth (as
depicted in Fig. 1.1) at a mean radius of 26,560 km with capacity for some
additional ones (Misra and Enge Dec 2001). The geometry of the constellation
ensures the visibility of at least four satellites at any location on or near the
surface, this being the minimum number to determine a solution. In principle, a
GPS receiver requires the ranges to only three satellites in order to calculate its
three-dimensional position using the principle of trilateration, but a fourth satellite
is needed to estimate the offset of the receiver’s clock from the system clock.
Figure 1.2 shows the concept of GPS positioning by three satellites. The fact that
more than four satellites are usually available serves to improve the accuracy of
the solution. The GPS system is discussed in detail in Chap. 3.

GPS (indeed any GNSS) may suffer from outages due to signal blockage,
multipath effects, interference or jamming. GPS outages happen in urban canyons,
tunnels and other GPS-denied environments. Some receivers have extra features to
improve performance in challenging environments. To enhance accuracy, some
receivers are dual-frequency rather than single-frequency. One benefit of a dual-
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Fig. 1.2 The concept of
position fixing by trilateration
using signals from three
satellites. The user’s position
is indicated by the red/dark
dot

frequency receiver is that it can estimate the ionospheric delay, which is frequency
dependent, and eliminate this error in the measured pseudo-ranges. Furthermore,
some GPS receivers can employ GLONASS signals as an augmentation system.
One of the extra features in receivers is multipath mitigation. Several methods of
multipath estimation and mitigation have been implemented. A classification of
multipath mitigation techniques can be found in Yang et al. 2004.

Another feature in GPS receivers is their sensitivity, which is defined as the
minimum received signal strength necessary in order for it to provide a solution.
The GPS signal is typically buried in thermal noise, and the minimum signal level
at the surface of the Earth is —130 dBm. While the signal structure itself provides
a means to recover the navigation data from the noise, these inherent properties fail
under dense foliage or in urban canyons (Sudhir et al. 2001). GPS receivers which
exhibit a sensitivity of —150 to —160 dBm are now available. Using a high-
sensitivity receiver leads to faster time-to-first-fix (TTFF) and better tracking, and
can provide acceptable GPS functionality to previously impossible locations such
as inner city urban canyons, as well as regions populated by dense foliage and in
vehicles with ultraviolet-coated or thermal windshields, although they may not be
able to maintain the same levels of accuracy in these environments.

Despite the abovementioned features which enhance the performance of a GPS
receiver, some environments still suffer from severely degraded performance
(like in deep urban canyons encountered in downtown scenarios) or complete
blockage (like tunnels and green tunnels). To provide a more accurate and unin-
terrupted navigation solution, GPS must be integrated with other systems which
can exhibit complementary characteristics (Skog and Handel 2009). Other systems
that can be integrated with GPS (some complementary and offering an uninter-
rupted solution whilst others merely enhance the performance) are

1. GPS Augmentation Systems

(a) Other GNSS such as the Russian GLONASS or the European Galileo.
(b) Space-based augmentation systems (SBAS).
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(c) Ground-based augmentation systems (GBAS).

2. Local wireless-based positioning systems which use cellular base stations,
Wi-Fi access points and TV towers.

Motion sensors such as inertial sensors, odometers and a compass.

Aiding sensors such as cameras and light detection and ranging (LIDAR).

5. Digital maps.

W

1.3 Integration of GPS with Other Systems

Accuracy, integrity and availability of GPS can be increased by integrating it with
other systems, sensors and aiding devices. Some of the important augmentation
techniques are summarized below.

1.3.1 GPS Augmentation Systems

1.3.1.1 Other GNSS

For GPS receivers capable of utilizing signals from other satellite systems such as
GLONASS and Galileo, these extra systems can increase the number of satellite
signals in view. However, any environment that highly degrades GPS will also
tend to impair or block these other systems.

1.3.1.2 Space-based Augmentation System

SBAS is a system that supports wide-area or regional augmentation by the use of
additional messages from geostationary satellites. These systems are commonly
composed of multiple ground stations, located at sites that have been accurately
surveyed. These stations take measurements of one or more of the GPS satellites’
signals, and of environmental factors that could impair the signal received by the
end users. After these measurements are processed, information messages in the
form of a GPS-like signal are generated and sent up to one or more geostationary
satellites for broadcasting to the users. The prime examples of SBAS are the wide-
area augmentation system (WAAS) operated by the United States’ federal aviation
administration (FAA) and its European counterpart, the European geostationary
navigation overlay service (EGNOS) which is operated by the European space
agency (ESA). GPS augmented with WAAS can consistently achieve accuracies of
1-2 m in horizontal positioning and 2-3 m in the vertical direction (FAA 2012b).
Of course, all these space-based systems will be negatively affected or blocked in
highly degraded GPS environments.
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1.3.1.3 Ground-Based Augmentation System

A GBAS is a system which provides augmentation by the use of terrestrial radio
messages (FAA 2012a). As with satellite-based augmentation systems, ground-
based augmentation systems are commonly composed of one or more accurately
surveyed ground stations. The stations take measurements of the GPS signals, and
then one or more radio transmitters broadcast the information directly to the end
user. Examples of the GBAS are United States’ local area augmentation system
(LAAS) mainly used around airports to improve aircraft safety during approaches
and landings, and the Differential GPS (DGPS) which provides a level of accuracy
that can approach 1 m depending on whether the measurement is code-based or
carrier-phase-based and whether the processing is real-time or post-processing.
LAAS provides an accuracy of better than 1 m, but is mainly used in airports and
out to a range of 50 km (Stanford 2012). Another example of ground stations
serving as additional satellites is what are known as pseudolites (pseudo-satellites).
By locating these at favorable sites, the accuracy and continuity of the navigation
solution available to a GNSS receiver can be enhanced in GPS-denied environ-
ments. However, pseudolites can only solve the coverage problem locally, the
receiver must be designed to handle the additional signals, and this technique
requires an additional infrastructure.

1.3.2 Local Wireless-Based Positioning Systems

The location of a mobile receiver can also be determined by using the wireless
communication signals transmitted from different systems. Since the focus here is
on automobile navigation, the discussion is limited to those systems which can be
effective in such an application, namely cellular networks and TV towers. Other
positioning systems in this category that rely on WLAN, UWB or radio-frequency
identification (RFID) are more suitable for indoor navigation. Positioning based on
cellular networks or TV towers can be used in a standalone manner or aid GPS to
enhance its performance.

1.3.2.1 Using Cellular Networks

A number of systems have used a global system of mobile/code division multiple
access (GSM/CDMA) mobile cellular networks to estimate the location of outdoor
mobile clients. The two major categories of location systems are network-based
and handset-based. Network-based systems employ technologies which determine
the position of a handset solely from measurements taken at cellular base stations,
imposing no requirements on the unit beyond its normal communications function.
In a handset-based system, the location measurements are made in the handset and
special software and/or hardware is required. Hybrid systems can also be utilized,
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where both the network and the handset are modified to perform the positioning
function (Bensky Dec, 2007). Cellular phone carriers use a number of systems to
provide location services based on different techniques, including

1. Cell identification (Cell-ID).

2. Time of arrival (TOA).

3. Time difference of arrival (TDOA) with modes for enhanced observed time
difference (E-OTD), observed time difference of arrival (OTDOA), and uplink
time difference of arrival (U-TDOA).

4. Angle of arrival (AOA).

5. Assisted-GPS (A-GPS).

The first four techniques are used for positioning mobile clients by only a few
cellular phone carriers. In general they cannot achieve better positioning accuracy
than GPS. They can readily achieve accuracies of 50-200 m, but hardly ever less
than 10 m (Hui et al. Nov, 2007). However, positions calculated by these systems
can be used to augment GPS. One limitation of such integrated systems is that
positioning using cellular networks is unable to achieve a better accuracy than GPS
and is usually much worse. On the other hand, the accuracy of cellular-based
positioning is higher in densely covered areas compared to less densely covered
regions. Another drawback of this integrated positioning solution is that service
charges are imposed for accessing a cellular network. It also lacks generality and
universality because it depends on the specifications in the operating environment,
such as network coverage.

A-GPS uses the GPS infrastructure to determine a user’s location. Signals to aid
GPS acquisition are transmitted over the cellular phone network to a receiver
contained within the handset. Generally, differential corrections are not sent to the
user, the information transmitted is to assist the phone in rapidly acquiring the
satellite signals. Assistance from the cell networks can also extend to performing
some calculations remotely and sending the results to the phone (Jacobson 2007).
Unlike standalone GPS, systems and devices that are A-GPS-only are tied to good
signals from subscriber cellular phone networks and this substantially limits their
area of operation. Of course, this technique has no positioning capabilities in GPS-
denied environments. Its benefit is that the signals to aid GPS acquisition are sent
by the cell phone network.

1.3.2.2 Using TV Towers

Some companies use TV signals to get a location fix in places where GPS signals
are impaired or blocked, such as dense urban areas and indoors. To determine its
position, the receiver measures the pseudo-ranges from TV signals broadcast by
three or more different towers which contain synchronization information. Using
precision timing, it is possible to work out how far a TV signal travels before it is
picked up by a suitably equipped receiver. The company’s location server receives
the timing and stability of TV signals from monitoring units in the region and then
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forwards that as aiding information. The measurements are then compared against
the data collected by proprietary listening stations, and the position of the device is
calculated (Kolodziej and Hjelm 2006). There are many advantages to using TV
signals, such as

1. Power: Most of the time TV towers are tens of kilometers from the device to be
positioned, and the synchronization codes in the TV signal are of the order of
ten thousand times stronger than GPS signals.

2. Frequency: TV signals are at a much lower frequency (50-700 MHz) than the
GPS, enabling them to penetrate buildings.

3. Bandwidth: In general, the broader the bandwidth of the signal the more
accurately it can resolve the multipath or reflected signals that characterize
urban and indoor environments.

However, the drawbacks of using the TV-positioning systems are

1. The technology depends on the installation of several proprietary nearby
monitoring units as well as location servers, and this limits the positioning
solution environment to certain areas.

2. Decoding the synchronization information from the TV signals varies with the
TV standard employed, which can be NTSC, PAL, SECAM, DVB-T or ISDB
amongst others.

1.3.3 Vehicle Motion Sensors

1.3.3.1 Inertial Sensors

Inertial sensors are gyroscopes and accelerometers which respectively measure the
rotation rates and the specific forces from which acceleration can be obtained. An
inertial measurement unit (IMU) consists of a triad of gyroscopes and a triad of
accelerometers. A navigation system using an IMU and a navigation processor is
called an inertial navigation system (INS). An INS has the advantage that it is self-
contained; i.e. it does not need external references. Another advantage is that such
sensors have high sampling rates. With knowledge of the initial navigation states
of position, velocity and attitude, the system can calculate the three-dimensional
position, velocity and attitude of a moving platform. Measurements are integrated
twice for the accelerometers and once for the gyroscopes in order to yield position
and attitude. However, these calculated navigation states drift with time due to the
mathematical integrations required to obtain the position and attitude. The sensor
errors (such as biases, scale factors and noise) are also integrated, and can result in
unbounded errors. Consequently, inertial sensors alone are unsuitable for accurate
positioning over an extended period of time. As will be discussed later, the pros
and cons of an INS show that its characteristics are complementary with those of
GPS, and these can be combined so that each mitigates the other’s problems.
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1.3.3.2 Electronic Compass

The heading is the most significant of the navigation parameters because of its
influence on accumulated dead reckoning errors. Hence sensors to measure the
absolute heading (e.g. an electronic compass) can be an essential component of an
integrated navigation systems. On the other hand, magnetic compass usage has the
disadvantage that the Earth’s magnetic field is often distorted near power lines or
metal structures.

1.3.3.3 Odometry

As mentioned earlier, odometry data is extracted by sensors which measure the
rotation of the wheel axes and the steer axes. Curvilinear distance is obtained from
the wheel rotation data. The advantages of this technique are: (1) short term
accuracy, (2) low price, and (3) high sampling rates. The main disadvantages are
that any small constant error increases without bound, and orientation errors cause
large position errors that increase with the distance traveled. The pros and cons of
odometry indicate that its characteristics are complementary with those of GPS, so
it is a candidate for integration with GPS.

1.3.4 Other Aiding Sensors

1.3.4.1 Camera

Cameras and vision systems can be employed in navigation systems to perform a
variety of tasks in different moving platforms. For outdoor vehicular navigation,
camera images can be used to detect road edges, lanes and their transitions, and also
road intersections (DeSouza and Kak 2002). Such tasks on their own cannot achieve
absolute positioning for the vehicle, but can assist an existing positioning solution.
The drawbacks of these systems are sensitivity to illumination changes throughout
the day, the presence of clutters in imagery, the presence of shadows cast by trees and
other artifacts, and the presence of water or snow on the ground. A vehicular posi-
tioning system must function properly in all conditions but these problems mean that
the solutions derived from vision systems can be unreliable in certain conditions,
which is unacceptable. As another use of cameras, stereo vision can assist in the
detection and avoidance of obstacles but it too suffers from such limitations.
Although vision can provide positioning by model matching, and is commonly used
for indoor mobile robot navigation, it requires the environment to be known
beforehand and the vehicle to be provided with a model or an image database, which
means that this technique cannot be applied to general vehicular navigation.
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1.3.4.2 Sonar

Sonar can be used for indoor localization of mobile robots using model matching
techniques, but is not suitable for outdoor vehicle navigation. Another use of such
sensors is for the detection and avoidance of obstacles.

1.3.4.3 LIDAR

Light detection and ranging (LIDAR) can be used in several tasks related to
navigation, in particular for positioning using model matching in applications such
as indoor mobile robot localization. The limitation of model matching is that it is
not a general solution for vehicular navigation, it is viable only in environments for
which a model has been generated. Another way of using LIDAR in outdoor
positioning is to augment an integrated GPS and INS. When GPS is available the
LIDAR will detect buildings, and when GPS is degraded or blocked, as in an urban
canyon, the LIDAR will measure the relative positions of buildings to aid the INS.
But LIDAR is most often used in mapping, in obstacle detection and avoidance,
and for three-dimensional motion capture. Another application is in traffic speed
law enforcement, as an alternative to radar guns for vehicle speed measurement.
Airborne LIDAR can be used for aerial vehicle navigation using terrain elevation
databases, and thus augment other positioning systems. One drawback of LIDAR
in commercial vehicular applications is its high cost. Furthermore, working with
LIDAR data can be computationally expensive for real-time applications.

1.3.5 Digital Maps

A digital map is not only used to assist the driver in relating the vehicle’s position
information to a physical location, it can also supply extra data to the positioning
solution. Because the location and trajectory of a vehicle is usually restricted by
the road network, a digital map of this network can be used to impose constraints
on the positioning solution (Skog and Handel 2009) using a process referred to as
map matching. Although digital maps cannot be used alone, they can enhance an
existing solution.

1.4 Inertial Navigation

Of the many navigation techniques available, inertial navigation and satellite
navigation are the most commonly used. As described earlier, GPS is a reference
based system whereas an inertial navigation system (INS) is a form of dead
reckoning that uses three accelerometers and three gyroscopes along with a
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processor. The accelerometers and gyroscopes constitute the inertial sensor
assembly (ISA) that is housed along with related electronics in a unit called the
inertial measurement unit (IMU). The relationship of the ISA, IMU and INS is
summarized in Fig. 1.3.

By measuring angular rates, gyroscopes provide attitude information in three
dimensions. Accelerometers measure the specific forces (accelerations) that can be
converted to velocity and position by a navigation computer using the process of
integration. Starting with initial values of position, velocity and attitude, together
with a gravity model, the computer operates on the IMU’s outputs to furnish the
current position, velocity and attitude of the host vehicle, as shown in Fig. 1.4. The
gravity model assists in obtaining acceleration from specific forces while the initial
conditions are used for integrating the acceleration and velocity. The details of
inertial navigation are explored in Chap. 4.

1.5 Integrated INS/GPS Navigation

Due to their disparate principles of operation, dead reckoning and position fixing
systems possess complementary characteristics and, if suitably combined, they can
attain better performance than either can achieve in a standalone mode. Table 1.1
summarizes the main characteristic of the INS (dead reckoning system) and GPS
(position fixing system).
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Table 1.1 Summary of important characteristics of INS and GPS

Characteristics INS GPS

Accuracy of Good short term accuracy which Good long term accuracy but
navigational deteriorates with time noisy in short term
solution

Initial conditions Required Not required

Attitude information  Available Typically not available®

Sensitive to gravity Yes No

Self-contained Yes No

Jamming immunity Yes No

Output data rate High Low

# With multiple antennae, some GPS receivers can render attitude information as well

Fig. 1.5 A high level block Position fixing Dead reckoning
diagram of a typical system system
integrated navigation system (i.e. GPS) (i.e. INS)
Integrated
| Corrections = Navigation
' Solution

Estimation Algorithm |

(Kalman Filter, Particle Filter)

Based on their complementary properties, these systems are usually combined
using some estimation technique (traditionally based on the Kalman filter) in order
to obtain (Solimeno 2007)

. Higher position and velocity accuracy.

. Precise attitude information.

. Higher data output rate.

. Navigational solution during GPS signal blockages.

B W =

Figure 1.5 shows the basic scheme of a typical integrated navigation system.

1.6 Types of INS/GPS Integration

Different forms of INS/GPS integration architectures have been proposed to attain
maximum advantage depending upon the type of use and the degree of simplicity
versus robustness. The three main integration architectures are

1. Loosely coupled.
2. Tightly coupled.
3. Ultra-tightly or deeply coupled.
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Fig. 1.6 A basic block diagram of a loosely coupled integration of INS/GPS

1.6.1 Loosely Coupled INS/GPS Integration

In this architecture, also known as a decentralized integration, the GPS and INS
function independently and provide separate solutions for position, velocity and
attitude.” To get the best of both solutions, this information is fused together by an
optimal estimator to obtain a third and much improved solution. This arrangement
is shown in Fig. 1.6.

1.6.2 Tightly Coupled INS/GPS Integration

In this architecture, also known as centralized integration, the GPS and INS work
as basic sensors and their raw outputs of pseudo-range and pseudo-range rate from
the GPS and accelerations and rotation rates from the INS are blended by a single
estimator in order to achieve a synergistic solution (Yang 2007). This arrangement
is shown in Fig. 1.7.

As discussed in Chap. 8, GPS/INS integration can be achieved in a variety of
ways, each of which has its advantages and limitations.

1.6.3 Ultra-Tightly or Deeply Coupled Integration

Deeply coupled integration provides an increased symbiosis between the INS and
GPS because the integration is at tracking loop level. The main advantage of this is
that the dynamics of the host vehicle are estimated and compensated in the GPS

! Not all GPS receivers can provide attitude information, which requires two antennae.
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Fig. 1.8 A basic block diagram of an ultra-tightly coupled integration of INS/GPS

tracking loops by using Doppler information. Various configurations of ultra-tight
integration exist, and Fig. 1.8 shows a basic one. The estimator combines either
the pseudo-ranges/Doppler or I (in-phase) and Q (quadrature) measurements from
the GPS with the INS navigation parameters so as to render the estimated Doppler
(Alban et al. 2003). The estimated Doppler is used to remove the dynamics from
the GPS signal entering the tracking loops, thereby reducing the carrier tracking
loop bandwidth. Although this integration is more complex and requires access to
the GPS hardware, it can improve the quality of the raw measurements and also the
anti-jamming performance of the signals (Cox Jr 1978).
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1.7 INS/GPS Fusion Algorithm

There are several algorithms for optimal fusion of GPS and INS data, the major
ones being various forms of Kalman filter (KF), particle filter (PF) and artificial
intelligence (AI). Traditionally, Kalman filtering has been the method of choice for
fusing navigational information from various sources. It is an optimal recursive
algorithm (Maybeck 1979) which processes all of the available measurements,
regardless of their precision, to optimally estimate the current value of the state of
interest and, importantly, also furnishes the uncertainty of its estimate. It uses the
knowledge of a system model derived from the motion equations of the platform,
including the inertial readings and a measurement model for the GPS information,
a statistical description of system noises, the nature of measurement errors, and
rough estimates of initial conditions. Chapter 7 discusses KF in detail.

1.8 Summary of the Chapters

Chapter 2 describes the mathematics of navigation, the coordinate frames used in
navigation and the transformations that are used compute a navigation solution in
suitable coordinates.

Chapter 3 deals with GPS, detailing its various segments, its signal structure,
and the process of position and velocity estimation from pseudo-range and delta-
range measurements. It also discusses various errors that can occur in processing
GPS data. It concludes with details of how to calculate the position and velocity of
a satellite from ephemeris data, including the atmospheric corrections for a single-
frequency GPS receiver.

Chapter 4 deals with inertial sensors, their classification and associated errors,
and their calibration, initialization and alignment procedures, then describes the
INS mechanization process and its equations.

Chapter 5 gives some basics mathematics of motion and describes the details of
the mechanization process in various reference frames, giving a step by step
computation of navigation parameters in most common navigational frames.

Chapter 6 models INS errors, along with the linearization of INS equations for
various navigational reference frames.

Chapter 7 discusses the process and measurement models for KF, the filtering
algorithm, non-linear filtering techniques and how to model system disturbances.

Chapter 8 pulls all of these ideas together with a detailed account of INS/GPS
integration and associated nuances and subtleties. It describes types of integration,
along with their feedback schemes. It derives dynamic INS error model equations
as well as inertial sensor error model equations, and discusses the implementation
of linearized KF for loosely and tightly coupled INS/GPS fusion.

Chapter 9 discusses a possible trend for wheeled vehicles that cuts down the
number of low cost inertial sensors by using speed readings and introduces various
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constraints to eliminate the errors associated with the six sensors in a full IMU and
achieve similar, if not better, accuracy.

Chapter 10 deals with the experimental results of INS/GPS fusion. The results
of integrating a full IMU (with all six sensors) and the reduced system (consisting
of fewer sensors) are analyzed based on real road test trajectories.

Each chapter concludes with a reference list where the interested reader can find
further information on some of the topics that could not be covered in detail in this
book owing to limitations of scope.
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Chapter 2

Basic Navigational Mathematics,
Reference Frames and the Earth’s
Geometry

Navigation algorithms involve various coordinate frames and the transformation of
coordinates between them. For example, inertial sensors measure motion with
respect to an inertial frame which is resolved in the host platform’s body frame.
This information is further transformed to a navigation frame. A GPS receiver
initially estimates the position and velocity of the satellite in an inertial orbital
frame. Since the user wants the navigational information with respect to the Earth,
the satellite’s position and velocity are transformed to an appropriate Earth-fixed
frame. Since measured quantities are required to be transformed between various
reference frames during the solution of navigation equations, it is important to
know about the reference frames and the transformation of coordinates between
them. But first we will review some of the basic mathematical techniques.

2.1 Basic Navigation Mathematical Techniques

This section will review some of the basic mathematical techniques encountered in
navigational computations and derivations. However, the reader is referred to
(Chatfield 1997; Rogers 2007 and Farrell 2008) for advanced mathematics and
derivations. This section will also introduce the various notations used later in the
book.

2.1.1 Vector Notation

In this text, a vector is depicted in bold lowercase letters with a superscript that
indicates the coordinate frame in which the components of the vector are given.
The vector components do not appear in bold, but they retain the superscript. For
example, the three-dimensional vector r for a point in an arbitrary frame k is
depicted as

A. Noureldin et al., Fundamentals of Inertial Navigation, Satellite-based 21
Positioning and their Integration, DOI: 10.1007/978-3-642-30466-8_2,
© Springer-Verlag Berlin Heidelberg 2013
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rf = | (2.1)

In this notation, the superscript k represents the k-frame, and the elements
(xk,y%, %) denote the coordinate components in the k-frame. For simplicity, the
superscript is omitted from the elements of the vector where the frame is obvious
from the context.

2.1.2 Vector Coordinate Transformation

Vector transformation from one reference frame to another is frequently needed in
inertial navigation computations. This is achieved by a transformation matrix.
A matrix is represented by a capital letter which is not written in bold. A vector of
any coordinate frame can be represented into any other frame by making a suitable
transformation. The transformation of a general k-frame vector r* into frame m is
given as

" = R (2.2)

where R}’ represents the matrix that transforms vector r from the k-frame to the
m-frame. For a valid transformation, the superscript of the vector that is to be
transformed must match the subscript of the transformation matrix (in effect they
cancel each other during the transformation).

The inverse of a transformation matrix R} describes a transformation from the
m-frame to the k-frame

r = (Ry) ' =R (2.3)

If the two coordinate frames are mutually orthogonal, their transformation
matrix will also be orthogonal and its inverse is equivalent to its transpose. As all
the computational frames are orthogonal frames of references, the inverse and the
transpose of their transformation matrices are equal. Hence for a transformation
matrix R}’ we see that

Ry = (RE) = (RL)™ (2.4)

A square matrix (like any transformation matrix) is orthogonal if all of its
vectors are mutually orthogonal. This means that if

rnp ri2 s
R = 1 o)) 3 (25)
r3p I3z 133
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where
r 2 s
rp=|r|,ra=|rn|,r3=|r (2.6)
731 33 33

then for matrix R to be orthogonal the following should be true

ri-ro=0,r-r3=0,r,-r3=0 (2.7)

2.1.3 Angular Velocity Vectors

The angular velocity of the rotation of one computational frame about another is
represented by a three component vector @. The angular velocity of the k-frame
relative to the m-frame, as resolved in the p-frame, is represented by «”, as

O = | @y (2.8)

where the subscripts of @ denote the direction of rotation (the k-frame with respect
to the m-frame) and the superscripts denote the coordinate frame in which the
components of the angular velocities (wx, Wy, wz) are given.

The rotation between two coordinate frames can be performed in two steps and
expressed as the sum of the rotations between two different coordinate frames, as
shown in Eq. (2.9). The rotation of the k-frame with respect to the p-frame can be
performed in two steps: firstly a rotation of the m-frame with respect to the
p-frame and then a rotation of the k-frame with respect to the m-frame

o);jk = (olfm + wfnk (2.9)

For the above summation to be valid, the inner indices must be the same (to
cancel each other) and the vectors to be added or subtracted must be in the same
reference frame (i.e. their superscripts must be the same).

2.1.4 Skew-Symmetric Matrix

The angular rotation between two reference frames can also be expressed by a
skew-symmetric matrix instead of a vector. In fact this is sometimes desired in
order to change the cross product of two vectors into the simpler case of matrix
multiplication. A vector and the corresponding skew-symmetric matrix forms of an
angular velocity vector @/, are denoted as
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Wy 0 —w, o
o, =lo| = QX =0 0 -—-o (2.10)
w, -, 0
—_——
Angular velocity vector Skew—symmetric form of angular the velocity vector

Similarly, a velocity vector v’ can be represented in skew-symmetric form V”
as

Vy 0 —v, v

VV=1|n| = V=] 0 —v (2.11)
Vv, -V, W 0

Velocity vector Skew—symmetric form of the velocity vector

Note that the skew-symmetric matrix is denoted by a non-italicized capital
letter of the corresponding vector.

2.1.5 Basic Operations with Skew-Symmetric Matrices

Since a vector can be expressed as a corresponding skew-symmetric matrix, the
rules of matrix operations can be applied to most vector operations. If a, b and ¢ are
three-dimensional vectors with corresponding skew-symmetric matrices A, B and
C, then following relationships hold

a-b=a’b=b"a (2.12)
axb=Ab=B"a=—Ba (2.13)
[Ab] = AB — BA (2.14)
(axb)-c=a-(bxc)=a’Be (2.15)
ax (bxc)=ABc (2.16)
(axb) xc=ABc—BAc (2.17)

where [Ab] in Eq. (2.14) depicts the skew-symmetric matrix of vector Ab.

2.1.6 Angular Velocity Coordinate Transformations

Just like any other vector, the coordinates of an angular velocity vector can be
transformed from one frame to another. Hence the transformation of an angular
velocity vector m,,; from the k-frame to the p-frame can be expressed as



2.1 Basic Navigation Mathematical Techniques 25

o), = Rlo, (2.18)

The equivalent transformation between two skew-symmetric matrices has the
special form

Q= RiQ];;kay (2.19)

2.1.7 Least Squares Method

The method of least squares is used to solve a set of equations where there are
more equations than the unknowns. The solution minimizes the sum of the squares
of the residual vector. Suppose we want to estimate a vector x of n parameters
(x1,x2,...,x,) from vector z of m noisy measurements (zi,z,...,2») such that
m > n. The measurement vector is linearly related to parameter x with additive
error vector ¢ such that

z=Hx+¢ (2.20)

where H is a known matrix of dimension m X n, called the design matrix, and it is
of rank n (linearly independent row or columns).

In the method of least square, the sum of the squares of the components of the
residual vector (z — Hx) is minimized in estimating vector x, and is denoted by X.
Hence

minimize ||z — Hx||*= (z — HX)! , (z — HX)

(2.21)

mx1

This minimization is achieved by differentiating the above equation with
respect to X and setting it to zero. Expanding the above equation gives

|z — Hx||*= 2"z — 2"Hx — X"H"z + ' H" Hx (2.22)

Using the following relationships

= = 2.2
ox ox a (2.23)
and
T
w = (Ax)" +x7A (2.24)

the derivative of the scalar quantity represented by Eq. (2.22) is obtained as
follows
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o(1lz— 1)

=0—2"H— (H"z)" + (H"HX)" +x"H"H

0x
o(jlz -~ Hx|*)
———t = H - H+ X HH+X"HH (2.25)
o(llz — Hx|*)
————"= —2(z"H +x"H"H)
To obtain the maximum, the derivative is set to zero and solved for X
—2(z"H —x"H"H) =0 (2.26)
s"H'H=12"H
&'H'H)" = ("H)" (2.27)
HTH%x = H'z
and finally
x=(H"H) 'H'z (2.28)

We can confirm that the above value of X produces the minimum value of the
cost function (2.22) by differentiating Eq. (2.25) once more that results in 2H” H
which is positive definite.

2.1.8 Linearization of Non-Linear Equations

The non-linear differential equations of navigation must be linearized in order to
be usable by linear estimation methods such as Kalman filtering. The non-linear
system is transformed to a linear system whose states are the deviations from the
nominal value of the non-linear system. This provides the estimates of the errors in
the states which are added to the estimated state.

Suppose we have a non-linear differential equation

X = f(x,1) (2.29)

and that we know the nominal solution to this equation is X and we let dx be the
error in the nominal solution, then the new estimated value can be written as

X =X+ 0x (2.30)
The time derivative of the above equation provides
X = X + 0% (2.31)

Substituting the above value of X in the original Eq. (2.29) gives
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X + 0% = f(X + 0x, 1) (2.32)

Applying the Taylor series expansion to the right-hand side about the nominal
value X yields

f(x+0x,t) =f(X,1) + af(a): J ~(Sx + HOT (2.33)

X=X

where the HOT refers to the higher order terms that have not been considered.
Substituting Eq. (2.32) for the left-hand side gives

X+ 6% ~ f(R 1) + afg: D ox (2.34)
X=X
and since X also satisfies Eq. (2.29)
X = f(X,1) (2.35)
substituting this in Eq. (2.34) gives
X+ ok~ R+ af(a’;’ D sx (2.36)

The linear differential equations whose states are the errors in the original states
is give as

o (x,1)

OX ~
X ox

ox (2.37)

X=X

After solving this, we get the estimated errors that are added to the estimated
state in order to get the new estimate of the state.

2.2 Coordinate Frames

Coordinate frames are used to express the position of a point in relation to some
reference. Some useful coordinate frames relevant to navigation and their mutual
transformations are discussed next.

2.2.1 Earth-Centered Inertial Frame

An inertial frame is defined to be either stationary in space or moving at constant
velocity (i.e. no acceleration). All inertial sensors produce measurements relative
to an inertial frame resolved along the instrument’s sensitive axis. Furthermore,
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we require an inertial frame for the calculation of a satellite’s position and velocity
in its orbit around the Earth. The frame of choice for near-Earth environments is
the Earth-centered inertial (ECI) frame. This is shown in Fig. 2.1 and defined' by
(Grewal et al. 2007; Farrell 1998) as

a. The origin is at the center of mass of the Earth.

b. The z-axis is along axis of the Earth’s rotation through the conventional
terrestrial pole (CTP).

c. The x-axis is in the equatorial plane pointing towards the vernal equinox.”

d. The y-axis completes a right-handed system.

In Fig. 2.1, the axes of the ECI frame are depicted with superscript i as x', y', z,
and in this book the ECI frame will be referred to as the i-frame.

2.2.2 Earth-Centered Earth-Fixed Frame

This frame is similar to the i-frame because it shares the same origin and z-axis as
the i-frame, but it rotates along with the Earth (hence the name Earth-fixed). It is
depicted in Fig. 2.1 along with the i-frame and can be defined as

a. The origin is at the center of mass of the Earth.

b. The z-axis is through the CTP.

c. The x-axis passes through the intersection of the equatorial plane and the
reference meridian (i.e. the Greenwich meridian).

d. The y-axis completes the right-hand coordinate system in the equatorial plane.

In Fig. 2.1 the axes of the Earth-Centered Earth-Fixed Frame (ECEF) are shown
as X°¢,Y°,Z¢ and (¢ — to) represents the elapsed time since reference epoch fy. The
term wf, represents the Earth’s rotation rate with respect to the inertial frame resolved
in the ECEF frame. In this book the ECEF frame will be referred to as the e-frame.

2.2.3 Local-Level Frame

A local-level frame (LLF) serves to represent a vehicle’s attitude and velocity
when on or near the surface of the Earth. This frame is also known as the local
geodetic or navigation frame. A commonly used LLF is defined as follows

! Strictly speaking this definition does not satisfy the requirement defined earlier for an inertial
frame because, in accordance with Kepler’s second law of planetary motion, the Earth does not
orbit around the sun at a fixed speed; however, for short periods of time it is satisfactory.

2 The vernal equinox is the direction of intersection of the equatorial plane of the Earth with the
ecliptic (the plane of Earth’s orbit around the sun).
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Fig. 2.1 An illustration of the ECI and ECEF coordinate frames

a. The origin coincides with the center of the sensor frame (origin of inertial
sensor triad).

b. The y-axis points to true north.

The x-axis points to east.

d. The z-axis completes the right-handed coordinate systems by pointing up,
perpendicular to reference ellipsoid.

e

This frame is referred to as ENU since its axes are aligned with the east, north and
up directions. This frame is shown in Fig. 2.2. There is another commonly used LLF
that differs from the ENU only in that the z axis completes a left-handed coordinate
system and therefore points downwards, perpendicular to the reference ellipsoid.
This is therefore known as the NED (north, east and down) frame. This book will use
the ENU convention, and the LLF frame will be referred to as the 1-frame.

2.2.4 Wander Frame

In the 1-frame the y-axis always points towards true north, so higher rotation rates
about the z-axis are required in order to maintain the orientation of the 1-frame in
the polar regions (higher latitudes) than near the equator (lower latitudes). As is
apparent in Fig. 2.3b, the 1-frame must rotate at higher rates to maintain its ori-
entation when moving towards the pole, reaching its maximum when it crosses the
north pole. This rate can even become infinite (a singularity condition) if the
I-frame passes directly over the pole. The wander frame avoids higher rotation
rates and singularity problems. Instead of always pointing northward, this rotates
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Fig. 2.2 The local-level ENU reference frame in relation to the ECI and ECEF frames

(a)

Fig. 2.3 a The wander frame shown with respect to the local-level frame. b Rotation of the
y-axis of the local-level frame (shown with red/dark arrows) for a near polar crossing trajectory
at various latitudes

about the z-axis with respect to the 1-frame. The angle between the y-axis of the
wander frame and north is known as the wander angle «. The rotation rate of this
angle is given as

4= —Jsing (2.38)
The wander frame (in relation to the 1-frame) is shown in Fig. 2.3a, and is
defined as

a. The origin coincides with the center of the sensor frame (origin of inertial
sensor triad).
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Fig. 2.4 The body frame
of a moving platform

b. The z-axis is orthogonal to the reference ellipsoid pointing upward.

o

The y-axis rotates by an angle o anticlockwise from north.

. The x-axis is orthogonal to the y and z axes and forms a right-handed coor-

dinate frame.

In this book the wander frame is referred to as the w-frame.

2.2.5 Computational Frame

For the ensuing discussion, the computational frame is defined to be any reference
frame used in the implementation of the equations of motion. It can be any of the
abovementioned coordinate frames, and is referred to as the k-frame.

2.2.6 Body Frame

In most applications, the sensitive axes of the accelerometer sensors are made to
coincide with the axes of the moving platform in which the sensors are mounted.
These axes are usually known as the body frame.

The body frame used in this book is shown in Fig. 2.4, and is defined as

The origin usually coincides with the center of gravity of the vehicle (this
simplifies derivation of kinematic equations).

. The y-axis points towards the forward direction. It is also called the roll axis as

the roll angle is defined around this axis using the right-hand rule.

The x-axis points towards the transverse direction. It is also called the pitch
axis, as the pitch angle corresponds to rotations around this axis using the right-
hand rule.

. The z-axis points towards the vertical direction completing a right-handed

coordinate system. It is also called the yaw axis as the yaw angle corresponds to
rotations around this axis using the right-hand rule.

In this book the body frame is referred to as b-frame.
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NE Plane

Roll

Fig. 2.5 A depiction of a vehicle’s azimuth, pitch and roll angles. The body axes are shown in
red

2.2.6.1 Vehicle Attitude Description

Apart from a vehicle’s position, we are also interested in its orientation in order to
describe its heading and tilt angles. This involves specifying its rotation about the
vertical (z), transversal (x) and forward (y) axes of the b-frame with respect to
the 1-frame. In general, the rotation angles about the axes of the b-frame are called
the Euler angles. For the purpose of this book, the following convention is applied
to vehicle attitude angles (Fig. 2.5)

a. Azimuth (or yaw): Azimuth is the deviation of the vehicle’s forward (y) axis
from north, measured clockwise in the E-N plane. The yaw angle is similar, but
is measured counter clockwise from north. In this book, the azimuth angle is
denoted by ‘A’ and the yaw angle by ‘y’. Owing to this definition, the vertical
axis of the b-frame is also known as the yaw axis (Fig. 2.4).

b. Pitch: This is the angle that the forward (y) axis of the b-frame makes with the
E-N plane (i.e. local horizontal) owing to a rotation around its transversal (x)
axis. This axis is also called the pitch axis, the pitch angle is denoted by ‘p’ and
follows the right-hand rule (Fig. 2.5).

c. Roll: This is the rotation of the b-frame about its forward (y) axis, so the
forward axis is also called the roll axis and the roll angle is denoted by ‘7" and
follows the right-hand rule.

2.2.7 Orbital Coordinate System

This is a system of coordinates with Keplerian elements to locate a satellite in
inertial space. It is defined as follows

a. The origin is located at the focus of an elliptical orbit that coincides with the
center of the mass of the Earth.
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Fig. 2.6 The orbital coordinate system for a satellite

b. The y-axis points towards the descending node, parallel to the minor axis of the
orbital ellipse.

c. The x-axis points to the perigee (the point in the orbit nearest the Earth’s center)
and along the major axis of the elliptical orbit of the satellite.

d. The z-axis is orthogonal to the orbital plane.

The orbital coordinate system is illustrated in Fig. 2.6. It is mentioned here to
complete the discussion of the frames used in navigation (it will be discussed in
greater detail in Chap. 3).

2.3 Coordinate Transformations

The techniques for transforming a vector from one coordinate frame into another
can use direction cosines, rotation (Euler) angles or quaternions. They all involve a
rotation matrix which is called either the transformation matrix or the direction
cosine matrices (DCM), and is represented as Ri where the subscript represents the
frame from which the vector originates and the superscript is the target frame. For
example, a vector r* in a coordinate frame k can be represented by another vector
r’ in a coordinate frame / by applying a rotation matrix Rf< as follows


http://dx.doi.org/10.1007/978-3-642-30466-8_3
http://dx.doi.org/10.1007/978-3-642-30466-8_3
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r' = Rir* (2.39)

If Euler angles are used, these readily yield the elementary matrices required to
construct the DCM.

2.3.1 Euler Angles and Elementary Rotational Matrices

A transformation between two coordinate frames can be accomplished by carrying
out a rotation about each of the three axes. For example, a transformation from the
reference frame a to the new coordinate frame b involves first making a rotation of
angle y about the z-axis, then a rotation of an angle f§ about the new x-axis, and
finally a rotation of an angle « about the new y-axis. In these rotations, «, f and y
are the Euler angles.

To transform a vector r* = [x%,y%, z%] from frame a to frame d where the two
frames are orientated differently in space, we align frame a with frame d using the
three rotations specified above, each applying a suitable direction cosine matrix.
The individual matrices can be obtained by considering each rotation, one by one.

First we consider the x-y plane of frame a in which the projection of vector r
(represented by r;) makes an angle 0; with the x-axis. We therefore rotate frame a
around its z-axis through an angle y to obtain the intermediate frame b, as illus-
trated in Fig. 2.7.

According to this figure, the new coordinates are represented by x’,y”, z* and
can be expressed as

x* = rycos(0; — ) (2.40)
¥’ = rysin(0; —y) (2.41)
Since the rotation was performed around the z-axis, this remains unchanged
=2 (2.42)
Using the following trigonometric identities

sin(A 4+ B) = sinA cos B + cos A sin B

cos(A + B) = cosAcos B F sinAsin B (2:43)

Equations (2.40) and (2.41) can be written as
x” = rj cos 0 cosy + r sin 0 siny (2.44)
y? = ry sin @ cosy — ry cos 0; siny (2.45)

The original coordinates of vector r; in the x-y plane can be expressed in terms
of angle 0, as
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X' =rjcos B (2.46)
ya =T sin 91 (247)
Substituting the above values in Eqgs. (2.44) and (2.45) produces
xb = x"cosy + ysiny (2.48)
yo = —xsiny + y* cos y (2.49)
and we have shown that
=7 (2.50)
In matrix form, the three equations above can be written as
x? [ cosy siny 07 [x¢
y | = |—siny cosy 0] [y (2.51)
2 L 0 0 1 74
[ xb x¢
v =Ry (2.52)
|2 Z?

where RZ is the elementary DCM which transforms the coordinates x*,y“, z% to

x?,y?, 7 in a frame rotated by an angle 7 around the z-axis of frame a.
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Fig. 2.8 The second rotation Ay
of rotated frame ‘b’ about ok
xP-axis ’ \

For the second rotation, we consider the y-z plane of the new coordinate frame b,
and rotate it by an angle § around its x-axis to an intermediate frame ¢ as shown in
Fig. 2.8.

In a similar fashion it can be shown that the new coordinates x, y°, z° can be
expressed in terms of x?,y?. 7% as follows

x¢ 1 0 0 xb
Y| =10 cosp sinf||y (2.53)
z 0 —sinf cosB| |22
x¢ x?
Y| =Ry Y (2.54)
Fad o

where Rj is the elementary DCM which transforms the coordinates Xy, to
x°,y¢,z¢ in a frame rotated by an angle § around the x-axis of frame b.

For the third rotation, we consider the x-z plane of new coordinate frame c, and
rotate it by an angle « about its y-axis to align it with coordinate frame d as shown
in Fig. 2.9.

The final coordinates x?, y¢, z¢ can be expressed in terms of x¢, y¢, z° as follows

x4 cose 0O —sina X

Vl=]0 1 o0 ¥ (2.55)
e sino. 0 cosa z£
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Fig. 2.9 The third rotation of Ay
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where R’CI is the elementary DCM which transforms the coordinates x¢,y¢, z¢ to
x4, y? 7% in the final desired frame d rotated by an angle o around the y-axis of
frame c.
We can combine all three rotations by multiplying the cosine matrices into a
single transformation matrix as
RY = RIRRY (2.57)

The final DCM for these particular set of rotations can be given as

cosa 0 —sina| |1 0 0 cosy siny O
Rl=1] 0 1 0 0 cosfp sinf||—siny cosy 0| (2.58)
sino. 0 cosa 0 —sinff cosf 0 0 1
cosacosy —sinffsinasiny cosasiny 4+ cosysinffsinag  —cos ffsina
RZ = —cos ffsiny cos ffcosy sin f§
cosysina + cosasin ffsiny sinasiny —cosacosysinff  cos ffcosa
(2.59)

The inverse transformation from frame d to a is therefore
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d) 1 d\T d pe pb\T
Ry = (R) = (R) = (RIRSRS) .
T T T :
= (R2)" (R5)" (RY)
It should be noted that the final transformation matrix is contingent upon the
order of the applied rotations, as is evident from the fact that RSR? £ RPRS. The
order of rotations is dictated by the specific application. We will see in Sect. 2.3.6
that a different order of rotation is required and the elementary matrices are
multiplied in a different order to yield a different final transformation matrix.
For small values of «, f# and y we can use the following approximations

cosf~1,sinf~0 (2.61)

Using these approximations and ignoring the product of the small angles, we
can reduce the DCM to

1 Yy  —a
RZ% -y 1 p

Lo —f 1

1 0 0 0 —y « (2.62)
Rl=10 1 0|-|7y 0 -p

0 0 1 o2 B 0
RI=1-¥

where W is the skew-symmetric matrix for the small Euler angles. For the small-
angle approximation, the order of rotation is no longer important since in all cases
the final result will always be the matrix of the Eq. (2.62). Similarly, it can be
verified that

. 5 (2.63)

RY=1-9"

2.3.2 Transformation Between ECI and ECEF

The angular velocity vector between the i-frame and the e-frame as a result of the
rotation of the Earth is

o, = (0,0, w,)" (2.64)
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Fig. 2.10 Transformation
between the e-frame and the
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where w, denotes the magnitude of the Earth’s rotation rate. The transformation
from the i-frame to the e-frame is a simple rotation of the i-frame about the z-axis
by an angle w,t where ¢ is the time since the reference epoch (Fig. 2.10). The
rotation matrix corresponds to the elementary matrix R?, and when denoted R¢
which can be expressed as

cosw,t sinw,t 0
R{ = | —sinw.t cosw.t O (2.65)
0 0 1

Transformation from the e-frame to the i-frame can be achieved through R’, the
inverse of RY. Since rotation matrices are orthogonal

Ri=(R)) "= (RO)" (2.66)

2.3.3 Transformation Between LLF and ECEF

From Fig. 2.11 it can be observed that to align the I-frame with the e-frame, the
I-frame must be rotated by ¢ — 90 degrees around its x-axis (east direction) and
then by —90 — /4 degrees about its z-axis (up direction).

For the definition of elementary direction cosine matrices, the transformation
from the 1-frame to the e-frame is

R{ = R\(—4—90)R; (¢ — 90) (2.67)
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Fig. 2.11 The LLF in g v
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cos(—4—90) sin(—1-—90) 0] [1 0 0
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—sin4A —cos4A O |1 0 0
Rf=| cosA —sini O |0 sing —cos¢ (2.69)
0 0 1[{]0 cose sing
—sinA —sing@cosA cos@cosi
R;=| cosA —singsinA cosg@sinA (2.70)
0 cos @ sin @
The reverse transformation is
R, = (R)"'= ()" (2.71)

2.3.4 Transformation Between LLF and Wander Frame

The wander frame has a rotation about the z-axis of the I-frame by a wander angle
o, as depicted in Fig. 2.12. Thus the transformation matrix from the w-frame frame

to the I-frame corresponds to the elementary matrix RZ with an angle —o, and is
expressed as
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Fig. 2.12 The relationship i
between the 1-frame and the Y A
w-frame (the third axes of
these the frames are not
shown because they coincide
and point out of the page
towards the reader)

e
< e X"

o Local Level Frame
- F
cos(—a) sin(—a) O
R = | —sin(—a) cos(—x) O (2.72)
0 0 1
cosae —sino O
R = |sino cosa O (2.73)
0 0 1
and
w AN i\T
R =(R,) = (R,) (2.74)

2.3.5 Transformation Between ECEF and Wander Frame

This transformation is obtained by first going from the w-frame to the 1-frame and
then from the 1-frame to the e-frame

R’ = RSR!, (2.75)
—sinA —sin@cosd cosgcosd| [cosa —sina O
R),=| cos/. —singsind cos¢@sind | |sine cosa 0 (2.76)

0 cos ¢ sin ¢ 0 0 1
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—sinAcoso —cosAsin@sine  sinAsino —cosAsing@coso  cosAcos @

R, = | cosicoso—sinisingsina —cosAsinoa—sinAsingcosa sinicos@
cos@sina COS (p COS & sin ¢
(2.77)

The inverse is

R = (R)'=(R)" (2.78)

2.3.6 Transformation Between Body Frame and LLF

One of the important direction cosine matrices is R., which transforms a vector
from the b-frame to the I-frame, a requirement during the mechanization process.
This is expressed in terms of yaw, pitch and roll Euler angles. According to the
definitions of these specific angles and the elementary direction cosine matrices,
R! can be expressed as

-1 T T
R, = (RT) "= (Ry) = (RER,R?)

(2.79)
= (R (&))" (RY)"
Substituting the elementary matrices into this equation gives
. T T .
cosy siny 0 1 0 0 cosr 0 —sinr
Rlb = | —siny cosy O 0 cosp sinp 0 1 0
0 0 1 0 —sinp cosp sinr 0 cosr
(2.80)
cosy —siny Of [1 0 0 cosr 0 sinr
Rl = |siny cosy O||0 cosp —sinp 0 1 0 (2.81)
0 0 1 0 sinp cosp —sinr 0 cosr

cosycosr —sinysinpsinr —sinycosp cosysinr + sinysinpcosr
Rf7 = | sinycosr 4 cosysinpsinr cosycosp sinysinr — cosysinpcosr
—cospsinr sinp CoSpCcosr

(2.82)

LI ]

where ‘p’, ‘r’ and ‘y’ are the pitch, roll and yaw angles. With a known RL, these
angles can be calculated as
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p=tan! R,G.2) (2.83)
VIR 2P +[R2,2))
[
e [
]
r=—tan ! {gzgg] (2.85)

A transformation from the 1-frame to the b-frame can be achieved by the inverse
rotation matrix, R}, as follows

R = (R)'=(R)" (2.86)

2.3.7 Transformation From Body Frame to ECEF and ECI Frame

Two other important transformations are from the b-frame to the e-frame and the
i-frames. Their rotation matrices can be computed from those already defined as
follows.

For the body frame to the e-frame

RY = R‘R), (2.87)

For the body frame to the i-frame

R, =R'R; (2.88)

Their inverses are
R = (R)'= ()" (2.89)
Rl = (R}) ™= (R}) (2.90)

2.3.8 Time Derivative of the Transformation Matrix

If a coordinate reference frame k rotates with angular velocity o relative to another
frame m, the transformation matrix between the two is composed of a set of time
variable functions. The time rate of change of the transformation matrix R?" can be
described using a set of differential equations. The frame in which the time dif-
ferentiation occurs is usually identified by the superscript of the variable.
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At time ¢, the two frames m and k are related by a DCM R} (¢). After a short
time Jt, frame k rotates to a new orientation and the new DCM at time ¢ + ¢ is
R!(t + ot). The time derivative of the DCM R}’ is therefore

OR"
R = lim —&
or—0 Ot (2.91)
. R — R" '
0r—0 ot

The transformation at time 7 + ot is the outcome of the transformation up to
time ¢ followed by the small change of the m frame that occurs during the brief
interval 0. Hence R}'(f + dt) can be written as the product of two matrices

R} (t + 0t) = OR™R}'(1) (2.92)
From Eq. (2.62), the small angle transformation can be given as
OR" =1—¥PY" (2.93)
Substituting Eq. (2.93) into (2.92) gives
RI(t+ot) = (I —¥Y")R] (1) (2.94)
and substituting this back into Eq. (2.91) produces
(= ¥Ry (1) — R (1)

R" = 1li
kT ot
: I—¥" —DR"(t
Rﬁ:gin})( &)k()
—
R = tim —FRE) .
k= 9t—0 ot
. l{jf’n
R" = —(1i R"
¢ (Ln 5 ) e

When or — 0, W"/or is the skew-symmetric form of the angular velocity
vector of the m frame with respect to the k frame during the time increment d¢. Due
to the limiting process, the angular velocity can also be referenced to the k frame

m

o .
T (290
Substituting Eq. (2.96) into (2.95) gives
R = —Q} R} (2.97)

From the relation Q;,, = —€ ., this becomes

‘mk >

R = Q" R} (2.98)

‘mk
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From Eq. (2.19)
Q= RrQLRY (2.99)
Substituting this into (2.98) gives
R = RO RERY (2.100)
Finally we get the important equation for the rate of change of the DCM as
R = RI'QF (2.101)

This implies that the time derivative of the rotation matrix is related to the
angular velocity vector @ of the relative rotation between the two coordinate
frames. If we have the initial transformation matrix between the body and inertial
frames Ri, then we can update the change of the rotation matrix using gyroscope

b
output Q.

2.3.9 Time Derivative of the Position Vector in the Inertial Frame

For a position vector r’, the transformation of its coordinates from the b-frame to
the inertial frame is

r =R’ (2.102)
Differentiating both sides with respect to time leads to
i’ = Rir’ + Rl (2.103)
Substituting the value of R;; from Eq. (2.101) into (2.103) gives
i’ = (RQ))r” + Ri (2.104)
A rearrangement of the terms gives
i =R (1" + Q) r") (2.105)

which describes the transformation of the velocity vector from the b-frame to the
inertial frame. This is often called the Coriolis equation.
2.3.10 Time Derivative of the Velocity Vector in the Inertial Frame

The time derivative of the velocity vector is obtained by differentiating Eq. (2.105)
as follows
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e —
=

________ Eliipsoid

Fig. 2.13 A depiction of various surfaces of the Earth

i = R + R + RO + Q1" + QL i)R, (2.106)
i = Ry + RE" + RyQGx” + RLQG " + Ry

Substituting the value of RZ from Eq. (2.101) yields
i = RLQL + R + RLQL, QL r” + RLQ Y + RO
i = R, (Q 4+ + Q" + Qhr” + Qi) (2.107)
i = R 2001 + ¥ + Q4,001 + Qr?)

and rearrangement gives

P = Rj, (i + 200" + Qgr” + Q.05 r”) (2.108)
where
P is the acceleration of the moving object in the b-frame
Qf’b is the angular velocity of the moving object measured by a
gyroscope
2Q§’b1'~b is the Coriolis acceleration
berb is the tangential acceleration

Qb berb is the centripetal acceleration

2.4 The Geometry of the Earth

Although the Earth is neither a sphere nor a perfect ellipsoid, it is approximated by
an ellipsoid for computational convenience. The ellipsoid and various surfaces that
are useful for understanding the geometry of the Earth’s shape are depicted in
Fig. 2.13.
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2.4.1 Important Definitions

At this point, it will be useful to describe some of the important definitions which
will assist in understanding the ensuing analysis. For further details, the reader is
referred to (Titterton and Weston 2005; Vanicek and Krakiwsky 1986).

o Physical Surface—Terrain”: This is defined as the interface between the solid
and fluid masses of the Earth and its atmosphere. It is the actual surface that we
walk or float on.

e Geometric Figure—Geoid”: This is the equipotential surface (surface of
constant gravity) best fitting the average sea level in the least squares sense
(ignoring tides and other dynamical effects in the oceans). It can be thought of
as the idealized mean sea level extended over the land portion of the globe.
The geoid is a smooth surface but its shape is irregular and it does not provide
the simple analytic expression needed for navigational computations.

o Reference Ellipsoid—Ellipsoid”: This mathematically defined surface
approximates the geoid by an ellipsoid that is made by rotating an ellipse about
its minor axis, which is coincident with the mean rotational axis of the Earth.
The center of the ellipsoid is coincident with the Earth’s center of mass.

The ellipsoid is the most analytically convenient surface to work with for
navigational purposes. Its shape is defined by two geometric parameters called the
semimajor axis and the semiminor axis. These are typically represented by a and b
respectively, as in Fig. 2.14. The geoid height N is the distance along the ellip-
soidal normal from the surface of the ellipsoid to the geoid. The orthometric height
H is the distance from the geoid to the point of interest. The geodetic height 4 (also
known as altitude) is the sum of the geoid and orthometric heights (h = H + N).
Various parameter sets have been defined to model the ellipsoid. This book uses
the world geodetic system (WGS)-84 whose defining parameters (Torge 1980;
Vanicek and Krakiwsky 1986) are

Semimajor axis (equatorial radius) a = 6,378, 137.0m
Reciprocal flattening l% = 298.257223563

Earth’s rotation rate w, = 7.292115 x 107 rad/s
Gravitational constant GM = 3.986004418 x 104 m?/s?

Other derived parameters of interest are

Flatness f = “a;b = 0.00335281
Semiminor axis b = a(l — f) = 6356752.3142m

Eccentricity e = /232 = \/f(2 — f) = 0.08181919
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xy plane

\J

(0 : Geodetic Latitude

r
@ : Geocentric Latitude

Fig. 2.14 The relationship between various Earth surfaces (highly exaggerated) and a depiction
of the ellipsoidal parameters

2.4.2 Normal and Meridian Radii

In navigation two radii of curvature are of particular interest, the normal radius and
the meridian radius. These govern the rates at which the latitude and longitude
change as a navigating platform moves on or near the surface of the Earth.

The normal radius Ry is defined for the east-west direction, and is also known
as the great normal or the radius of curvature of the prime vertical

Ry=— % (2.109)

(1 —e?sin )

[

The meridian radius of curvature is defined for the north-south direction and is
the radius of the ellipse
1 _ 2
Ry = a(—e)_ (2.110)
(1 —e?sin’ )

[

A derivation of these radii can be found in Appendix A, and for further insight
the reader is referred to (Grewal et al. 2007; Rogers 2007).
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Fig. 2.15 Two types of
ECEF coordinates and their
interrelationship

P(A,@.h)
P(x,y,z)
h

Earth Fixed

Equator

2.5 Types of Coordinates in the ECEF Frame

It is important to distinguish between the two common coordinate systems of the
e-frame, known as the ‘rectangular’ and ‘geodetic’ systems.

2.5.1 Rectangular Coordinates in the ECEF Frame

Rectangular coordinates are like traditional Cartesian coordinates, and represent
the position of a point with its x, y and z vector components aligned parallel to the
corresponding e-frame axes (Fig. 2.15).

2.5.2 Geodetic Coordinates in the ECEF Frame

Geodetic (also referred to as ellipsoidal or curvilinear) coordinates are defined in a
way that is more intuitive for positioning applications on or near the Earth. These
coordinates are defined (Farrell 2008) as

a. Latitude (¢) is the angle in the meridian plane from the equatorial plane to the
ellipsoidal normal at the point of interest.

b. Longitude (1) is the angle in the equatorial plane from the prime meridian to
the projection of the point of interest onto the equatorial plane.
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c. Altitude £ is the distance along the ellipsoidal normal between the surface of the
ellipsoid and the point of interest.

The two types of e-frame coordinates and their interrelationship are illustrated
in Fig. 2.15.

2.5.3 Conversion From Geodetic to Rectangular Coordinates
in the ECEF Frame

In navigation, it is often necessary to convert from geodetic e-frame coordinates to
rectangular e-frame coordinates. The following relationship (see Appendix B for a
derivation) accomplishes this

e

X (Ry + h)cospcos A
y| =| (Rv+h)cosesini (2.111)
z° {RN(I —6‘2) +h} sin(p
where

(x°,¥°,z°)  are the e-frame rectangular coordinates

Ry is the normal radius

h is the ellipsoidal height

A is the longitude

® is the latitude

e is the eccentricity.

2.5.4 Conversion From Rectangular to Geodetic Coordinates
in the ECEF Frame

Converting rectangular to geodetic coordinates is not straightforward, because the
analytical solution results in a fourth-order equation. There are approximate closed
form solutions but an iterative scheme is usually employed.

2.54.1 Closed-Form Algorithm

This section will describe a closed form algorithm to calculate e-frame geodetic
coordinates directly from e-frame rectangular coordinates though series expansion
(Hofmann-Wellenhof et al. 2008). An alternate method is detailed in Appendix C.
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Longitude is

e

A = 2 arctan ) (2.112)
x4/ ()P +()?
latitude is
2+ (¢)*bsin’ 0
P = arCtanm (2] ]3)
where
Za
0 = arctan —
arctan b
L 2 — b2
e = T
p =) +0°)
and height is
h=-"L__n (2.114)
cos @
where
)

N

Va2 cost ¢ + b2sin’ @

2.5.4.2 Iterative Algorithm

The iterative algorithm is derived in Appendix D and implemented by taking the
following steps

a. Initialize the altitude as

hy =0 (2.115)

b. Choose an arbitrary value of latitude either from a previous measurement (if one
is available) or by using the approximation

(P = tan”" [Pe(lz_ez)} (2.116)
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c. The geodetic longitude is calculated as

)= tan™! (y—> (2.117)
X

Ry = (2.118)
(1 — e?sin? @i71)1/2
2 2

x(‘ + ye
_ V&) Ry, (2.119)

COs @;_;

¢ Ry, + hi

¢; = tan”! < (Ry, + i) (2.120)

Pt Rl +h

e. Compare ¢;, ¢,_; and h;, h;_;; if convergence has been achieved then stop,
otherwise repeat step d using the new values.

2.6 Earth Gravity

The gravity field vector is different from the gravitational field vector. Due to the
Earth’s rotation, the gravity field is used more frequently and is defined as

g=8— Qlr (2.121)

where g is the gravitational vector, €, is the skew-symmetric representation of the
Earth’s rotation vector ®;, with respect to the i-frame, and r is the geocentric
position vector. The second term in the above equation denotes the centripetal
acceleration due to the rotation of the Earth around its axis. Usually, the gravity
vector is given in the 1-frame. Because the normal gravity vector on the ellipsoid
coincides with the ellipsoidal normal, the east and the north components of the
normal gravity vector are zero and only third component is non-zero

g=[0 0 —g]" (2.122)
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xy plane
P : Geodetic Latitude '

P : Geocentric Latitude

Fig. 2.16 A meridian cross section of the reference ellipsoid containing the projection of the
point of interest P

The magnitude of the normal gravity vector over the surface of the ellipsoid can
be computed as a function of latitude and height by a closed form expression
known as the Somigliana formula (Schwarz and Wei Jan 1999), which is

y=a (1 +aysin® ¢ + assin® @) + (a4 + as sin> ) h + agh’ (2.123)

where 4 is the height above the Earth’s surface and the coefficients a; through ag
for the 1980 geographic reference system (GRS) are defined as

ay=9.7803267714 m/s*; a4= — 0.0000030876910891 /s?;
a=0.0052790414; as=0.0000000043977311/s%;
a3=0.0000232718; as = 0.0000000000007211 /ms?

Appendix A
Derivation of Meridian Radius and Normal Radius

For Earth ellipsoids, every meridian is an ellipse with equatorial radius a (called
the semimajor axis) and polar radius b (called the semiminor axis). Figure 2.16
shows a meridian cross section of one such ellipse (Rogers 2007).

This ellipse can be described by the equation

2 2
%+%:1 (2.124)

and the slope of the tangent to point P can be derived by differentiation
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2wdw  2zdz _

—t; =0 (2.125)
dz b*w

An inspection of the Fig. 2.16 shows that the derivative of the curve at point P,
which is equal to the slope of the tangent to the curve at that point, is

dz T
— =tan(= 2.127
dw an (2 + (p) ( )
ﬁisin@—i-(p)i cosp 1 (2.128)
dw  cos(Z+¢) —sing  tang '
Therefore
1 b?
—2z (2.129)
tanp a°z
From the definition of eccentricity, we have
b2
62 =1- -
2 az (2.130)
; =1—-e
and Eq. (2.129) becomes
z=w(l—¢)tang (2.131)

The ellipse described by Eq. (2.124) gives

Z2
w? = d? (1 - b2> (2.132)

Substituting the value of z from Eq. (2.131) yields

20201 2\2., 2
W2:<a2_aw(l e”) tan (/)>
b2

a?w?(1 — €%)’tan? )
[ —
b? 2(1 — €2 2tan2
w2< +a*( ) ) _ 2

w

b2
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) a*b?
wo = 3
b?* + a*(1 — €?)°tan? @
. @ld-e))
a2(1 — &) +a2(1 — ) tan? ¢
2 a’
v :1+(1—e2)tan2(p
, (2.133)
) a
W= 2\ sin’ @
1 + (1 — e )m
) a’ cos? @
wo = —
cos2 ¢ + (1 — e2) sin® ¢
) a*cos® ¢
W=
1 —é?sin” ¢
W acose (2.134)

S ., 1
(1—e¢ sin’ ®)’
Substituting this expression for w in Eq. (2.131) produces

1—e?)si
(o al=e)sing (2.135)

(1 —e?sin’ (p)7

which will be used later to derive the meridian radius.
It can easily be proved from Fig. 2.16 that

w = Ry cos ¢ (2.136)

From this and Eq. (2.134) we have the expression for the normal radius, Ry,
also known as the radius of curvature in the prime vertical

Ry=—2 (2.137)
(1 — e?sin? go)2

The radius of curvature of an arc of constant longitude is

(2.138)
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The second derivative of Eq. (2.126) provides

dz  bw_ bw (b2 b2w2>1/2

aw &z a a?

Pz P <b2 b2w2)1/2 bPw ( 1) (b2 b2w2> 3/2< b2> .
dw? a? a? a? 2 a? a2
A’z b b*w?

@z dP

L7 b2 — bR —b24? <b2 - bi—‘;2> — b*w?

aw? a7 - a7

d’z _ —b*a® + b*w? — bw?

an? a*z?

which simplifies to

d*z b*
Substituting Egs. (2.139) and (2.126) into (2.138) yields
{1 T b4wz]%
a4 2
Ry =+—— (2.140)
a3
and since Z—z =1-¢°
3
I 22
1 + (1 ZZ) :|
Ry == b2(1—e?)
Z3
-22+(l —ez)zvvz:|2
ZZ
Ru =~—pa—a
Z}
2 .13
24+ (1 - é?) wz}'
Ry (2.141)
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Substituting the value of w from Eq. (2.134) and z from (2.135) gives

- 3
az(lfez)zsinz(p 212 azcoszw 2
1—e2sin’ @ +(1 - e ) 1—e2sin’ @
Ry ==
M p2(1 — &)
-az(l —ez)zsin2 (/)+(l —ez)zaz cos? @ :
1 —e2sin® @
Ry ==
M b2(1 — &2)
- 3
a*(l — ez)z(sin2 ¢ + cos? qo)]z
Ry == 3
p2(1 — €2)(1 — e2sin® )’
a*(l — 62)3
Ry = 3
b (1 — €2)(1 — e2sin® )’
Ry — a(l — e2)3

(S

(1 —e2)(1 — e2)(1 — e*sin® @)
leading to the meridian radius of curvature

Ry = 1=¢) (2.142)

(1 —e?sin’ )’

e

Appendix B

Derivation of the Conversion Equations From Geodetic
to Rectangular Coordinates in the ECEF Frame

Figure 2.17 shows the relationship between geodetic and rectangular coordinates
in the ECEF frame.
It is evident that

I'p =TIgp + hn (2143)
where

Ry cos ¢ cos cos @ cos A
rg = Ry cos ¢ sin A =Ry cos ¢ sin 4 (2.144)
Ry sin ¢ — Rye? sin ¢ sin @ — Rye? sin ¢



58 2 Basic Navigational Mathematics, Reference Frames

Zb‘
A P(A,¢,h)

Pole 4

Earth Fixed
Frame (e)

Xe

Fig. 2.17 The relationship between geodetic and rectangular coordinates in the ECEF frame

Also, the unit vector along the ellipsoidal normal is

cos ¢ cos A
n= | cos¢gsini
sin ¢

Substituting Egs. (2.144) and (2.145) into (2.143) gives

cos @ cos A Cos ¢ cos A
rp = Ry cos ¢ sin A + h | cos @sin A
sin @ — Rye? sin @ sin @

(Ry + h) cos ¢ cos A
rp = (Ry + h)cos @sin 4
{Ry(1 —€*) + h}sing

(2.145)

(2.146)

(2.147)
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Fig. 2.18 Reference diagram for conversion of rectangular coordinates to geodetic coordinates
in the ECEF frame through a closed-form method

X (Ry + h)cos pcos A
¥ = (Ry + h)cos @ sin A (2.148)
e {Ry(1 —€*) + h}sing

Appendix C

Derivation of Closed Form Equations From Rectangular
to Geodetic Coordinates in the ECEF Frame

Here we derive a closed form algorithm which uses a series expansion (Schwarz
and Wei Jan 1999) to compute e-frame geodetic coordinates directly from e-frame
rectangular coordinates.

From Fig. 2.18a it can is evident that, for given rectangular coordinates, the
calculation of geocentric coordinates (4, ¢, r) is simply

r— \/(xe)2+(ye)2+(ze)2 (2.149)
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i::tanl<§g> (2.150)

R Sa

@ =sin" [ — (2.151)
r

From the triangle POC (elaborated in Fig. 2.18b) it is apparent that the dif-
ference between the geocentric latitude ¢’ and the geodetic latitude ¢ is

, T T
D+¢+*+Gf¢>:n

2
R (2.152)
D=¢—¢

where D is the angle between the ellipsoidal normal at Q and the normal to the
sphere at P.
Applying the law of sines to the triangle in Fig. 2.18b provides

sinD sin(% — go)
Rye?sing r
sinD  cos¢

Rye?sing  r (2.153)
sinD :RNez sin ¢ cos @
r

D =sin™! (szez sin ¢ cos </)>
r

Rye*1sin2
1)_.gn1<—554223—f) (2.154)
r
Substituting the definition of the normal radius Ry given in Eq. (2.137)
a
Ry=——"—"7"79—+ (2.155)
(l — &2 sin® q))l/z
into Eq. (2.154) gives

a 21 o;
———pe >8in2¢
1 (lfe~s1n‘(p)

D =sin~ . (2.156)
1)_.gn1<(k5“’%?)vz> (2.157)
1 —é2sin” ¢

where
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62

k=— 2.158
- (2.158)
To achieve a first approximation, if ¢ = ¢’ then D can be computed by using

the geocentric latitude

ksin2¢’
D, = sin”! e A - (2.159)
(1—¢ sin? @)
Expanding Eq. (2.157) for this approximation, D,, gives
D= Do = ) + D (@)g 0 - o) + Do), 220
- (p - (p (p (/):(/)’ ()0 QD QD (/):(/)/ 2!
(¢ — o)’
+D”’((p)|(ﬂ:(P,T+ e (2.160)
1 1

D=D.+D(¢)D+ ED”(@’)DZ + yD’”(q)’)D3 +... (2.161)

For a very small value of D (less than 0.005), it can be assumed that Ry ~ r,
and hence
&2
D= Esin 2¢ (2.162)

So for this situation, let k = % so that

D = ksin2¢ (2.163)

The series used above can therefore be truncated after the fourth-order term and
be considered as a polynomial equation. Solving this polynomial provides

D,

"1 2kcos2q + 2K2sin® ¢ (2.164)
The geodetic latitude can be given as
(p:(p’+D:sin’1§+D (2.165)
The geodetic longitude is the same as shown earlier
J=tan”! (){—:) (2.166)

The ellipsoidal height is calculated from the triangle PRC of Fig. 2.18a
P° = (Ry + h)cos ¢ (2.167)



62 2 Basic Navigational Mathematics, Reference Frames

Pe
h = — Ry (2.168)
cos @
2 2
x¢)"+(y¢
_ VOO (2.169)
cos @

Equations (2.165), (2.166) and (2.169) are therefore closed-form expressions to
convert from rectangular coordinates to geodetic coordinates in the e-frame.
Appendix D

Derivation of the Iterative Equations From Rectangular
to Geodetic Coordinates in the ECEF Frame

From Eq. (2.148), which relates geodetic and rectangular coordinates in the
e-frame, we see that

x° = (Ry + h)cospcos (2.170)
¥ = (Ry + h)cos @sin A (2.171)
Z={Ry(1—¢&*) +h}sing (2.172)

Given the rectangular coordinates and these equations, the geodetic longitude is

J=tan! (y_> (2.173)
xe
Equation (2.169) specifies the relationship for the altitude as
2 2
X))
h= 7( ) — Ry (2.174)
cos @

Also, from Egs. (2.170) and (2.171) it can be shown that

(x)*+(y°)*= (Ry + h)*cos ¢* [cos® 2 + sin® /] (2.175)

(x)*+(»)* = (Ry + h) cos ¢ (2.176)
And finally, dividing Eq. (2.172) by Eq. (2.176) yields
¢ Ry(1—e€*)+h
: = [ l e) + ]tan(p
() + ()

(Ry + h)
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Z*(Ry + h)
[Ry(1 = €2) + A/ (x)*+()°

¢ =tan"! (2.177)
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Chapter 3
Global Positioning System

The global positioning system (GPS) was developed by the US Department of
Defense in the early 1970s to serve military navigational requirements. The first
satellite was launched in 1978 and the system was declared operational in 1995.
It is based on a network of at least 24 satellites (with room for six further satellites)
orbiting the Earth in nearly circular orbits with a mean radius of about 26,560 km.
Each satellite transmits a radio signal that contains both a pseudo-random noise
(PRN) code and a navigation message (Kaplan and Hegarty 2006). The PRN code
is used by the receiver to find the transit time, as a preliminary to calculating the
range (called pseudo-range p) from the satellite to the receiver by multiplying this
by the speed of light. It also calculates the satellite’s position from the information
in the navigation message. With the information from at least three satellites the
receiver can use the process of trilateration to calculate its own position in terms of
latitude, longitude and altitude, as shown in Fig. 3.1. The signal from a fourth
satellite is needed to cancel the receiver’s clock bias (b). A master control station
in Colorado Springs monitors the health of the system using information from
12 monitoring stations around the globe, and ensures its accuracy by transmitting
data and control signals to the satellites through four ground antennae.

3.1 GPS Observables

The three main GPS observables are pseudo-ranges measurements, carrier phase
measurements and Doppler measurements.

A. Noureldin et al., Fundamentals of Inertial Navigation, Satellite-based 65
Positioning and their Integration, DOI: 10.1007/978-3-642-30466-8_3,
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 3.2 The concept of a pseudo-range calculation based on the PRN code transmitted by a GPS
satellite and its receiver-generated replica

3.1.1 Pseudo-Ranges Measurements

The pseudo-range is the measure of the distance between a satellite and a receiver.
The transmission time can be calculated from the navigation message, while the
reception time is measured from the correlation of the received signal (PRN code)
and its receiver-generated replica (Fig. 3.2). The pseudo-range (p) is calculated by
taking the difference of these times (Af) and multiplying it with the speed of light
(c) as follows

p=cxAt (3.1)
The pseudo-range measurement for the mth satellite can be written as
p" =r"+cot, — coty + 1" + T" + &) (3.2)
where
p™ is the measured pseudo-range between the mth satellite and the

receiver (meters)

™ is the true range between the receiver antenna at time ¢, and the
satellite antenna at time 7, (meters)

ot. is the receiver’s clock offset (sec)

oty is the satellite’s clock offset (sec)
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Wave Length |« 4>

Complete Cycles N

Satellite
User

Fig. 3.3 The principle of phase measurements based on complete and partial cycles of the
carrier wave

I is the ionospheric delay (sec)

T™ is the tropospheric delay (sec)

&"  istheis the error in the range due to various sources, including receiver
noise, multipath, satellite clock modeling and orbit prediction (meters)

3.1.2 Carrier Phase Measurements

The ranges to the satellites can also be measured through the phases of the carrier
signals. The GPS receiver can accurately measure the fractional phase of a cycle
but the total number of complete cycles from the satellite to the receiver is initially
unknown. This is called integer ambiguity (IA). After the IA is resolved, the range
can be calculated by multiplying the carrier wavelength (4) by the sum of the
complete cycles (V) and the fractional one (¢). This range is much more accurate
than that calculated from the PRN code. This concept is illustrated in Fig. 3.3, and
mathematically expressed as follows

p=N+¢) x4 (3.3)
By accounting for clock biases, atmospheric delays, measurement errors and
doing some rearrangement, this can be written as

¢ == (r+cdt, —cdty; — Iy +Ty) + N + & (3.4)

ol =

where
Iy  is the ionospheric delay (meters)
Ty is the tropospheric delay (meters)
ot, 1is the receiver’s clock offset (sec)
oty is the satellite’s clock offset (sec)
N s the integer ambiguity (cycles)
g5  is the error in the measurement (cycles)

The carrier phase measurement can be converted to units of meters by multi-
plying Eq. (3.4) with the wavelength A, thus
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Since the ionospheric and tropospheric delays are the same for the pseudo-range and
the carrier phase (except for the minus sign of the former) we can elide their subscripts

D =r+cot—coty,—I+T+ AN + ¢¢ (3.6)

Note that Eq. (3.6) is very similar to the pseudo-range Eq. (3.2) save for the IA
term and the sign of the ionospheric delay.

3.1.3 Doppler Measurements

The Doppler effect is a frequency shift of the electromagnetic signal caused by the
relative motion of the emitter and receiver. Based on this phenomenon, some GPS
receivers also measure the Doppler frequency of the received signal to calculate
the velocity of the user. The Doppler shift (f;), line-of-sight range rate (), and
wavelength (1) of the transmitted signal are related by

fa=-"
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Fig. 3.5 A planar projection of the GPS constellation giving the plane and slot numbers

3.2 GPS Structure

GPS is composed (El-Rabbany 2002) of a space segment, a control segment and a
user segment, as shown in Fig. 3.4.

3.2.1 Space Segment

The space segment consists of a constellation of at least 24 satellites orbiting the
Earth in nearly circular orbits at an altitude of about 20,000 km. They occupy six
orbits inclined at 55° to the equator, each with four primary satellites which are
unevenly distributed. The orbital period is about 12 h. Figure 3.5 illustrates the
planner projection of GPS satellite constellation. It can accommodate more than
30 satellites to ensure that at any given time at least four satellites are visible to a
user with a clear view of the sky. The satellites broadcast radio signals contain
coded information and navigation data to enable a receiver to calculate
pseudo-ranges and Doppler data to estimate the position and velocity of the user.

3.2.2 Control Segment

The control segment is responsible for the overall control and maintenance of the
system, and its responsibilities (Misra and Enge 2001) include
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Fig. 3.6 Distribution and location of various elements of the GPS control segment

e Monitoring and maintaining the orbit of each satellite in the constellation by
manoeuvring and relocation (if needed).

¢ Ensuring the performance of the satellites.

e Maintenance of the GPS system time.

e Prediction of the ephemerides and clock parameters of each satellite, and
periodic uploading of this information to keep the navigation message up to
date.

It consists of the master control station (MCS), the monitoring stations and
the ground antennae. Satellite signals are tracked by six US Air Force and 11
national geospatial-intelligence agency (NGA) monitoring stations around the
globe. These unmanned stations are controlled by the MCS and they observe
satellite orbits and clock integrity. This information is sent to the MCS at
Schriever Air Force Base near Colorado Springs, which estimates the ephemeris
and clock parameters. The MCS can also relocate a satellite if needed. Ground
antennae are situated at four monitoring stations that have radio links with the
satellites through the S-band to receive data about their systems, as well as
links to the MCS to enable it to upload commands and the latest data for the
navigation message to be broadcast by the satellites. Figure 3.6 shows the
components and their approximate locations.
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3.2.3 User Segment

This segment consists of receivers which receive the radio frequency signals from
GPS satellites and estimate their position, velocity and time. Users of GPS can be
classified into civilian and military. The user segment has grown many-fold since
its inception in the 1980s due to rapid advancement in the technology and the ever
decreasing cost of electronics. Early receivers cost at least US$100,000 but now a
reasonably accurate receiver can be purchased for under $100. The user segment
has permeated many facets of daily life, including location based services, search
and rescue, law enforcement, road and maritime travel, remote asset tracking, fleet
management, intelligence gathering, sports, public safety, and environmental
assessment and planning. Detailed accounts can be found in (Seeber 2003) and in
(Parkinson et al. 1996).

3.3 GPS Signals

GPS initially transmitted ranging signals on two frequencies. Later, more signals
were added under a modernisation program. This section will give an overview of
the traditional signals and then discuss the modernization program.

3.3.1 Traditional GPS Signals

GPS satellites transmit signals on two radio frequencies called L1 and L2, which
are centred at 1575.41 and 1227.60 MHz respectively. Each frequency is modu-
lated by ranging codes called pseudo-random noise (PRN) sequence or code for
precise range measurements (Langley Jun 1990). A coarse acquisition (C/A) code
is associated with the standard positioning service (SPS) set aside for civilian use.
The precise code (P-code) is associated with the precise positioning service (PPS).
This is further encrypted to the P(Y)-code for security reasons and is for authorized
military users. L1 is modulated by both C/A and P-codes, whereas L2 is modulated
by P-code only. With the removal of selective availability (SA") in May 2000 both
the codes have equal accuracy, which is around 5 to 30 m for single GPS receivers.
The receiver must determine the position of the satellite in order to use the nav-
igation message to convert the range measurements into the position and velocity
of the user. The navigation message is superimposed on both the L1 and L2
carriers, along with the PRN codes. The message is binary coded data consisting of
information on the satellite’s health, ephemeris (its position and velocity), clock
bias parameters, and an almanac that is a less precise version of the ephemeris data

! Selective availability was an intentional degradation in the GPS signal by the US Department
of Defense to limit the positional accuracy to 100 m for civilian users.



Table 3.1 New GPS signals and their characteristics

Signal

Satellite launch

Features

L2C (developmental) 2nd civil signal
1227.60 MHz

L5 (developmental)
3nd civil signal 1176.45 MHz

LiC
3nd civil signal 1575.42 MHz

Began launching in 2005 with GPS
Block IIR (M)

Available on 24 GPS satellites around
2016

Began launching in 2010 with GPS
Block IIF

Available on 24 GPS satellites around
2019

Begins launching in 2014 with GPS
Block IIIA

Auvailable on 24 GPS satellites around
2021

Radio navigation satellite services (RNSS) radio band

Modern signal design (CNAV), including multiple message types and
forward error correction

Binary phase shifted key (BPSK) modulation

Includes dedicated channel for codeless tracking

Highly protected aeronautical radio navigation services (ARNS) radio
band

Higher transmitted power than L1C/A or L2C

Greater bandwidth for improved jam resistance

Modern signal design (CNAV), including multiple message types and
forward error correction

Binary offset carrier (BOC) modulation

Includes dedicated channel for codeless tracking

Aeronautical radio navigation services (ARNS)
radio band

Designed for international GNSS interoperability

Modern signal design (CNAV-2), including forward error correction

Multiplexed binary offset carrier (MBOC) modulation

L
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GPS modernization program
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but for all the satellites of the constellation. The ephemeris and clock parameters
are repeated every 30 s. The chipping rates of the P-code and C/A code are 10.23
and 1.023 M/sec respectively. The navigation message is broadcasted at the much
lower rate of 50 bps and therefore takes 12.5 min to transmit all of the
information.

3.3.2 GPS Modernization

The US government is constantly improving the performance of GPS services to
maintain leadership in satellite navigation against competition from other satellite
navigation systems (Government 2012). Under the GPS modernization program
the space and control segments are upgraded to bring new features to improve the
system’s performance. A major part of this program is to add new signals for both
civilian and military users. These new signals are being introduced progressively
as new generations of satellites are launched to supersede earlier ones. Currently,
three new signals called L2C, L5 and L1C are being introduced for civilian use.
The details of the modernization program and the new GPS signals can be found
on the website http://www.gps.gov. A summary of the new signals along with their
defining features is given in Table 3.1, and the timeline of the GPS modernization
program is shown in Fig. 3.7.

3.4 GPS Error Sources

As stated in Chap. 1, a GPS receiver uses the trilateration principle to compute its
position by making range measurement to at least four satellites. These ranging
measurements are plagued by errors arising from a variety of sources. To obtain an
accurate position, the effect of these errors must be mitigated. The next sections
give a brief description of the errors that are typically encountered by a receiver in
calculating its position.


http://www.gps.gov
http://dx.doi.org/10.1007/978-3-642-30466-8_1
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3.4.1 Satellite Clock Error

Although fairly accurate, over time satellite clocks drift away from GPS system
time. Based on the observed satellite clock data provided by monitoring stations,
the control segment estimates the correction parameters for the satellite clocks and
uploads them to the satellites, which broadcast these parameters in the navigation
message to enable a receiver to correct for satellite clock error in a measured
range.

3.4.2 Receiver Clock Error

Receiver clocks are meant to be inexpensive for affordability. Consequently they
are much less accurate than the satellite clocks and contain a bias. This clock bias
error affects all measurements in same manner. Therefore if four pseudo-range
measurements are available, the clock bias can be estimated along with the three
components required to determine the position of the user. This is usually done by
a Kalman filter, as detailed in Chap. 7.

3.4.3 Ionosphere Delay

The ionosphere is the layer of the atmosphere which contains ionized gases (free
electrons and ions) and occupies the region of space approximately from 60 to
1,000 km above the Earth’s surface (Parkinson et al. 1996). The ionization level of
this layer changes with solar activity, affecting the refractive indices of the various
layers of the ionosphere and, as a result, changing the transit time of a GPS signal


http://dx.doi.org/10.1007/978-3-642-30466-8_7
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(Farrell 2008). Satellite elevation also adds to the variability of this error, because
signals from low elevation satellites pass a greater slant-range distance through the
ionosphere than those at higher elevations. This fact is graphically illustrated in
Fig. 3.8. The ionospheric delay in pseudo-range and carrier phase is equal but
opposite in sign [details can be found in (Hofmann-Wellenhof et al. 2008)] and is
expressed as

40.3TEC
=~
where f is the carrier frequency and TEC stands for total electron count. TEC is
defined as the number of electrons in a 1 m? cross sectional tube along the path of
transmission through the ionosphere, and it varies both temporally and spatially. It
is the main quantity to be determined and depends on sunspot activities, seasonal
and diurnal variations and line of sight. It can be measured, estimated, modeled or
eliminated.

It is evident that measurements at two frequencies

Iy =1, (3.8)

 40.3TEC . 40.3TEC

1 — s 42 — (39)
f? 7
and hence
2
I :f—2212 = Lf} =f;h (3.10)
1

Dual frequency GPS receivers equipped with both L1 and L2 are able to calculate
ionospheric delay much more accurately. A single frequency receiver relies on the
Klobuchar model, whose parameters are broadcast by the satellites. Section 3.7.2
explains how to calculate the ionospheric delay for a single frequency using this
model, which can reduce the ionospheric delay error by 50 %.
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3.4.4 Tropospheric Delay

The troposphere is the lower part of the atmosphere extending from 8 to 40 km
above the Earth’s surface and it is mainly composed of dry gases (N, and O,) and
water vapor. Unlike the ionosphere, the troposphere, being electrically neutral, is
non-dispersive for GPS frequencies but since it is refractive it causes a decrease in
speed relative to free space. Therefore apparent ranges appear longer by 2.5-25 m
depending upon the elevation angle of the satellite (Parkinson et al. 1996).
Tropospheric errors are consistent between L1 and L2 carriers. Tropospheric delay
has a dry and a wet component. The wet component is responsible for 10 % of the
tropospheric delay and is difficult to model because the water vapor content varies
on a local scale. The dry component is better modeled and accounts for 90 % of
the tropospheric delay. Several models have been developed for tropospheric
delay, including the Saastamoinen model, Hopfield model and Chao model
(Parkinson et al. 1996).

3.4.5 Multipath Errors

Multipath is a major error source in urban environments where the GPS signal is
able to reach the receiver by several different paths, as shown in Fig. 3.9. These
paths include direct line of sight and reflected signals from other objects around
the receiving antenna. The signal that arrives indirectly is delayed and has a lower
signal to noise ratio. Multipath distorts the original signal because of interference
with the reflected signals at the receiving antenna. This can cause a position error
in excess of 10 m. For a detailed treatment refer to (Parkinson et al. 1996; Kaplan
and Hegarty 2006; Misra and Enge 2001). The multipath error is two orders of
magnitude lower for carrier phase measurements than for pseudo-range
measurements.

3.4.6 Satellite Orbital Errors

Satellite orbital errors are the difference between the actual position of a satellite in
space and the position of the satellite calculated by the receiver using ephemeris
data. Depending on the previous motion of the satellite and knowledge of Earth’s
gravity, the orbital errors are predicted by the control segment and uploaded to the
satellites for broadcast to the users as ephemeris data. Since the ephemeris model
is a curve fit to the measured orbit, it will include time varying residual errors
relative to the actual orbit. Typically, this error is between 2 and 5 m.
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3.4.7 Receiver Noise

This is a random measurement noise intrinsic to the electronics of a GPS receiver.
It is caused by the cumulative effects of antenna circuitry, cables, thermal noise,
RF signal interference, signal quantization and sampling. Since it is a function of
the signal to noise ratio, it varies with the elevation angle of a satellite. It gives rise
to an incorrect measurement of the transit time of the GPS signal. As in the case of
the multipath effect, receiver noise is two orders of magnitude lower for carrier
phase measurements than for pseudo-range measurements.

3.4.8 User Equivalent Range Error

The combined effect of the residual errors (after mitigation through appropriate
models and the data in the navigation message) on pseudo-range measurements is
called user equivalent range error (UERE). This is made under the assumption that
error sources can be allocated to individual satellite pseudo-ranges, and viewed as
affecting the pseudo-range values equivalently (Misra and Enge 2001). Assuming
that these errors are uncorrelated, a reasonable assumption, the composite UERE
for a satellite is approximated as a zero-mean Gaussian random variable that has a
variance equal to the root-sum-square of the individual component variances

— 2 2 2 2
OUERE = \/O-eph + 0ot Ojon + atzm + 0+ O-%cv (311)
where
o, 18 the range error due to ephemeris data
o, 1s the range error due to the satellite’s clock
0,,, 1s the range error due to the ionosphere

0o 1S the range error due to the troposphere
omi; 1S the range error due to multipath
ory 1S the range error due to the receiver measurement

The typical UERE for the above mentioned errors is about 5.3 m. For a detailed
breakdown of the various range errors see (Parkinson et al. 1996).

3.5 GPS Augmentation

Currently, the typical accuracy of a standalone GPS (i.e. SPS) is around 10 m
horizontally and 15 m vertically. Although this is adequate for many common
navigational applications, a greater accuracy is required for critical safety-of-life
applications, and to achieve this GPS is augmented with various other systems.
The requirements for critical safety-of-life applications are as follows:
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o Integrity: The ability to provide timely warnings to users that the system should
not be used for navigation or other purposes.

e Accuracy: The difference between a GPS-measured position at any given time
and the true position.

e Continuity: The ability to complete an operation without triggering an alarm.

e Availability: The ability of a system to be used for navigation whenever and
wherever the user desires.

Various augmentation systems are employed to achieve these requirements, and
they are mainly based on the following techniques

e Addition of extra sensors: In this method additional sensors are used to
complement the GPS information and improve the overall navigational infor-
mation; these are typically an altimeter, a compass, accelerometers, gyroscopes
and an odometer.

e Use of differential GPS corrections: Some of the GPS errors are similar for
users who are relatively near to one another, and they do not change quickly.
These errors are said to spatially and temporally correlated. They can be esti-
mated by a receiver whose location is already known (it being called a base or
reference station). These errors are conveyed to nearby GPS users for use by a
compensation algorithm. This technique is known as differential GPS (DGPS).

o Use of pseudo-satellites: Pseudolites (as they are called) are transmitters on the
ground that provide additional GPS-like signals in areas where the reception of
satellite signals is either below the minimum level necessary or is completely
blocked. In cases where GPS satellite geometry is poor, pseudolites can artifi-
cially improve the geometry by supplying signals at better angles.

o Assisted GPS: GPS is increasingly being incorporated into cell phones, which
require extra information to give location information in a timely manner. This
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Fig. 3.11 The concept of
wide area differential GPS m m
(WADGPS)

information is provided through the cellular networks in the form of assisted
GPS (A-GPS).

Further details of DGPS and A-GPS will be provided in subsequent sections of
this chapter and the addition of extra sensors will be discussed in Chaps. 8 and 9.

3.5.1 Differential GPS

DGPS is broadly categorized into two techniques based on the area in which they
can mitigate GPS errors, the local area DGPS (LADGPS) and the wide area DGPS
(WADGPS).

3.5.2 Local Area DGPS

In LADGPS, a single reference station (RS) serves the users in a relatively small
area. It calculates the pseudo-ranges with code-phase measurements and, based on
accurate knowledge of its position, determines the bias in the measurements for all
the visible satellites. These biases are calculated as the difference in pseudo-range
measurements made by the RS and the geometric range between the RS and the
satellite. These bias errors (differential corrections) are transmitted to the users in
the area on a radio link for real-time applications. These errors include ephemeris
prediction errors, uncorrelated satellite perturbations, and errors introduced by the
atmosphere (Prasad and Ruggieri 2005). These corrections are more accurate for
users who are closer to the RS than for those who are farther away. The concept of
LADGPS is shown in Fig. 3.10.


http://dx.doi.org/10.1007/978-3-642-30466-8_8
http://dx.doi.org/10.1007/978-3-642-30466-8_9
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Table 3.2 A summary of world GPS augmentation systems (Prasad and Ruggieri 2005; GPS
Augmentations 2009; McPherson 2001; Crosby et al. 2000)

Augmentation system Association Type
NGDGPS: Nationwide differential GPS Federal railroad administration, federal SBAS
system highway administration, and US coast
guard
WAAS: Wide area augmentation system US Federal aviation administration SBAS
CWAAS: Canadian wide area Canada SBAS
augmentation system
EGNOS: Geostationary navigation European commission, European space SBAS
overlay system agency, and Eurocontrol
GAGAN: Geo-augmented navigation Indian Space Research Organization and the SBAS
system Airports Authority of India
QZSS: Quasi-zenith satellite system Japan (under development) SBAS
MSAS: Multifunction transport satellite Civil aviation Bureau, Ministry of Land, SBAS
(MTSAT) satellite augmentation Infrastructure and Transport, Government
system of Japan
SNAS: Satellite navigation China SBAS
augmentation system
CORS: Continuously operating National Oceanic & Atmospheric GBAS
reference station Administration(for precision positioning
and atmospheric modeling)
GDPS: Global differential GPS Jet Propulsion Laboratory, NASA GBAS
IGS: International GNSS service Joint effort of 200 organization in 80 countries GBAS
(for GNSS)
LAAS: Local area augmentation System Federal Aviation Administration, USA GBAS
GRAS : Ground-based regional Australia GBAS
augmentation system
OmniSTAR: USA SBAS

3.5.3 Wide Area DGPS

As the GPS receiver moves farther away from the associated RS, the correlation
between errors reduces and they become spatially correlated, with the result that
the errors estimated at the RS can become different from those experienced by the
user. This situation can be ameliorated by expanding the coverage by adding more
reference stations along the perimeter of the area covered by the single RS. The
receiver weights the corrections based on its proximity to each individual RS. This
method of differential correction, called wide area DGPS (WADGPS), is shown in
Fig. 3.11.

WADGPS has a master (control) station (MS) and some number of reference
stations. Each RS transfers its measurement data to the MS, which estimates the
GPS error components based on the data received and a priori knowledge of the
position of that particular RS. These errors are then sent to all the users in the area
either by radio or by satellite links. The receiver uses a weighted average of these
corrections to correct its estimated position.
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Fig. 3.12 Time to first fix (TIFF) for various types of aiding data versus the strength of the signal
[adapted with permission from (Essentials of Satellite Navigation 2007)]

The DGPS can be either space-based or ground-based, differing in the way the
information is transmitted to the user

o Space-based augmentation systems (SBAS): In this case the differential GPS
corrections are broadcast via geostationary satellites using the same frequency
band as the core GPS satellites.

¢ Ground-based augmentation systems (GBAS): The differential GPS correc-
tions are provided to the users by transmitters on the ground. The utilization of
pseudolites is sometimes considered to fall in this category.

There are many GPS augmentations operating with the intention of improving the
integrity, accuracy, continuity and availability in various regions of the world. The
detail of these is beyond the scope of this book, but the reader is referred to (Prasad
and Ruggieri 2005; Kaplan and Hegarty 2006). A summary of such systems is
provided in Table 3.2.

3.5.4 Assisted GPS

Cellular networks are expanding rapidly, and many mobile phones incorporate a
GPS. However, in order to limit the power consumption the GPS cannot always be
on. Two or more hours of inactivity requires obtaining fresh satellite orbital data
before a positional fix can be made. This can take several minutes because, in the
absence of orbital data, the GPS receiver must carry out a complete search to find
the available satellites and then download the data prior to calculating its position.
The time required to achieve this is called time-to-first-fix (TTFF). Since a longer
TTFF is unacceptable for emergency services, A-GPS was proposed as a means of
solving this problem.
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Fig. 3.13 The concept of an assisted GPS network

3.5.4.1 A-GPS Aiding Data

In A-GPS, position can be determined quickly by providing aiding data to GPS
though either mobile communication channels or the Internet (Prasad and Ruggieri
2005; GPS Augmentations 2009; McPherson 2001; Crosby et al. 2000). This data
usually includes

The almanac (for the satellite constellation).

The ephemeris data (accurate orbital information).

GPS time information.

Information about the Doppler frequency and the frequency offset of the GPS
receiver.

Generally, the greater the availability and the accuracy of the aiding data, the
faster is the startup. This concept is depicted in Fig. 3.12, which also shows that
TTFF decreases with signal strength.

3.5.4.2 An A-GPS Network

A typical A-GPS network comprises following segments

1. Networks of reference GPS receivers.

2. A central server.

3. Communications media (e.g. radio or Internet)
4. A receiver capable of processing A-GPS data.

The global reference network provides the relevant satellite information to the
server that calculates the aiding data which will be provided to GPS devices upon
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Fig. 3.14 Graphical
depiction of Kepler’s first law

Fig. 3.15 Graphical
depiction of Kepler’s
second law

Fig. 3.16 Graphical
depiction of Kepler’s
third law

request by way of the communications media. Using this aiding data, the receiver
can quickly calculate its position. Figure 3.13 illustrates a typical A-GPS network.
For a more detailed explanation the reader should consult (Essentials of Satellite
Navigation 2007).
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Fig. 3.17 Elements of a Keplerian orbit relative to the ECEF, ECI and orbital frames

3.6 GPS Satellite Orbits

The following subsections will describe the parameters used to define the orbit of a
GPS satellite. Before going into mathematical details, it is important to know the
basics of Kepler’s three laws of planetary motion.

3.6.1 Kepler’s Laws

Based on extensive astronomical observations by Tycho Brahe, Johannes Kepler
formulated three famous laws of planetary motion.

1. A planet travels along an elliptical orbit with the sun situated at one of the foci
of the ellipse (Fig. 3.14).

2. A line between the sun and a planet sweeps out equal areas in equal times
(Fig. 3.15).

3. The square of the period of revolution of a planet is proportional to the cube of
its mean distances from the sun (Fig. 3.16).

The motion of a satellite could therefore be characterized by a fixed elliptical
orbit in space with the Earth being at one of the foci. This orbit can be specified by
the six elements of the satellite’s position and velocity vectors at a specific epoch.
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An alternative representation uses the six Keplerian elements that are described in

the next section (Diggelen 2009).

3.6.2 Keplerian Orbital Elements

The Keplerian orbital elements depicted in Fig. 3.17 are defined as follows

a. Semimajor axis a : This runs from the center through
the focus to the edge of the ellipse, and so is one half of
the longest diameter

b. Eccentricity e : A measure of ovalness of the ellipse

c. Inclination i : The angle of the orbital plane relative to
the Earth’s equatorial plane

d. Right ascension of the ascending node (RAAN) Q : The
angle in the equatorial plane between the ascending node
of the satellite’s orbit and a reference direction in space
called the vernal equinox

e. Argument of perigee o : The angle in the plane of the
orbit between the ascending node and the perigee (the
point of the orbit that is closest to the center of the Earth)

f. True anomaly v : The angle between the perigee and the
satellite at any particular moment. The sum of the true
anomaly and the argument of perigee is equal to another
parameter called the argument of latitude, ®, which is
given by the expression

s

-

Specifies the size and shape
of an elliptical

Specifies the orientation of the
orbital plane

Specifies the orientation of the
ellipse in orbital plane

Specifies the position of the
satellite in the orbit
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Fig. 3.18 The eccentric
anomaly and the true
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The true anomaly specifies the location of a satellite (denoted by r in Fig. 3.18) in
its orbit. It does not vary linearly with time for noncircular orbits. To get a
parameter that varies linearly with time, two further definitions are required which
transform the true anomaly to the mean anomaly that does vary linearly with time
(Bate et al. 1971). These two parameters are called the eccentric anomaly and the
mean anomaly (see Fig. 3.18) and are defined as follows

a. Eccentric anomaly E: The angle subtended at the center of the orbit between
the perigee and the projection of the satellite onto a circle of radius a. The true
anomaly is converted to the eccentric anomaly using the following relationship
(Kaplan and Hegarty 2006)

1 - 1
E:2tan_1[ 1+Ztan(§>v] (3.13)

b. Mean anomaly ,M: The angle between the perigee and an imaginary satellite
that travels in a circular orbit that has the same focus and period as the actual
satellite but does so with a constant speed (called the mean motion). When the
eccentric anomaly has been calculated from Eq. (3.13) the mean anomaly can
be calculated by Kepler’s equations as

M =E —esinE (3.14)
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Table 3.3 Ephemeris parameters of GPS navigation message (Battin 1987)

toe Ephemeris reference time (sec) is nominally at the center of the time interval
over which ephemeris is useful

Vva Square root of the semimajor axis (y/n1)

e Eccentricity (dimensionless)

iy Inclination angle at the reference time (semicircles)

Qo Longitude of the ascending node of the orbital plane at the beginning of the GPS
week (semicircles)

w Argument of perigee (semicircles)

M, Mean anomaly at the reference time (semicircles)

An Correction to the computed mean motion (semicircles/sec)

i(IDOT) Rate of change of the inclination angle (semicircles/sec)

Q Rate of change of the RAAN with time (semicircle/sec)

Cyc, Cys Amplitudes of the cosine and sine harmonic correction terms for the computed
argument of latitude (radians)

C,., C,y Amplitudes of the cosine and sine harmonic correction terms for the computed
orbit radius (meters)

Ci., Ci; Amplitudes of the cosine and sine harmonic correction terms for the computed
inclination angles (radians)

3.6.3 GPS Orbital Parameters

Keplerian elements describe the position of a satellite for the ideal conditions of a
spherical Earth of uniform composition (and therefore a spherically symmetrical
gravitational field known as the central field), taking into account the gravitational
force of the Earth only. However, the Earth is not a uniform sphere and as shown
in Fig. 3.19 there are perturbing forces acting on the satellite apart from gravity.
These forces are

a. A non-central gravitational force field.
b. Gravitational fields of the sun, moon and the planets.
c. Solar radiation pressure and atmospheric drag.

GPS accounts for these perturbations with an expanded set of 12 parameters that
look similar to Keplerian parameters and are specified relative to a reference epoch.
These parameters, referred to as the broadcast ephemerides, are estimated using a
least squares curve fit to the orbit based on 4 h of data. The broadcast ephemerides are
uploaded to the satellites typically once per day and are good for a fortnight. Satellites
broadcast this ephemeris data as part of the GPS navigation message every 30 s. The
first six parameters listed in Table 3.3 describe a smooth elliptical orbit along with
the mean motion, n, with the satellite’s motion as a function of time since ¢,.. The
other parameters describe the deviation of the satellite’s actual motion from the
smooth ellipse, and account for the perturbation effects.
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f :Earth's geocentric gravitational attraction
.. Earth's non-central gravitational attraction
: Moon's gravitational attraction

. - Sun's gravitational attraction

f
{ : Solar radiation pressure
f

: Atmospheric drag

Fig. 3.19 Forces acting on a satellite

3.7 Ephemeris Data Processing

The pseudo-range measured by a GPS receiver must be corrected for a variety of
errors to become accurate and useful. We also need to know the position of the
satellite in order to use the corrected pseudo-ranges from a number of satellites to
estimate the position of the receiver. This requires estimating the effects of these
errors and calculating the position of the satellites in the e-frame. The position of a
satellite is determined based on the orbital parameters broadcast by the satellite in the
ephemeris data of the navigation message. These parameters are predicted by the
master control station on the basis of measurements made by the monitoring stations
24t048 hearlier. The following sections will discuss the calculations required to find
the effects of the various errors and the position and velocity of a satellite at the time
of message transmission. The reader is referred to (IS-GPS-200F 2011) for more
details.

3.7.1 Calculation of Satellite Clock Corrections

In GPS it is essential to have a very accurate time, as 1 microsecond of error could
result in 300 m of range error. So it is very important to calculate it precisely,
taking into account every possible source of error. A GPS receiver, upon receiving
a signal from a satellite, time stamps the pseudo-range measurements. Hence the
transit time of the signal as

t[:

§ (3.15)

where
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t; 1is the satellite to receiver transit time (sec)
p is the pseudo-range observation (meters)
¢ is the speed of light (meters/sec)

Then the nominal time at which the satellite sent the signal can be given as
to =ty — L (3.16)

where
ty,  1s the raw transmission time of the satellite’s signal (sec)
t,  1is the time at which the measurement was made by the receiver (sec)

The satellite clock offset can be calculated from the polynomial coefficients
found in the GPS navigation message as

Atsv = ay0 + arg (t - tac) + lez(t - toc)z (317)

where

Aty, is the satellite clock correction (sec)

ayo is the satellite clock offset (sec) Contained in navigation message
ay is the fractional frequency offset (sec/sec)

ay is the fractional frequency drift (sec/sec?)

t,c is the clock data reference time (sec).

In Eq. (3.17) t,,can be substituted for ¢ as it is not available yet (IS-GPS-200F
2011). Also, the quantity (f —1,.) should be corrected for the end of week
crossover as follows

if [(t—to) > 302,400]

(t = toe) = (t — t,c) — 604,800
elseif [(t — t,c) < — 302,400]

(t — toe) = (t — t,e) + 604,800
endif

The corrected time at which the signal was transmitted can be computed using
the abovementioned clock correction as follows

t =ty — Aty, — At, (3.18)
where At,, the relativistic correction, can be calculated as

At, = —4.442807633 x 10~ "%e+/a sin E; (sec) (3.19)
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where
e is the eccentricity of the satellite’s orbit
a is the semimajor axis
E, is the eccentric anomaly.

Defining the satellite clock offset as
oty = Aty, + Aty (3.20)
the final correction to pseudo-range can be applied as

Pcorrected = Pmeasured + Céls (321)

3.7.2 Atmospheric Corrections

3.7.2.1 Ionospheric Modeling

For single-frequency users, an empirical model is used for ionospheric effects and
the parameters of this model are broadcast by the satellites. This model was
developed by Mr. Klobuchar, and named after him (Farrell 1998). The Klobuchar
model typically reduces the RMS errors due to the ionospheric propagation effect
by at least 50 % (Klobuchar May 1987). The broadcast parameters are based on
the best fit of the diurnal maximum values of the monthly average TEC.

Using variables defined in Table 3.4, a step by step procedure to calculate the
ionospheric correction using the Klobuchar model (2011) is now given

a. Compute the Earth-centred latitude (semicircles)

0.0137

=—-0.022 3.22
El+0.11 ( )

where El is the satellite’s elevation angle.
b. Calculate the sub-ionospheric latitude ¢; (semicircles)

¢; =@, +¥YcosA (3.23)
_f 0416 if|e;| > +0.416
P { —0.416  if|p;| < — 0.416 (3-24)
where ¢, and Aare the user’s latitude and azimuth angle respectively.
c. Calculate the sub-ionospheric longitude /; (semicircles)
YsinA
;“i = iu + — (325)

cos ;
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Table 3.4 Variable definitions for ionosphere correction (IS-GPS-200F 2011)

Satellite transmitted terms
o, Coefficients of a cubic equation representing the amplitude of the vertical delay

V2 Coefficients of a cubic equation representing the period of the model

Receiver generated terms

El Elevation angle between the user and the satellite (semicircles)

A Azimuth angle between the user and the satellite (semicircles)

¢, The user’s geodetic latitude (semicircles)

Aw  The user’s geodetic longitude (semicircles)

tgps GPS time (sec)

Computed terms

x  Phase (radians)

F  Obliquity factor (dimensionless)

t  Local time (sec)

¢,, Geomagnetic latitude of the Earth projection of the ionospheric intersection point
(semicircles)

A Geodetic longitude of the Earth projection of the ionospheric intersection point (semicircles)

¢@; Geodetic latitude of the Earth projection of the ionospheric intersection point (semicircles)

W Earth’s central angle between the user’s position and the Earth projection of the ionospheric
intersection point (semicircles)

where /, is the user’s longitude.
d. Calculate the geomagnetic latitude (semicircles)

0, = ¢; +0.064 cos(4; — 1.617) (3.26)
e. Calculate the local time at the sub-ionospheric point (sec)
t =432 x 10*; + tps (3.27)

and because ¢ should be between 0 and 86,400 the following check must be
performed

if (1 > 86,400)

{ =t — 86,400
elseif (1<0)
t =1+ 86,400

endif

f. Calculate the period of the model using the four coefficients 5 (provided in the
navigation message) for the cubic equation (sec)

S o Bl if PER >72,000

3.28
72,000 if PER <72,000 (328)

PER:{

g. Compute the argument x as
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2n(t — 50,400
X = M (3.29)
PER
h. Calculate the obliquity factor to account for the increased delay at lower

elevations

F =1.0+16.0(0.53 — EI)* (3.30)

i. Calculate the amplitude of the vertical delay using the four coefficients o
(provided in navigation message) for the cubic equation (sec)

3 P
AMP = { 2n=o 1Py i AMP>0 (3.31)
0 if AMP<0

j. Finally, compute the ionospheric correction term [ (sec)

-9 _Xi ﬁ .
,_F{sx 10 ramp(1-5 4+ 5)) <157 5.32)
SF x 10 Fla| =157

This correction can be applied to the pseudo-range as

Pcorrected = Pmeasured — cl (3 33)

3.7.2.2 Tropospheric Modeling

Estimation of tropospheric delay” requires knowledge of temperature, pressure and
water content in the atmosphere around the location of the receiver. Since real-
time meteorological measurements are not always feasible for low cost navigation
applications, average meteorological conditions are assumed for estimation of the
tropospheric delay based on the standard atmosphere for the day of the year and
the user’s general location. There are various models to determine the tropospheric
delays which differ in assumptions about temperature and water vapour variations
with altitude.

The delay from zenith direction (zenith delay#’ ) can be expressed in terms of

Z
ttro

corresponding dry delays 7, , and wet delays 7,
zfro = z‘tzm,d + t?ro,w (334)

Then an obliquity factor is included to scale the zenith delay as a function of
elevation angle EI, giving the tropospheric delay T as

_ £
T = ttro,

+-OF(El) + 1

ro,w

.OF,(E) (3.35)

2 Tropospheric correction does not depend upon the ephemeris supplied data, but it is discussed
in this subsection for the sake of continuity and completeness.
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There are various models in use for the wet delay. For our purpose we employ
the Hopfield model, for which dry and wet delays are expressed (IS-GPS-
200F 2011) as

Py x h

_ 610 d

frpa = T7:6 X 1070 72 (3.36)
z eOhw

t =0373—4—— 3.37
trop,w Tg %5 ( )

where P is the total pressure (mbar), T is the temperature (Kelvin) and e is the
partial pressure (mbar) due to water vapour at the location of the GPS antenna.
However, for navigation applications these values are picked as constants from the
model of the standard atmosphere. In the above equation 4, and h,, are the mean
values of the height constants and are 43 and 12 km respectively.

Because these delays are estimated for the zenith direction, an obliquity factor
(also known as a mapping function) is needed to estimate the slant delay from the
zenith delay. Of the mapping functions available, the simplest is 1/sin(El) for
higher angles. However, general mapping functions (including all angles) for dry
and wet components (Hopfield 1969) are

1
OF4(El) = — 000153 (3.38)
sin El 4 oo g0, 0435
1
OF,El)=——F—— 3.39
= ST 53
Thus Eq. (3.35) becomes
Py xh 1
T =77.6x 10620224 (_ S
To x5 \sinEl + Tan E140 0443
eohw 1
+0.373 - (3.40)
T(% x5 (Sln El+ tanOE(;f)k()(igl7
This correction can be applied to pseudo-range as
Pcorrected = Pmeasured — T (341)

By applying all of the aforementioned corrections, the pseudo-range becomes

Pcorrected = Pmeasured + Céts —cl—cT (342>
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3.7.3 Calculation of Satellite Position

Using parameters defined in Table 3.3, the following procedure (Chao 1971) will
compute the position of a satellite in ECEF coordinates

a. Calculate the semimajor axis of the elliptical orbit of the satellite

a = (\/5)2 (3.43)

where +/a is the square root of the semimajor axis specified in the ephemeris
data.
b. Calculate the mean motion of the satellite

ny = \/az (3.44)

where y is the Earth’s gravitational constant = 3.986005 x 10m? /s
c. Find time #; (the time since the reference epoch t,., as specified in the
ephemeris)

fr =1 —loe (3.45)
where ¢ is the GPS system time at the time of transmission. Time #; should be
corrected for the end of week crossover as

if (t, > 302,400)
t = 1, — 604,800
elseif (. < — 302,400)
ty = t + 604, 800
endif
d. Adjust the mean motion by the correction An specified in the ephemeris
n=ny+An (346)
e. Compute the mean anomaly M} at time #;

My = My + nty, (347)

where M, is the mean anomaly at the reference time.
f. Calculate the eccentric anomaly Ej; by solving Kepler’s law as given in Eq.
(3.14)

Ek = Mk +e SiIlEk (348)

where e is the eccentricity of the satellite orbit. Normally, the above equation
is solved iteratively by setting an initial E; = M. In addition, the answer
should be corrected to lie between 0 and 27.
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g. Calculate the true anomaly vy

1| V1 —€*sinEy /(1 — ecos Ey)
Vg = tan (3.49)
(cosEy —e)/(1 — ecos Ey)

h. Compute the argument of latitude @,
(Dk =Vt (350)
i. Calculate the three harmonic perturbations. The argument of latitude correc-

tion is
Ouy = Cyy sin 2@y + C,. cos 2Dy (3.51)
The radius correction is .

ory = Cysin 2®; + C,. cos 2Dy (3.52)

The inclination correction is
Ol = Cissin2®; + Ci. cos 2d; (3.53)
j- Compute the corrected argument of latitude
w, = Oy + ouy, (3.54)
k. Compute the corrected radius
r, = a(l —ecos Ey) + ory (3.53)
1. Calculate the corrected inclination
ix = Ip + dix + (IDOT)1 (3.56)
m. Calculate the satellite’s position in its orbital plane
X, = Iy COS Uiy (3.57)
Vi = risinu (3.58)
n. Compute the corrected longitude of the ascending node
Q=+ (Q— Q)i — Qete (3.59)

where Qe is the Earth’s rotation rate. It is the same as w,, but Qe is used to be
consistent with the main reference (McLellan 1992; IS-GPS-200F 2011).
o. Finally, compute the satellite’s position in the e-frame

X = x;( cos Q; — y;( cos Iy sin O (3.60)

Vi = x;c sin —|—y;( cos i cos O (3.61)
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2% = Yy sini (3.62)

There is one more refinement to be accounted for. Ephemeris parameters in the

navigation message give P", which is the satellite’s position at the time of signal
transmission expressed in ECEF. However, at the time that the signal is received
by the receiver’s antenna the e-frame would have rotated about the Earth’s z-axis
by . (f, — t,) as a result of the globe’s rotation during the transit time (z, — #,). It is
therefore necessary to express the position of the satellite in the e-frame at time ¢,
instead of time f, (2011). This can be accomplished by multiplying f’m, with an
appropriate rotation matrix as follows

cosw,(t, —t;) sinw.(t, —t) 0 )
P" = | —sinw(t, —1;) coswe(t,—1) 0|P" (3.63)
0 0 1
P" = RP" (3.64)

where RY] represents the transformation matrix from the e-frame at the time the
GPS signal was transmitted to the e-frame at the time of its reception. However,
since w, and the transit time ¢, — f, are very small, we can use the approximations
cosw,(t, — 1) ~ | and sinw,(t, — t;) = w.(t, — 1;)

3.7.4 Calculation of Satellite Velocity

The velocity of a satellite can be computed (Misra and Enge 2001) by taking the
derivative of the position Eq. (3.60) through (3.62). This can be done by the
following step-by-step procedure

a. Calculate the rate of change of the eccentric anomaly

n

B = 3.65
KT ecos E; ( )
b. Calculate the rate of change of the argument of latitude
. V1-—e?
Qp = —— 3.66
KT ecos E; k ( )
c. Compute the rate of change of the corrected argument of latitude
it = (1 4 2C,y cos 2@y — 2C,, sin 20, ) Dy (3.67)

d. Find the rate of change of the corrected radius
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it = 2(Cys 08 2®; — Cye sin 2 )y + Ae sin(Ey)Ey (3.68)

e. Calculate the rate of change of the satellite’s position in its orbital plane
X, = i cos uy — ry sin(uy )iy (3.69)

y;{ = 7y sinuy + ri cos(uy )i (3.70)
f. Compute the rate of change of the corrected inclination
diy

— = 2(Ciscos 20 — Cicsin 20,) D, + IDOT (3.71)

g. Find the rate of change of the corrected longitude of the ascending node
U=0-0Q, (3.72)

h. Differentiate Egs. (3.60) through (3.62) to obtain the velocity of the satellite in
the ECEF frame

’ ! ! d' S
Xy = X, cos Q — ¥, cos i sin Q + y, sin i sin(Qy) % — il (3.73)
. o J . b diy :
Yk = X, sin @ + y, cos iy cos Q — y, sinix cos(Y) = + Qe (3.74)
. ro o\ di
Zg = Yy siniy + yi cos(ix) e (3.75)

dt

3.8 Receiver Position and Velocity Estimation

As mentioned earlier, there are three main observables related to GPS which can
be used to estimate the navigational data, but the pseudo-ranges and Doppler
measurements are treated next in the context of position and velocity estimation.

3.8.1 Pseudo-Range Measurements

Pseudo-ranges are obtained by measuring the time it takes for the GPS signal to
propagate from the satellite to the receiver and then multiplying by the speed of
light. Since the satellite’s and receiver’s clocks are not synchronised (mainly due
to the clock in the receiver being inexpensive), these pseudo-ranges are biased by
an amount equal to the receiver’s clock offset. This offset is a fourth unknown in
addition to the positional components of latitude, longitude and height. Therefore
measurements from at least four satellites are required to solve these equations for
four unknowns. Figure 3.20 depicts this concept of position estimation.
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The pseudo-range measurement for the mth satellite can be written as
p" =r"+ cot, — coty + cI™ + cT" + &) (3.76)

where

" is the measured pseudo-range between the mth satellite and the

receiver (meters)

™ is the true range between the receiver’s antenna at time ¢, and the
satellite’s antenna at time ¢, (meters)

ot, is the receiver’s clock offset (sec)

oty is the satellite’s clock offset (sec)

I is the ionospheric delay (sec)

T™ 1is the tropospheric delay (sec)

&"  1is the error in the range due to various sources such as receiver noise,
multipath, satellite clock modeling, and orbit discrepancies (meters)

3.8.2 Position Estimation

After compensating for satellite clock bias, ionospheric errors and tropospheric
errors (McLellan 1992; Farrell 2008) we can write the corrected pseudo-range as

pe =r"+cot, + &) (3.77)

where, é’;’ represents the total effect of residual errors.
The geometric range from the mth satellite to the receiver is

L P IR CED
where
x = [x,y,2]" is the receiver position in ECEF frame

= [x",y",2"]" is the position of the m™ satellite in ECEF frame .
Equation (3.77) can be written in vector form as

o= lx— X" + b, + (3.79)

where b, = cdt, is the error in range (in meters) due to the receiver’s clock bias.
To linearize Eq. (3.79) we will use a Taylor series expansion and discard the
higher order terms (HOT) in order to extract only the linear terms.
For any function f(x,y, z) the Taylor series expansion around (x;,y;,z;) is
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Fig. 3.20 Position
estimation requires range m
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pseudo-range measurements
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+H.0.T
(3.80)

Linearizing Eq. (3.79) around the current best estimate (Misra and Enge 2001) of

XEST = [xEST7 YEST ZEST]T (3-81 )

gives

pr = \/(xEST - x’”)z + (Yest — V”)z + (zest — Z’”)Z-l-
(xgst — x")(x — xgst) + Vesr — Y")(y — Yesr) + (zest — 2) (2 — zest)

\/(XEST - X’”)2 + (yesr — y’")2 + (zest — Z’")2

+ b+ 2
(3.82)

We define the estimated range as

PlEsT = \/(xEST —x")* + (vgst — y")* + (zpst — )’ + brst (3.83)
and so have
(xest —X")(x = xgsr) + (YEsT —¥")(y — Yesr) + (zest — 2") (2 — 2Est)
\/(xEST — x4 (vest — ") + (zest — 2")’
+by —by st +E)

m m _
Pe = PeEst =

(3.84)
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which can be written more compactly as
Spl = (Upsp) 0x + 6b, + & (3.85)
where
3ol = P — Pllesr
0b, = b, — b, gst
0X = X — Xgsr = [x,¥,2)" —[Xest, Vesr, 2est]”
[(xest — x™), (vest — Y"), (zest — 2)]7

Igr = (3.86)
\/(XEST - X’")2 + (Yest — ym)2 + (zest — Zm)2

with 17, being the estimated line of sight unit vector from the mth satellite to the
receiver’s position.

For M satellites, the linearized pseudo-range measurements equations can be
written as

3p) (k)" 1
5p? 2.)7 1 ox &
|| [ K 347)
: 1 0b; 4x1 :
‘M T ~
apc Mx1 (I%T) 1 Mx4 gpr Mx1
ox .
5pc = GM><4 b +Sp,M><1 (388)
" laxi

where G is the geometry matrix with M x 4 dimensions which characterizes the
relative geometry of a satellite and the receiver, written as

(liEST); 1
1 1

Gyiva = (E?T) (3.89)
()" 1

For four satellites (M = 4) there are four equations and four unknowns and it is
possible to solve Eq. (3.88) for unknowns directly as

1.4
ob,

However, with the GPS constellation containing a minimum of 24 satellites, the
average satellite availability is always greater than four. In the case of M > 4 we

=G 'op, (3.90)
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have an over-determined system and the solution is sought by a least squares

criterion. We therefore need to find [0X, db,|  such that it minimizes

2

0 G X (3.91)
Pc 5Br .
The least squares solution is given by
oxX
| =(G"G) G op, (3.92)
ob,
Now the improved estimates of their states are
X = Xgsr + 0X
= (3.93)

Er = bnEST + 5l;r

Up until now, it has been assumed that all pseudo-range measurements are of
equal quality, which may not always be true; low elevation satellite measurements
contain larger errors than higher elevation satellites. Using weighting factors that
take into account the elevations of the available satellite, the least squares solution

becomes
oX
b,

(03] = (GTWG) 'G"Wép,

= (G"WG) 'G"Wép,

(3.94)

where W is the weighting matrix.

3.8.3 Satellite Geometry and Dilution of Precision

The positions of the available satellites in relation to the GPS receiver play an
important role in the accuracy of the position estimation, and this affect is called
geometric dilution of precision (GDOP) or simply dilution of precision (DOP).
This concept is illustrated in Fig. 3.21 for three satellite-user geometries using an
example in two dimensions. Ideally, the signals from the satellites should form
circles which intersect at a point (the receiver’s position),” provided the user has a
precise calculation of the transit time of the signals. This is illustrated in
Fig. 3.21a. However, this is never true because there is always an error in the range
measurements due to clock biases, etc. With this uncertainty in measurements,

3 There are two points of intersection, but the other point is remote and can easily be isolated and
discarded.
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the signals from each satellite form two concentric circles as shown in Figs. 3.21b
and 3.21c. The areas between the two circles is the region of uncertainty in the
range. This pair of concentric circles intersects forming a plane (instead of a point)
which contains the region of possible receiver positions. The area of this region
will depend on the relative geometry of the two satellites with respect to the user.
In Fig. 3.21b the satellites are located at right angles relative to the user and the
area of intersection is smaller and the DOP is lower; therefore the error in the
position estimation will be smaller. Figure 3.21c shows the satellites almost col-
linear with respect to the receiver. Assuming the same ranging error (the same
region of uncertainty in the circles), we see that the area of intersection is larger in
this case, meaning that the computed position will be less accurate and the DOP
will be greater.

In the case of GPS, dilution of precision is characterized by the geometry
matrix G, which relates the parameters of the user’s position and time bias errors to
those of the pseudo-range errors.

The error covariance of the estimated quantities of Eq. (3.92) can be written as

E(0y0y")=E { (G"G)"'G"op.  [(G7G) G o] T}

E((syayT):E{ (GTG)™'G"dp, 5PCTG((GTG)71) T }

(3.95)
E(éyéyT):E{ (GTG)'GTsp, SpIG((GTG)T)™ }
E(5y6y")=E{ (G"G)"'G"6p, plG(G"G)™"}
E(336y")=(G"G) "' G"E(6p.9p})G(G"G) ™
to yield
E(0y637) = (GTG)'G"RG(G"G) ™! (3.96)

where R is the covariance of the pseudo-range measurements. Assuming that the
measurement errors are uncorrelated (apart from having a zero mean) and have the
same variance o2, then

R=d’l (3.97)
and the above covariance (3.96) can be expressed as
E(0365")=(G"G)'G"*IG(GTG)™"
E(0305")=6*(GTG)'GTIG(G"G) ™" (3.98)
E(0305")=6*(G"G)'GTG(GTG)™!
to obtain

E(630y")=c*(GTG) ™! (3.99)
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Fig. 3.21 Th}e dilution of precision with range m];asurements in two dimensions.)a The ideal
position estimation with no clock errors. b A position estimation with a clock offset but a
favorable satellite-user geometry. ¢ A position estimation with same clock offset but a poor
satellite-user geometry

By defining C, = E(0y0§7) and H = (GTG) ™" we can rewrite this as
C.=d’H (3.100)

where ¢ is the variance of the user’s range error. If we define 0')2“ 05,
variances of the x, y and z positional components and 6% as the variance of the

receiver’s clock bias error, then Eq. (3.100) gives

ag as the

2 277 . 2 295 .2 _ 27 . 2 _ 2
0y, =0 Hy; 0y = 6"Hy; 0, = 0°Hs3; 0, = 6 Hus (3.101)

and the RMS position error is

Argus = /02 + 03 + 02
Argys = ov/Hyy + Ha + H3s (3.102)

It is evident from (3.101) and (3.102) that the position estimates are affected by
the variance of the user’s range error as well as by the diagonal components of the
H matrix, which totally depends on the geometry matrix G.

Various DOP parameters which characterize the role of user-satellite geometry
can now be defined.

Position dilution of precision (PDOP) = +/Hj| + Hy + Hs3 (3.103)
Time dilution of precision(TDOP) = /Huy (3.104)

Geometric dilution of precision (GDOP) = +/Hi| + Hy + Hsz + Hyy (3.105)

To get the vertical and horizontal dilution of precision (which is more intuitive
to the user) we must convert the position error Ax from rectangular ECEF to ENU
coordinates by multiplying with the direction cosine matrix R/

Ax; = R'Ax (3.106)
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where Ax; = (AxE,AyN,AzU)T.
Now we can also define
Ax; Rl 07 Ax
{Abr}:{ 0 1} {Abr}
- [ Ax
e {Abj

and the covariance is defined by the law of covariance propagation (Parkinson
et al. 1996) as

(3.107)

AXL . _pl =SINT
Cov{Abr}—Qx =R,C«(R,)

0.=c*R.(G"G) " (R)"
0. = GZ{RQGTG(RQT}_' (3.108)
~\ -1

0, =07 (GTG)

where G = G(i?i)T and has a similar structure as the geometry matrix G. By now
letting H = (G”G)~" we have

Q.=d’H (3.109)

and a% = azflll; a%, = 021~{22; G%] = 0'21:133; O'i = 02ﬁ44 where og, oy, oy are the
standard deviations of the east, north and up components of the position error
respectively.

The diagonal elements of H correspond to the east, north, vertical, and time
DOP as follows

EDOP?
NDOP?

T
Il

— (3.110)

TDOP? ]

Now, we have

Horizontal dilution of precision (HDOP) = \/Hj, + Hy (3.111)

Vertical dilution of precision = 1/Hzs3 (3.112)

We also obtain

RMS horizontal position error = /0% + 0% = 6.HDOP (3.113)
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RMS vertical error = oy = 6.VDOP (3.114)

RMS 3D error = \/ 0} + oy + 0y = /02 + 62 + 62 = a.PDOP  (3.115)

It is interesting to note that DOP is a function of the satellite-user geometry
only, and no observations are necessary in order to calculate DOP. It can therefore
be computed in advance using almanac or satellite orbital data for planning of the
trajectory data collection. The satellite-user geometry improves as the number of
available satellites increases, which increases the positional accuracy except when
an additional satellite gives a very poor range measurement.

3.8.4 Doppler Measurements

The frequency observed by the GPS receiver differs from the L1 or L2 due to the
Doppler shift caused by the relative motion of the satellite and the receiver. This is
measured in the carrier tracking loop of a GPS receiver. The Doppler shift is the
projection of the relative velocities onto the line of sight unit vector scaled by the
transmitted frequency divided by the speed of light (Misra and Enge 2001); i.e.

{(v" = v).1"}L

D" = 3.116
. (3.116)
where
v = v s the velocity of the mth satellite in the e-frame
V= [V, vy, v is the true velocity of the receiver in the e-frame
) =y, (=) !
1" = — = — [1;1, 1, 1;”} is the true line of sight unit vector
V) =) ) !

from the mth satellite to the receiver
L is the satellite transmitted frequency
¢ is the speed of light

Given the Doppler effect, the pseudo-range rate p™ can be computed as

DITLC
= — 3.117
P 7 ( )
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3.8.5 Velocity Estimation from Doppler

The velocity can be estimated from the pseudo-range rate (Parkinson et al. 1996),
starting by differentiating Eq. (3.77) to obtain

p" ="+ cot, + &y (3.118)
The true pseudo-range rate is expressed as
=10 = V) A vy = V) + 1 (v, =) (3.119)
and substituting this into Eq. (3.118) gives
P = 1 (e = V) A+ vy = V) 1T (v, = V) + oty + &)

= 17 = V) + 1 vy = v)) + 17 (v, = V') + ¢ty + & (3.120)

X

where
0t. is the receiver’s clock drift (sec/sec)
8;)" is the error in observation (meters/sec)

The term c¢dt, is the receiver clock drift in meters/sec and represented as d, in
subsequent equations.

Since we can obtain the velocity of the satellite from the data contained in the
ephemeris file, the known velocity terms can be transferred to the left-hand side

pm + ]lev;" + 1;’11/1" + 1?\);" = IT.VX + 1;1.Vy =+ 121.\12 +d, + 8:-: (3121)
and this can be written more compactly as

L R R

. (3.122)
pr=1"v+d +¢

where

Em — pm + lm.vm
and the line of sight unit vector 1" is obtained from the estimated position of the

user.
For M satellites, the pseudo-range rate measurements model can be written as

P! a1 )
2 2N\T 2
_ 1 \4 ¥
o= |’ _ (.) [d |7 (3.123)
S A;T : "Jaxi :
p Mx1 (1 ) 1 Mx4 81;’4 Mx1
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+E01 (3.124)
4x1

pM><l = Gux4

r

Assuming that the position of the receiver is known, we can find the velocity

and the clock drift [v,d,] " by minimizing

v _
LAZ = (GTG6)'G"p (3.125)
whose least squares solution is
v T —1 AT
p =(G'G) Gp (3.126)

The position estimate for the line of sight unit vector 1 for next epochs can be
estimated by using the velocity information.

In the above discussion, mathematical details of the velocity estimation were
presented assuming that the initial position of the receiver was known in advance,
but in practice the initial position of the receiver is usually unknown and therefore
its position and velocity are estimated simultaneously.

3.8.6 Position and Velocity Estimation

Position and velocity can be estimated simultaneously using the procedure below.
In fact this procedure is better, since it does not require projecting the position for
the next epoch as was done in the previous section.

The pseudo-range rate can be modeled as

Pl =10 (v = V) + 1;”.(vy — vT) + 17 (v, =) +d, + & (3.127)

and the estimated pseudo-range rate is

s m

_ m m m m m m
Prsr = Vpsr-(eest — V) + Ueer-(vy pst — V') + 1psr-(Vepst — V2') + dy gst
(3.128)
where vy gs7, Vy ST, Vo EsT are the estimated velocity components of the receiver in

the ECEF frame.
The error in the pseudo-range rate can then be expressed as

. m - m _ m m m
P = PEst = 1x,EST‘(vX — VuEsT) + 1y,EST~(Vy — VyEsT) + lz,EST‘(vZ — Ve EsT)+
dy — dy gst + 6;,"

(3.129)
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= (Us7)" (v = Visr) +dr — dy s + & (3.130)
5p" = (V)" .0v + od, + & (3.131)
where
op™ = p" = Pgsr
od, = d, — dr gst
T T
OV="V — Vg = [vx, Vy, Vz} — [vx_’EST, Vy EST, Vz,EST]

For M satellites, the linearized pseudo-range rate measurements model can be
written as

o! (gsr)” 1 %
op (Tsr) 1 [ 5V] &
op = = ; + (3.132)
-'M M T . 5d’ xt
o PV (Lgsr) [y 8/;74 Mx1
. v
OPprx1 = Guxa Sd +SQM><1 (3.133)
" 1ax1

Equations (3.87) for the pseudo-ranges and (3.132) for the pseudo-range rates
can be combined into a single model as

- - r = - ,_:l -
5p(‘ (llEST)T 1 O3><1 0 6,0
: : : : : ox :
opM _ (I%T)T I O3 O ob, N 824
op! 031 0 (llEST)T 1 év 8;1')
: ST od, |,
M ’
Lo Jomxr | O3 O (I%ST) U opes e |
(3.134)
Szamx1 = Ganxs0Ssx1 + &2 (3.135)
where
1T
[pu‘ '7p¢7 o pM]
= [0x, 0b,, OV, (3d]
T
_ [z M1 M
s = [6p7 PR 78/) s 8/7 e y 8p }
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(Igsr)” 1 O 0

03><] 0
T
(Lgsr) 1

[

N
(%)

03x1

Q¢
I

(3.136)

o

[ O O (1" 1

In the case of four or more satellites (M >4), the least squares solution to Eq.
(3.135) is

5%
ob,
oV
od,

38 = — (G"G)"'G"s2 (3.137)

Finally, the improved estimates of receiver’s position and clock bias are

X = XEST + 0X
R (3.138)
b = bgst + 0b
and for the velocity and clock drift
$=vesr +00 (3.139)

d, = d, st + 6d

If measurement weighting is available, then a weighted least squares solution is
used. Also, if a priori estimates have large errors then the least squares solution
will be iterated until the change in the estimate is sufficiently small.

3.9 Carrier Phase Positioning

Carrier phase measurements are much more precise than the code phase, but they
are ambiguous owing to integer ambiguities in the measurements. However, if the
integer ambiguities can be estimated the positioning accuracy can be considerably
improved. As various methods have been proposed to resolve these ambiguities, it
is appropriate to discuss carrier phase positioning. As discussed above, the carrier
phase measurements can be modeled as

® =r+cdt —cdty,— I+ T+ IN + &0 (3.140)

There is a subtle point here that must be mentioned: the geometric range r is not
the same for code and carrier due to the difference in the antenna phase center but
we shall neglect this in our treatment. There are some other error terms which are
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usually hard to estimate and may safely be ignored for medium accuracy. But for
applications needing higher accuracy these have to be included. By taking into
account the pertinent errors, Eq. (3.140) can be written as

O =r+c(ot, —ot;) = I+ T+ IN + c(At, + Aty) + A,g — Oy0) + Am + &g
(3.141)

where
At,,At;  are the equipment delays that occur at the receiver and the
satellite respectively (sec)
¢,0, ¢ are initial phases of the receiver and the satellite carrier (radians)
Am is the error due to multipath at the receiver and the satellite
(meters)

The equipment delay (also called the hardware delay) is due to the time it takes
for the electrical signal to pass from the signal generator (processor) to the antenna
phase center of the satellite, and in the case of the receiver from the antenna phase
center to the processor. It differs for the carrier and the code phase measurements
and also for L1 and L2. Similarly, the delay due to multipath is different for the
carrier phase and the code phase. Small errors like tidal effects and relativity have
still been neglected but these can also be modeled and removed.

Equation (3.141) contains a lot of nuisance parameters considering that we are
interested only in the measurements and the position coordinates contained in the
geometric ranges. We should either estimate the nuisance parameters or eliminate
them by relative positioning techniques. The objective of relative positioning is to
eliminate the nuisance parameters and simplify the equations that relate the carrier
phase measurements to the position vector between the reference receivers and the
roving receiver.

3.9.1 Relative Positioning and Linear Combinations
of GPS Observables

Some of the errors which impair the accuracy of GPS exhibit certain correlations
amongst signals received at several stations from several satellites at the same
epochs. Linear combinations of these measurements are formed to take advantage
of these correlations and improve the accuracy of the relative positions. In relative
positioning, the difference of carrier or code measurements taken at two receivers
allows the effect of errors that are common to the measurements to be reduced or
removed.

Here it may be noted that there is a difference between relative and differential
positioning. In differential positioning the errors are transmitted to rover stations
and in relative positioning the measurements are conveyed to the rover. In many
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applications relative positioning suffices (e.g. formation flying) but knowledge of
the position of the reference stations is required for absolute positioning.

3.9.2 Relative Positioning

In relative positioning, the user’s position is determined with respect to a known
reference point or base station. Unlike differential positioning where the reference
station broadcasts the corrections in the pseudo-ranges, in relative positioning the
reference receiver broadcasts the time-tagged measurements of the pseudo-ranges.
The user forms the difference of its own pseudo-ranges with those received from
the reference station and then estimates its position relative to that. Basically, in
relative positioning the vector between the user and the reference station (called
the baseline vector, or just the baseline) is determined. If we know the coordinates
of the reference receiver, the absolute position of the user can also be obtained.

As illustrated in Fig. 3.22, for a reference receiver j and a user receiver (or
rover) [ we can write

X; = X; + Xj; (3.142)
Therefore, the baseline vector becomes
Xj,' =X; — Xj (3143)
and hence
Xi — Xj A)Cj'
Xj,' = yi — y_,' = iji (3144)
Zi— 3 Ayji

We can use code or phase ranges to obtain the relative position of the user. As
phase ranges are more accurate they are usually used for relative positioning. For
this purpose, we can form linear combinations of these ranges in order to reduce or
remove errors that are common to the measurements. These combinations are
formed by taking single, double, or triple differences of the measurements. They
can be across satellites, receiver or time, or indeed any of their combinations.

3.9.3 Linear Combinations of GPS Measurements

We have seen that in the measurement equations for code and carrier phase, there
are many nuisance parameters in addition to the position coordinates buried in the
geometric range r. These nuisance parameters are ionospheric delay, tropospheric
delay, satellite and receiver clock errors, ephemeris errors and integer ambiguities.
We need to either significantly reduce or completely eliminate these. One way to
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Fig. 3.22 An illustration of
relative positioning. Relative
positioning

accomplish this is by taking linear combinations of the measurements from a fixed
known receiver (called either a reference station or a base station) and the moving
receiver (a rover) whose coordinates are to be calculated. Linear combinations are
formed by taking the difference of the measurements between receivers, satellites
and epochs or any of their combinations. In this relative positioning technique, the
known parameters are the satellite coordinates (from an ephemeris), the reference
stations coordinates, and the pseudo-ranges. The only unknown is the rover whose
coordinates are determined either absolutely or in relation to the base station. The
most common linear combinations are

a. Between receiver single difference (RSD)

According to Fig. 3.22, two RSDs can be written as

RSDjj = pi" = pj'

) 0o (3.145)
RSDj; = pi — p;
b. Between satellite single difference (SSD)
Similarly, two SSDs can be expressed as
SSDIM™ = M i
B (3.146)

SSDF™ = pj" = pj
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c. Double difference (DD)

This is difference of the receiver (or satellite) single difference

DD)}" = RSD/} — RSD);

(3.147)
DD} = SSD{™ — SSD;™
d. Triple difference (TD)
This is the double difference at two different epochs
TD(1);" = DD;"(1;) — DD}™ (1,
(®); i (12) i (1) (3.148)

TD(t)?;." = D;’;’l(tz) — DDZ’;‘(tl)

RSD removes the receiver clock bias and mitigates the ionospheric errors, and
DD further removes the ephemeris and satellite clock errors. TD also removes the
integer ambiguities. Usually DD is used for carrier phase positioning because it
removes most of the errors but it requires at least one base station. Let’s examine
these linear combinations in more detail.

3.9.3.1 Receiver Single Difference

Suppose two receivers i and j are tracking a certain satellite m. The carrier phase
measurements from satellite k at receivers i and j would be modeled as

O (1) =" (1) + c[06,(1r) — 6" (13)] — I + T" + IN" + c[Aty(1r) + AL (1) ] +
A (10) = & (10)] + Aml! + e
(3.149)

O (1) =r (1) + c[06(t)) — 08 (1)) — I + T1" + AN" + c[ Ay (1) + AL (17)] +
A $l(t0) = ¢ (10)] + Aml" + o
(3.150)

Ideally, these two measurements should be simultaneous but due to different clock
errors they are generally not. Therefore the time arguments #;,t for the two
receivers are different. There will also be a different travel time from the reference
receiver to the user receiver. However, with continuous receiver clock updates the
measurements can be treated as simultaneous and the time argument is deleted.
Furthermore, measurements of the reference station may be extrapolated to match
the epoch of the user’s receiver.
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OF ="+ (0 — St) — I" + T/ + NI + c (AL + AL") + A[L(to) — 7' (1o)]
+ Amj" + &g,

(3.151)

O =7 4 c(6t] — 567) = I' + T + AN + c(At] + AL') + 2[$](10) — ¢} (10)]
+ Am" + &g,

(3.152)

The difference between these two measurements is
o = = — b fe(or] — o) —e(or — o)} — {r — 1 b+
{T;" - T;"} + {/lem - AN}"} + {c(At + AP — c(Ad + AP b+
{2[100) — 6 (10)) — 2[9(10) — @ (10)] } + { Ao — A} + Lty — et}
(3.153)

The common satellite errors, which are the clock error, the satellite equipment
delay, and the satellite’s initial phase offset are all canceled out. We can combine
the remaining difference of similar terms and denote them as

-y - ay N = Np -

= A = At — Af

o' = ot} — o, ¢} (o) = ¢1(t0) — P (to) (3.154)
= -1 Amii = Am" — Am!

T =1"—-T" Eqji = Eoj —

Substituting the above terms into Eq. (3.153) yields
O =7+ ot — If + T + AN + A8 + ¢l (o) + Amfy + &g (3.155)

The ambiguity difference is still integer (and can be positive or negative). The
measurement noise difference agﬁ is larger by a factor of /2 than either of the
individual noise terms. The common part of the satellite ephemeris errors (hidden in
the geometric ranges r) is also eliminated. The common part is the difference in the
projection of ephemeris error vector onto the ranges r; and 7;. The ionospheric and
tropospheric difference terms depend upon the length of the baseline, and for short
baselines tend to zero as compared to the measurement and multipath errors. Taking
account of these factors and ignoring equipment delay, initial phase offset and
multipath, Eq. (3.155) can be simplified for a short baseline as

O = 7 oot NG+ el (3.156)
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3.9.3.2 Double difference

Taking the RSD from another satellite n, we get an equation similar to (3.155)
O =1+ St — It + T+ AN + A + (o) + Amly + €, (3.157)
and the difference between Eqs. (3.157) and (3.155) is
O — D = [r;?; +cot) — I + Tji' + AN} + cA8) + ¢ (to) + Amj + ngl} -
(74 O = I3+ T 2N+ !+ @ (1) + A+ |
(3.158)

The difference terms for the clocks offset, equipment delays and initial offsets
of the receiver have all canceled out. Combining the remaining terms gives

D = [T N A - e (3.159)

It can be verified that the double difference formed by taking the difference
between satellite single difference (SSD) yields the same form as Eq. (3.159). For a
short baseline and a relatively clear site that has no reflecting objects, the double
difference terms relating to ionospheric, tropospheric terms and multipath reduce
to zero (as tropospheric delays differ for even short baselines, it is usually mod-
eled). Therefore, we obtain

Q" = ri" + AN + gy (3.160)

It is worth emphasizing that each term in (3.160) which has two subscripts and

two superscripts actually contains four terms, as follows

i = O — @ — @ + D}
=

(3.161)
N =N =N} = NI N,

mn __ .m n m n
epji = Epj — Eoj — Eai T Loy

3.9.3.3 Triple difference

The integer ambiguity terms are the nuisance parameters that still linger on both
single and double differenced equations. These can also be eliminate. The integer
ambiguities remain fixed as long as the various receivers maintain the carrier lock
(i.e. there is no cycle slip), making them time independent. In triple difference we
form the difference between the DD at two measurement epochs to eliminate these
time independent parameters. For two measurement epochs #; and 7,, the DD
equations for these epochs can be written as
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(1) = " 00) + AN+ o)
(D;?n(lg) an( )+ANmn+8q)ji( 2)

JU

(3.162)

and the triple difference between these epochs is

i (12) — D" (1) = 1" (02) + ANG" + egyi(12) — [ ") + AN + ey (1)
(3.163)
(I);';n(tzl) = rj’?”(m) + 8$7i(l21) (3.164)

It should be kept in mind that each term in this equation comprises eight terms
as follows

O (1) = O (1) — (1) = D' (1) — ¥} (1) — B (1) + @F (12)
= @7(t) + @F (1) + @' (1) — D (11)
ri"(tr) =" () —rj"(h) =r"(t) —r} () — () + 1} (2)
—ri'(t) + () + () —ri(n)
egyi(t1) = egji(t2) — eqyp(t1) =eq;(t) — eg;(t2) — eg;(12) + gy (2)
—eg;(t) + eg;(t1) + &g (t1) — &g (t1)
(3.165)

Equation (3.164) for the triple difference does not contain the ambiguity terms,
which is a great bonus. However, the dilution of precision will be large and the
position estimates are usually less accurate than when using the single or double
differences. The triple difference approach is helpful in finding the discontinuities
in carrier tracking, and can therefore identify the cycle slips.

3.9.3.4 Notes on RSD and DD Linear Combinations

In RSD and DD the ambiguity term is still an integer and we must estimate it for each
satellite-receiver pair before we can estimate the baseline vector. In the case of RSD,
for M visible satellites we have three baseline coordinates, receiver clock bias and
M — 1 integer ambiguity parameters that are unknown. Hence the total number of
unknownsis4 + M — 1 = M + 3 for the first epoch. As the ambiguities remain fixed
until a cycle slip occurs, each new epoch will add only one unknown: the receiver’s
clock bias. Thus by assuming four visible satellites and a stationary user, we need at
least three epochs to solve the nine unknowns: three ambiguities, three coordinates
and three clock biases. For a similar configuration with DD the total number of
unknowns is M + 2 for the first epoch, and subsequent epochs do not add unknowns.
So we need at least two epochs to calculate six unknowns. In kinematic positioning
the user’s coordinates change for each epoch and for SD each additional epoch adds
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four unknowns, with the result that we need at least six satellites and five epochs to
get a solution. Similarly, for DD we need a minimum of five satellites and they should
be tracked for at least four epochs. Therefore, in kinematic positioning a different
approach is used in which ambiguities are fixed beforehand (e.g. with initialization)
so that the solution simplifies to a code phase model.

3.9.4 Position Estimation from Carrier Phase Measurements

Usually carrier phase measurements are utilized in relative positioning where DD
is used to cancel out or mitigate the nuisance parameters. The details are beyond
the scope of this book, so for these the reader is referred to (Gleason and Gebre-
Egziabher 2009). To illustrate carrier phase positioning, a linear model for point
positioning based on the carrier phase measurements (Hofmann-Wellenhof et al.
2008; Misra and Enge 2001; Leick 2004) is presented.

As shown earlier, the carrier phase measurement equation can be written as

O =r+coty—coty,—1+T+ AN + &g (3.166)

It may be noted that because we are dealing with point positioning (not relative
positioning) we have ignored equipment delay, initial phase offsets and multipath
and their effects can either be modeled or ignored. After compensating for satellite
clock bias, ionospheric and tropospheric errors, and introducing time epoch 7 and a
superscript for the mth satellite we can write the corrected pseudo-range as

D"(1) = r"(t) + cot, (1) + AN™ + eg(t) (3.167)

where the geometric range is the actual distance between the satellite and the user,
which is non-linear and given as

—\/x—xm + =y +(z—2)° (3.168)
where
x = [x,y, z]T is the receiver position in ECEF frame

x” = [x",y",z"]" is theposition of the m™ satellite in ECEF frame.
By a similar mathematical treatment to that in Sect. 3.8.2, we can linearize Eq.

(3.168) around the current best estimate Xgsy = [XgsT, VESTS zEST]T as

= \/ (xgsT — Xm + (Yesr — y’")2 + (zest — Z’”)2+
(xgsr — x™)(x — XEST) + (Vesr = Y")(y — yesr) + (zest — ") (2 — zesr)

\/(XEST - X’")z + (Yesr — y’")2 + (zesT — Zm)2

(3.169)
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The estimated geometric range and the receiver’s position can be defined as

esy = \/(XEST - X’")2 + (yest — y’")2 + (zgsT — Z’”)2 (3.170)
X =Xgsy + 0x, y = ygst + 0y, 2 = Zgsr + 02 (3.171)

Substituting the above definitions into Eq. (3.169) gives

(xEST - xm)éx + (yEsr - y”’)éy + (ZEST — z’")éz

m __
r= rlgST + m
EST

(3.172)

and inserting this into Eq. (3.167) provides

[xest — X" (1)]0x + [yesr — Y™ (1)]0y + [zesr — 2"(1)]0z

(Dm(t) :erST(I) + rgST([)

+ cot,. (1) + AN™ + &g (1)
(3.173)

By transferring the known quantities over to the left-hand side and defining
b, = ¢t (1)
[Xesr — X" (1)])0x 4 [yest — Y™ (1)]0y + [zest — 2" (1)]0z
risr(7)

(1)~ 1) =

+ b, (t) + AN™ + £2(1)
(3.174)

The estimated line of sight unit vector from the mth satellite to the receiver can
be introduced as

[(xest — X™), (vest — ¥™), (zest — 2")]"

T = (3.175)
\/(XEST —xm)* + (vgst — y")* + (zpst — 2")’
enabling us to rewrite Eq. (3.174) as
D" (1) — 1 (1) = (Visr) 0% + by(£) + AN + €l (1) (3.176)

Notice that in comparison to the pseudo-range, the number of unknowns has
increased by the integer ambiguities.
By defining y" = @"(r) — rii; (1) and x = [0x, dy, 6z, N", b,(t)] we get

ym:[lzq,EST Wesr gy 4 1]X+8$(f) (3.177)
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and by further defining a = [ IWgsr  1gsr ey 4 1] we get

y' =ax+¢gg(?) (3.178)
and for multiple satellites

y" = Ax + €5 (¢) (3.179)

where m =1,2,...,M.
For four visible satellites, the terms in this equation can be written as

@;Erg — r%STEt;
D (1) — rggp(t
y= 3.180
@(1) ~ ri5y 1) (3.180)
O (1) — rggr(t)
)lr,EST(t) 1y17EST(t) 1z7EST(t) 20 0 0 1
12,60(t) 12pep(t) Pp(t) 0 2 0 0 1
A= x,EST y,EST z,EST 3.181
li,EST(t) IS,EST(I) 1§,EST(I) 00 4 01 ( )
]iEST(t) leST(t) Bpr() 0 0 0 4 1
x = [0x, 8y, 6z, N',N*, N>, N* b, (1)]" (3.182)

In the above system of equations, there are eight known values and only four
equations that cannot be solved for a single epoch. For a stationary user, another
epoch will add a further receiver clock bias term, yielding eight equations and nine
unknowns, so we need at least three epochs to obtain a dozen equations with ten
unknowns that can be solved by using the least squares approach. In that case the
dimensions of matrix A will be 12 x 10.

For a moving user, each epoch will introduce four unknowns (i.e. three for the
user’s coordinates and one for the receiver’s clock bias) and we need at least five
satellites and five epochs to obtain 25 equations with 25 unknowns which can be
resolved.

3.10 Integer Ambiguity

With GPS, positioning accuracy at meter to centimeter level is possible depending
on the type of measurements and the methods used. It is widely accepted that
the carrier phase observable is the most precise measurement, with a resolution of
0.2-1 mm. Use of the carrier phase measurements with DGPS enables centimeter
level positioning accuracy. This is only possible when the IAs are accurately
resolved to their integer values. Efficient resolution of A requires that the errors in
the range measurements be made as small as possible. As a rule of thumb, instant
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ambiguity resolution (AR) can be achieved if the range measurements are accurate
to half the wavelength of the ambiguities being resolved. For the kinematic
applications, this is required to be done as rapidly as possible. As a result of
ongoing research many methods have been developed to resolve IA. These include
the ambiguity function method (AFM) (Hofmann-Wellenhof et al. 2008), least
squares ambiguity search technique (LSAST) (Counselman and Gourevitch 1981),
fast ambiguity search filter (FASF) (Hatch 1990), and least squares ambiguity
decorrelation adjustment (LAMBDA) (Chen 1994). The difficulty of resolving IA
increases with the length of the baseline between the base and rover receivers
because the measurements become decorrelated and errors increase.

Once the initial IA has been resolved, it stays constant and GPS can keep track
of the partial phase as well as the total number of cycles that have passed since the
GPS began to track the satellite. But if the signal becomes weaker or is obstructed
and the tracking is lost (a condition known as cycle slip) then the receiver loses its
count of the number of complete cycles and must derive IA afresh. If this occurs
while using a long baseline the residual measurement errors increase, as does the
uncertainty in the GPS position. If these errors can be mitigated or the estimate of
the position can be improved, then IA can be resolved relatively quickly and more
reliably.

The detail of actual AR methods is beyond the scope of this book; however, a
general summary of the steps involved will be given. For a more detailed account
the reader should consult a dedicated text such as (Teunissen and Tiberius 1994).
Usually DD carrier phase measurements are used for relative positioning, as they
remove or mitigate most of the nuisance parameters. Hence it is the ambiguity in
the DD measurements that must be resolved.

3.10.1 Integer Ambiguity Resolution

In general, for ambiguity resolution (AR) the GNSS data processing is performed
in three different steps (Hofmann-Wellenhof et al. 2008; Kleusberg and Teunissen
1998; Leick 2004; Misra and Enge 2001).
Step I: Obtaining the float solution

In this step no distinction is made between ambiguities and other parameters
(e.g. baseline coordinates and atmospheric delays). Parameters are estimated
without taking into account the special integer nature of the ambiguities. This
solution is often referred to as the float solution. The parameters are estimated
using either a least squares algorithm or a Kalman filter because the inconsis-
tencies in the data are due to forms of noise. It may be noted that the integerness of
the ambiguities has not yet been exploited. After the fixed ambiguities are found, it
is important to determine whether they are the proper values or not. The process of
assessing the correctness of integer values is called ambiguity validation.
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Step II: Obtaining fixed ambiguities

In the second step, the integer ambiguities are estimated from the float ambi-
guities by exploiting their integer nature. There are numerous ways of finding the
integer ambiguities. These range from simple rounding schemes to advanced
methods that use clever integer search algorithms. One popular and well
documented method is LAMBDA.

Step III: Obtaining the fixed solution

Finally, the estimated IA values are used to improve the float solution of the
first-step where other parameters (e.g. baseline coordinates and atmospheric
delays) are recomputed to obtain better accuracy. This final solution is usually
called the fixed solution because it is much more precise than the float solution.

3.10.2 Ambiguity Dilution of Precision

The covariance matrix of the least squares ambiguities provides insight into their
stochastic nature. However, it is desired to have a simpler quantity which sums up
the important characteristics of these ambiguities. For example, DOP measures are
used to show how the satellite-receiver geometry affects a specific parameter (e.g.
vertical position, horizontal position, time) with scalar quantities which are simple
functions of the relevant variance—covariance matrices. In (Joosten and Tiberius
2000) Teunissen proposed using the geometric mean of the ambiguity conditional
standard deviations as a measure of dilution of precision and this is referred to as
the ambiguity DOP (ADOP).

The DOP measures utilized for GPS positioning are based on the trace of the
relevant variance covariance matrix, but the same could not be done because (1)
the trace does not account for the invariance properties and (2) it uses only the
diagonal entries of the variance—covariance matrix. Hence the ADOP parameter is
based on the determinant of the covariance matrix Ay and is given as

1/n
ADOP = \/|Ag|  (cycle) (3.183)

where 7 is the order of ambiguity covariance matrix. ADOP is invariant under
volume, preserving ambiguity transformations and choice of reference satellite for
DD, so it can be used to compute the volume of the ambiguity search space. For
detailed properties of ADOP the reader is referred to (Teunissen 1997).
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Chapter 4
Inertial Navigation System

An inertial navigation system is an autonomous system that provides information
about position, velocity and attitude based on the measurements by inertial sensors
and applying the dead reckoning (DR) principle. DR is the determination of the
vehicle’s current position from knowledge of its previous position and the sensors
measuring accelerations and angular rotations. Given specified initial conditions,
one integration of acceleration provides velocity and a second integration gives
position. Angular rates are processed to give the attitude of the moving platform in
terms of pitch, roll and yaw, and also to transform navigation parameters from the
body frame to the local-level frame.

4.1 Principle of Inertial Navigation

The principle of inertial navigation is based upon Newton’s first law of motion,
which states

A body continues in its state of rest, or uniform motion in a straight line, unless it is
compelled to change that state by forces impressed on it.

Put simply, this law says that a body at rest tends to remain at rest and a body in
motion tends to remain in motion unless acted upon by an outside force. The full
meaning of this is not easily visualized in the Earth’s reference frame. For it to
apply, the body must be in an inertial reference frame (a non-rotating frame in
which there are no inherent forces such as gravity).

Newton’s second law of motion shares importance with his first law in the
inertial navigation system, and states

Acceleration is proportional to the resultant force and is in the same direction as this force.

A. Noureldin et al., Fundamentals of Inertial Navigation, Satellite-based 125
Positioning and their Integration, DOI: 10.1007/978-3-642-30466-8_4,
© Springer-Verlag Berlin Heidelberg 2013
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This can be expressed mathematically as
F =ma (4.1)

where
F s the force
m is the mass of the body
a s the acceleration of the body due to the applied force F.

The physical quantity pertinent to an inertial navigation system is acceleration,
because both velocity v and displacement s can be derived from acceleration by the
process of integration. Conversely, velocity and acceleration can be estimated by
differentiation from displacement, written mathematically

ds dv  d’s

"Ta T a ae

Differentiation is the process of determining how one physical quantity varies

with respect to another. Integration, the inverse of differentiation, is the process of

summing all rate-of-change that occurs within the limits being investigated, which
can be written mathematically as

y= /adt;s: /vdt: //adtdt (4.3)

An inertial navigation system is an integrating system consisting of a detector
and an integrator. It detects acceleration, integrates this to derive the velocity and
then integrates that to derive the displacement. By measuring the acceleration of a
vehicle in an inertial frame of reference and then transforming it to the navigation
frame and integrating with respect to time, it is possible to obtain velocity, attitude
and position differences. Measurement of the vehicle’s rotation is needed for the
transformation from the inertial to the navigation frame and for the computation of
the attitude of the vehicle.

(4.2)

4.2 Physical Implementation of an INS

There are two implementation approaches to an INS: (1) a stable platform system
also known as a gimbaled system, and (2) a strapdown system. The components of
these systems are shown in Fig. 4.1. In the stable platform, the inertial sensors are
mounted on a set of gimbals such that the platform always remains aligned with the
navigation frame. This is done by having a set of torque motors rotate the platform in
response to rotations sensed by the gyroscopes. Thus the output of the accelerom-
eters is directly integrated for velocity and position in the navigation frame. Since
gimbaled systems are mechanically complex and expensive, their use is limited.
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Inner
gimbal | Vehicle

(b) body

(a) Oumruzi;‘:ﬁ:] ::;;r:;?:eu o /‘ —’ Accelerometer (l Gyroscope
Fig. 4.1 Arrangement of the components of a gimbaled IMU (lef) and a strapdown IMU (right)

Table 4.1 Comparison of gimbaled platform and strapdown navigation systems

Characteristics Strapdown systems Gimbaled systems

Size Relatively small Bigger

Weight Relatively lighter Heavy

Performance  High accuracy Superior performance

Robustness Highly reliable, immune to shocks  High reliability, low immunity to shocks
and vibrations and vibrations

Advances in electronics gave rise to strapdown systems. In these, the inertial
sensors are rigidly mounted onto the body of the moving platform and the gimbals
are replaced by a computer that simulates the rotation of the platform by software
frame transformation. Rotation rates measured by the gyroscopes are applied to
continuously update the transformation between the body and navigation frames.
The accelerometer measurements are then passed through this transformation to
obtain the acceleration in the navigation frame. Strapdown systems are favored for
their reliability, flexibility, low power usage, being lightweight and less expensive
than stable platforms. The transition to strapdown systems was facilitated by the
introduction of optical gyros to replace rotor gyros, and by the rapid development
of the processor technology required to perform the computations. Table 4.1 gives
a comparison of the major characteristics of the two systems.

An INS can be thought of as consisting of three principal modules: an inertial
measurement unit (IMU), a pre-processing unit, and a mechanization module. An
IMU uses three mutually orthogonal accelerometers and three mutually orthogonal
gyroscopes. The signals are pre-processed by some form of filtering to eliminate
disturbances prior to the mechanization algorithm which converts the signals into
positional and attitude information. The three major modules of an INS are shown
in Fig. 4.2.

4.3 Inertial Measurement Unit

The measurements of the acceleration and the rotation of the vehicle are made by a
suite of inertial sensors mounted in a unit called the inertial measurement unit
(IMU). This holds two orthogonal sensor triads, one with three accelerometers and
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Fig. 4.2 The principal modules of an inertial navigation system
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Fig. 4.3 The components of a typical inertial measurement unit (IMU)

the other with three gyroscopes. Accelerometers measure linear motion in three
mutually orthogonal directions, whereas gyroscopes measure angular motion in
three mutually orthogonal directions. Nominally, the axes of these two triads are
parallel, sharing the origin of the accelerometer triad. The sensor axes are fixed in
the body of the IMU, and are therefore called the body axes or body frame. Apart
from the inertial sensors, the IMU also contains related electronics to perform self-
calibration, to sample the inertial sensor readings and then to convert them into the
appropriate form for the navigation equipment and algorithms. Figure 4.3 shows
the components of a typical IMU.

4.4 Inertial Sensors

A brief description of the two main kinds of inertial sensors, accelerometers and
gyroscopes, now follows.
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Fig. 44 a An accelerometer
in the null position with no
force acting on it, b the same
accelerometer measuring a
linear acceleration of the
vehicle in the positive
direction (to the right)

(b)

4.4.1 Accelerometers

An accelerometer consists of a proof mass, m, connected to a case by a pair of
springs as shown in Fig. 4.4. In this case the sensitive axis of the accelerometer is
along the spring in the horizontal axis. Acceleration will displace the proof mass
from its equilibrium position, with the amount of displacement proportional to the
acceleration. The displacement from the equilibrium position is sensed by a pick-
off and is then scaled to provide an indication of acceleration along this axis. The
equilibrium position is calibrated for zero acceleration. Acceleration to the right
will cause the proof mass to move left in relation to the case and (as shown by the
scale) indicates positive acceleration.

If the accelerometer is stood on a bench with its sensitive axis vertical in the
presence of a gravitational field, the proof mass will be displaced downward with
respect to the case, indicating positive acceleration. The fact that the gravitational
acceleration is downward, in the same direction as the displacement as shown in
Fig. 4.5, is sometimes a cause of confusion for the beginners in navigation.

The explanation for this lies in the equivalence principle, according to which, in
the terrestrial environment it is not possible to separate inertia and navigation by
the accelerometer measurement in a single point. Therefore, the output of an
accelerometer due to a gravitational field is the negative of the field acceleration.
The output of an accelerometer is called the specific force, and is given by

f=a-g (4.4)

where
f 1is the specific force
a is the acceleration with respect to the inertial frame
g s the gravitational acceleration which is +9.8 m/s”.
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Fig. 4.5 An accelerometer
resting on a bench with
gravitational acceleration
acting on it

Fig. 4.6 An accelerometer
resting on a bench where

reaction to the gravitational
acceleration is acting on it

4 Inertial Navigation System

g Gravitational
acceleration

g Reacthn to
& gravitational
acceleration

It is this which causes confusion. The easy way to remember this relation is to
think of one of two cases. If the accelerometer is sitting on a bench it is at rest so
acceleration a is zero. The force on the accelerometer is the force of reaction of the
bench against the case, which is the negative of g along the positive (upward)
direction and therefore causes the mass to move downward (Fig. 4.6).

Or imagine dropping the accelerometer in a vacuum. In this case the specific
force read by the accelerometer f is zero and the actual acceleration is a = g. To
navigate with respect to the inertial frame we need a, therefore in the navigation
equations we convert the output of an accelerometer from f to a by adding g.



4.4 Inertial Sensors 131

4.4.1.1 Accelerometer Measurements

An accelerometer measures translational acceleration (less the gravity component)
along its sensitive axis typically by sensing the motion of a proof mass relative to
the case. From Eq. (4.4) the output of an accelerometer triad is

f=a—g (4.5)

where f is the specific force vector, a is the acceleration vector of the body, and g is
the gravitational vector. The acceleration a can be expressed as the double
derivative of the position vector r, as

d*r

a—= W ‘: r (46)

The gravitational field vector was earlier shown to be related to the gravity
vector as

g =g + QieQier (47)

where Q. is the skew-symmetric matrix representing the rotation of the Earth in
the inertial frame.
Substituting Eqs. (4.6) and (4.7) into Eq. (4.5) provides
d*r

f= P '—g — Qe Qer (4.8)

i

4.4.2 Gyroscopes

To fully describe the motion of a body in 3-D space, rotational motion as well as
translational motion must be measured. Sensors which measure angular rates with
respect to an inertial frame of reference are called gyroscopes. If the angular rates
are mathematically integrated this will provide the change in angle with respect to
an initial reference angle. Traditionally, these rotational measurements are made
using the angular momentum of a spinning rotor. The gyroscopes either output
angular rate or attitude depending upon whether they are of the rate sensing or rate
integrating type. It is customary to use the word gyro as a short form of the word
gyroscope, so in the ensuing treatment these words are used interchangeably.

4.4.2.1 Gyroscope Measurements

Gyros measure the angular rate of a body with respect to the navigation frame, the
rotation of the navigation frame with respect to the Earth-fixed frame (as it traces
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the curvature of the Earth), and the rotation of the Earth as it spins on its axis with
respect to inertial space. These quantities are all expressed in the body frame and
can be given as

where
wl.bb is the rotation rate of the body with respect to the i-frame
wb, is the rotation rate of the body with respect to the navigation
frame (also referred to as the n-frame)
b is the rotation rate of the navigation frame with respect to the
e-frame
w? s the rotation rate of the Earth with respect to the i-frame.

Traditional gyroscopes were mechanical and based on angular momentum, but
more recent ones are based on either the Coriolis effect on a vibrating mass or the
Sagnac interference effect. There are three main types of gyroscope (Lawrence
1998): mechanical gyroscopes, optical gyroscopes, and micro-electro-mechanical
system (MEMS) gyroscopes.

4.5 Basics of Inertial Navigation

As mentioned before, inertial positioning is based on the simple principle that
differences in position can be determined by a double integration of acceleration,
sensed as a function of time in a well-defined and stable coordinate frame.
Mathematically, we can express this as

AP(t) = P(t) — P(t,) = //a(l)dtdl (4.10)

P(t,) is the initial point of the trajectory
a(t) is the acceleration along the trajectory obtained from inertial sensor
measurements in the coordinate frame prescribed by P(¢).

Next, we shall consider examples of navigation in one and two dimensions. An
overview of three-dimensional navigation will be given as a preview of the more
detailed treatment provided in later chapters.
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Fig. 4.7 One-dimensional (/D) inertial navigation, with the green cylinder depicting the
accelerometer

4.5.1 Navigation in One Dimension

To comprehend the full scale three-dimensional inertial system it is easier to start
with an example of a one-dimensional (1D) inertial system with a single axis. For
this, consider a vehicle moving in a straight line (i.e. in a fixed direction) as shown
in Fig. 4.7. To calculate its velocity and position, which are the only unknowns in
this case, we need only a single accelerometer mounted on the vehicle that has its
sensitive axis along the direction of motion.

With prior knowledge of the initial position y = yo and initial velocity v = v of
the vehicle, we are able to calculate its velocity v, at any time ¢ by integrating the
output of the accelerometer a, as follows

v = /aydt = ayt + v (4.11)

A second integration will yield the position y, of the vehicle at time ¢

)’t = /vtdt

V= / (ayt + vo)dt (4.12)

1
V= antz +vot+yo

4.5.2 Navigation in Two Dimensions

Extending the concept of navigation from the simple 1D example to 2D makes the
implementation more complex, mainly because we need the acceleration to be in
the same frame as the coordinate system. This requires the transformation of the
acceleration measured by the accelerometers from the INS frame to a stable Earth-
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Fig. 4.8 Inertial navigation using a 2D strapdown system

fixed coordinate frame. The stable Earth-fixed coordinate frame is often chosen as
a local-level frame that is referred to as the navigation frame. As stated earlier, the
transformation can either be established mechanically inside the INS by a stable
platform or numerically as in the strapdown concept.

In 2D it is necessary to monitor both the translational motion of the vehicle in
two directions and also its rotational motion, manifested as a change in direction.
Two accelerometers are required to detect the acceleration in two directions. One
gyroscope is required to detect the rotational motion in a direction perpendicular to
the plane of motion (for simplicity, we neglect the Earth’s rotation which would
also be detected). Based on the advantages provided by a strapdown system, from
this point on we shall limit our discussion to this type of system.

Strapdown systems mathematically transform the output of the accelerometers
attached to the body into the east-north coordinate system (the 2D form of ENU)
prior to performing the mathematical integration. These systems use the output of
the gyroscope attached to the body to continuously update the transformation that
is utilized to convert from body coordinates to east-north coordinates. Figure 4.8
shows the concept of inertial navigation in 2D as a platform makes turns, rotating
through an angle A (called the azimuth angle' ) measured from north. The blue
cylindrical objects depict the accelerometers, the gyroscope is a blue disc whose
sensitive axis depicted by a red dot points out of the paper towards the reader.

The accelerometers measure the acceleration of the body axes (X and Y) but we
need the acceleration in the east-north coordinate system. This is accomplished using
a transformation matrix which can be explained with the help of the diagram shown
in Fig. 4.9.

! The terms azimuth angle and yaw angle are both used to represent the deviation from north.
The difference lies in the direction of measurement: the azimuth angle is measured clockwise
from north whereas the yaw angle is measured counter clockwise.
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Fig. 4.9 Transformation from the vehicle frame (X-Y) to the navigation frame (E-N)

The vehicle axes X and Y make an angle A with the east and north directions
respectively, and the accelerations along east direction ag and the north direction
ay can be written as

ag = aysinA + a, cos A (4.13)
ay = ay,cosA — a,sinA (4.14)

which in the matrix form is

ag| | cosA sinA | |ay
{aN] N [—sinA COSA:| {ay} (4.13)
and can be expressed more compactly as

a" = Rja’ (4.16)

a" is the acceleration in the navigation frame (E-N)
a is the acceleration in the body frame measured by the accelerometers

R} is the rotation matrix which rotates a” to the navigation frame.

Given the accelerations in the navigation frame, we can integrate to obtain the
velocities

Vg = / (axcosA + ay sinA)dt
(4.17)
VN = / (ay CosA — a, sinA)dt
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and again to obtain the position in the navigation frame

Xg = // (axcosA + ay sinA)drdt
XN = // (ay CosA — a, sinA)dtdt

which in the matrix form is

XE \ _ cosA  sinA a,
(=)= [ (o ) (@ )aar o)

It may be noted that this whole process is dependent on knowing the azimuth
angle A which is calculated from the measurement by the gyroscope that monitors
angular changes of the orientation of the accelerometers from the local E-N frame.
These angular changes resolve the accelerometer measurements from the sensor
axes into the local E-N axes. This angular change also determines the direction of
motion of the moving platform defined by the azimuth angle, which is also known
as the heading angle because it is the deviation from the north direction in the E-N
plane. This is based on mathematically integrating the gyroscope angular velocity
measurements relative to the initial azimuth angle A, as follows

(4.18)

A(t) = /wgyl‘()dt+A(; (420)

In this equation it should be noted (as pointed out previously) that the Earth’s
rotation components have been neglected for simplicity and ease of understanding
of the basic concept of navigation.

4.6 Navigation in Three Dimensions

Inertial navigation in three dimensions (3D) requires three gyroscopes to measure
the attitude angles of the body (pitch, roll and azimuth) and three accelerometers to
measure accelerations along the three axes (in the east, north and up directions).
Another complication is the involvement of gravity in the accelerations. The total
acceleration encountered by the body is what is measured by the accelerometers, a
combination of the acceleration due to gravity and that due to all other external
forces. In order to remove the component of acceleration due to gravity, the tilt (or
attitude) of the accelerometer with respect to the local vertical must be supplied by
the gyroscope. At this point we will summarize the general concept of 3D inertial
navigation. The mathematical details will be presented in a later chapter, where
knowledge of 2D navigation will assist in understanding the subject.
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Fig. 4.10 The concept of
inertial navigation
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4.7 Overview of an Inertial Navigation System in 3D

The operation of an INS is based on processing the inertial sensor measurements
received at its input and yielding a set of navigation parameters (position, velocity
and attitude) of the moving platform at its output. In general these parameters are
determined in a certain reference frame. Figure 4.10 shows the general concept of
inertial navigation system.

The accelerometers are attached to the moving platform in order to monitor its
accelerations in three mutually orthogonal directions. The gyroscopes provide the
attitude (pitch, roll and azimuth) of the moving platform, and their measurements
are used to rotate the data from the accelerometers into the navigation frame. The
time integral of each acceleration component gives a continuous estimate of the
corresponding velocity component of the platform relative to the initial velocities.
A second integration yields the position with respect to a known starting point in a
given frame of reference. This principle is outlined in Fig. 4.11.

4.8 Theoretical Measurements of the Inertial Sensor

Before delving into the details of inertial navigation and the errors associated with
inertial sensors, it is important to look rather closely at the measurements taken by
the accelerometer and gyroscope triads. To assist understanding, we will deal with
the stationary and moving cases separately. Since the 1-frame is more commonly
used for everyday navigation (for reasons that will be described in Chap. 5) the
ENU frame (a type of I-frame) will be used in this section where required.

4.8.1 Theoretical Measurements of a Stationary Accelerometer
Triad

Consider the case where the accelerometer triad is stationary and level with the
ground, as shown in Fig. 4.12. Since the accelerometers are stationary the only
acting force will be the Earth’s gravity (or more correctly the reaction to the force
of gravity).
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Fig. 4.11 The general principle of inertial navigation in 3D

Fig. 4.12 An accelerometer z
triad that is level with the !
ground
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In this case the accelerometers pointing in the x, y directions will not measure
anything and the accelerometer in z direction measures the reaction to the gravity
vector g. The nominal measurements will therefore be

fi=0/,=0f.=¢

It should be noted that the actual measurements will also have some errors (as
we shall see later in Sect. 4.11.)

Now consider the case where the accelerometer triad is stationary but this time
has been rotated about its x-axis to make an angle p with the ground, as shown in
Fig. 4.13. As a consequence, the z-axis is inclined at the same angle from its
previous position denoted as a dotted line Z into a new position shown as a dotted
line Z'. As was defined in Chap. 2, the angle p is called the pitch angle. In this
orientation, the accelerometers in the y, z directions will each measure a portion of
the gravity vector.
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Fig. 4.13 An accelerometer i Z
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According to the geometry of the Fig. 4.13, the measurements of the x and y
accelerometers are

=0
fy = gsin(p) (4.21)
fo = gcos(p)

Now rotate the sensor triad about its y-axis so that its x-axis makes an angle
r with its previous position and its z-axis makes the same angle r with its previous
position Z'. This new orientation of the sensor triad is depicted in Fig. 4.14. In this
orientation, all the accelerometers will be measuring some part of the gravity
vector

fx = —gcos(p) sin(r)
fy = gsin(p) (4.22)
f: = gcos(p) cos(r)

4.8.2 Theoretical Measurements of a Stationary Gyro Triad

Now consider a gyroscope triad which is stationary on the Earth’s surface. Since
the triad is stationary, the only rotational motion acting on the sensors will be the
Earth’s rotation rate @,. Now assume that the body frame (in this case is the triad
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Fig. 4.14 An accelerometer 7 2
triad with the y-axis making K A Pitfh__D
an angle p (called pitch) with Qp\ AT TN

the level ground and with the
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itself) coincides with the navigation frame, which is the ENU local-level frame,
implying that

X — axis: east
y — axis: north

z — axis: upward

as shown in Fig. 4.15.

In this stationary case the gyroscope measurements depend on the latitude of
the gyro triad because they are merely measuring the Earth’s rotation rate. Their
measurements at the equator and at the poles will either be zero or w,, depending
on the direction of the sensitive axis of the gyroscope, but at any other point they
will measure a quantity that lies between these limiting values in accordance with
Table 4.2.

For an arbitrary point P on Earth and assuming that the b-frame is aligned with
navigation frame, the measurements of the gyroscopes depend on latitude. This is
depicted in Fig. 4.16.

According to Fig. 4.16, the components of the Earth’s rotation measured by the
gyro triad are

oy = 0y = 0, 8in(90 — @) = w, cos @ (4.23)

0wy = 0, = w, cos(90 — @) = w, sin ¢ (4.24)
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Fig. 4.15 Gyroscope triad at the Earth’s surface with its axis aligned with the ENU frame at
latitudes 0, 90° and an arbitrary latitude in that range

Gyroscope

Table 4.2 The gyroscope Equator Arbitrary position North pole
measurements at various
points on Earth Ox 0 0 0

wy , 0-w, 0

w, 0 0-w, W,

and it is also evident that w, = \/w% + w?,. Also, because the x-gyro is located in
a plane perpendicular to the Earth’s rotation axis, it will not sense part of the
Earth’s rotation rate and hence wg = 0.

These stationary measurements of the gyro triad represent the Earth’s rotation

interpreted in the local-level frame, denoted by the angular velocity vector a)fe as

WE 0
o, = |oy| =|w.cosp (4.25)
wy , sin ¢

4.8.3 Theoretical Measurements of a Moving Gyro Triad

On a moving platform using the local-level frame as a navigation frame, the gyro
triad will monitor two rotational components: the stationary part discussed in the
previous section and the non-stationary part caused by the change of orientation of
the local-level frame.
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Fig. 416 The geometry of the Earth’s surface with a gyroscope triad at an arbitrary point P
(in the ENU frame)

For simplicity, we will assume a vehicle that is moving with velocities v, and
v, in the east and north directions respectively, and that the b-frame is aligned
with the navigation frame. To generalize the measurement we will assume that the
vehicle is moving across the Earth at an altitude 4. In this case we will derive an
expression for the rate of change of latitude ¢ and longitudeA.

Figure 4.17 shows the navigation frame (I-frame) as it moves over the surface
of the Earth, viewed from the meridian plane.

The rate of change of the latitude ¢ is
ALN A(p

—=—X (R h 4.26

At At " (R +h) ( )

where ALy is the small segment of the arc covered during a small time Az.
When At approaches zero

Vo = @ X (Ry + h) (4.27)
v’l

H = 4.28

¢ Ry+h ( )

Similarly, Fig. 4.18 shows the same I-frame as viewed from the top (z-axis) of
the e-frame. Since the vehicle is moving in E-N, there will be a component of
velocity along the east direction as well, and we can compute the rate of change of
the longitude / as
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Fig. 4.17 A depiction of the LLF as it moves over the Earth’s surface, viewed from the meridian
plane

AL A
—=—x(R 4.2
A Atx( N + h)cos @ (4.29)
When At approaches zero
Ve = 4 X (Ry + h) cos ¢ (4.30)
R (4.31)

(Ry + h)cos ¢

and
h=v, (4.32)

The gyroscopes of a moving triad will measure the stationary component due to
the Earth’s rotation as well the non-stationary component caused by the rate of
change of latitude and longitude as the vehicle travels. According to the geometry
of Fig. 4.16, the angular velocity of the local-level frame as measured by the
gyroscope along the x-axis (the E direction) is
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Fig. 4.18 An illustration of the LLF over the Earth’s surface, viewed from the z-axis

Vn

== - 4.33
WE="0 Ry +h (4.33)
——

Non Stationary Component

and that for the y-axis (the N direction) is

N = 4.COS @ 4 ° cOS @ (4.34)
Substituting /. from Eq. (4.31) gives
oy = Le (cos @) + o cos
N (Ry + h) cos @ ¢ ?
_ Ve e (4.33)
wyN Ryt h + " COS ¢
N—— Stationary Component

Non Stationary Component

And the angular velocity measured by the gyroscope along the z-axis (the U

direction) is
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wy = Asin @ + o’ sin ¢

Ve . e
Wy =77——+———SINQ + " si@e
(Ry + h)cos ¢ (4.36)
Ve e
t
Wy RN+hango + " sin ¢

Stationary Component
Non Stationary Component
The angular velocity of the local-level frame with respect to the e-frame as

expressed in the local level frame !, consists of the non-stationary components

Vn
. o . - R% +h
Wy = | ON = |4cose | = Ry (4.37)
DU ] Non—stationarycomponent Asin @ Ve tan ¢
Ry +h

4.9 Notes on Inertial Sensor Measurements

In the examples above, it was assumed that the INS body frame was aligned with
the navigation frame. But for strapdown systems the b-frame can take essentially
any arbitrary direction because the accelerometers and gyros are strapped onto the
vehicle, which can adopt any orientation with respect to the navigation frame. The
establishment of the relationship between the INS body frame and the local level
(navigation) frame is usually done at the beginning of the survey by a stationary
alignment process. If continuous external velocity information is available
(e.g. from GPS) this can be done in kinematic mode. In this process, the initial
attitude angles (pitch, roll and azimuth) between the b-frame and the n-frame
require to be estimated. The attitude angles are used in generating the rotation
matrix Rj, for the transformation from the b-frame to the n-frame. The rotation
rates measured by the gyros are used to constantly update this matrix. Once this
transformation has been made, the process of integrating an acceleration mea-
surement twice will provide the IMU’s position difference relative to the initial
point.

However, as noted earlier, accelerometers cannot separate the total platform
acceleration from that caused by the presence of gravity. In fact, accelerometers
provide the sum of the platform’s acceleration in space and its acceleration due to
gravity. The accelerometer measurements must be combined with knowledge of
the ambient gravitational field in order to determine the acceleration of the vehicle
with respect to a non-inertial reference frame. Obviously, the inertial navigation is
fundamentally dependent on an accurate specification of the position, velocity and
attitude of the moving platform prior to the start of navigation.
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4.10 Inertial Sensor Performance Characteristics

To assess an inertial sensor for a particular application, numerous characteristics
must be considered. But first we will introduce some general terms.

a. Repeatability: The ability of a sensor to provide the same output for repeated
applications of the same input, presuming all other factors in the environment
remain constant. It refers to the maximum variation between repeated
measurements in the same conditions over multiple runs.

b. Stability: This is the ability of a sensor to provide the same output when
measuring a constant input over a period of time. It is defined for single run.

c. Drift: The term drift is often used to describe the change that occurs in a sensor
measurement when there is no change in the input. It is also used to describe the
change that occurs when there is zero input.

The performance characteristics of inertial sensors (either accelerometers or
gyroscopes) are usually described in terms of the following principal parameters:
sensor bias, sensor scale factor, noise and bandwidth. These parameters (among
others) will be discussed in the next section, which deals with the errors of inertial
Sensors.

4.11 Inertial Sensor Errors

Inertial sensors are prone to various errors which get more complex as the price of
the sensor goes down. The errors limit the accuracy to which the observables can
be measured. They are classified according to two broad categories of systematic
and stochastic (or random) errors.

4.11.1 Systematic Errors

These types of errors can be compensated by laboratory calibration, especially for
high-end sensors. Some common systematic sensor errors (Grewal et al. 2007) are
described below.

4.11.1.1 Systematic Bias Offset

This is a bias offset exhibited by all accelerometers and gyros. It is defined as the
output of the sensor when there is zero input, and is depicted in Fig. 4.19. It is
independent of the underlying specific force and angular rate.
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Fig. 4.19 Inertial sensor bias
error

Fig. 4.20 Inertial sensor
scale factor error
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This is the deviation of the input—output gradient from unity. The accelerometer
output error due to scale factor error is proportional to the true specific force along
the sensitive axis, whereas the gyroscope output error due to scale factor error is
proportional to the true angular rate about the sensitive axis. Figure 4.20 illustrates

the effect of the scale factor error.

4.11.1.3 Non-linearity

This is non-linearity between the input and the output, as shown in Fig. 4.21.

4.11.1.4 Scale Factor Sign Asymmetry

This is due to the different scale factors for positive and negative inputs, as shown

in Fig. 4.22.
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Fig. 4.21 Non-linearity of
inertial sensor output

Fig. 4.22 Scale factor sign
asymmetry

Fig. 4.23 Dead zone in the
output of an inertial sensor

4.11.1.5 Dead Zone
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This is the range where there is no output despite the presence of an input, and it is

shown in Fig. 4.23.
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Fig. 4.24 The error due to A
quantization of an analog +—True signal
signal to a digital signal

- Quantized output

Output

Time
4.11.1.6 Quantization Error

This type of error is present in all digital systems which generate their inputs from
analog signals, and is illustrated in Fig. 4.24.

4.11.1.7 Non-orthogonality Error

As the name suggests, non-orthogonality errors occur when any of the axes of the
sensor triad depart from mutual orthogonality. This usually happens at the time of
manufacturing. Figure 4.25 depicts the case of the z-axis being misaligned by an
angular offset of 0, from xz-plane and 0, from the yz-plane.

4.11.1.8 Misalignment Error

This is the result of misaligning the sensitive axes of the inertial sensors relative to
the orthogonal axes of the body frame as a result of mounting imperfections. This
is depicted in Fig. 4.26 for a sensor frame misalignment (using superscript ‘s’)
with respect to the body in a 2D system in which the axes are offset by the small
angle 60.

4.11.2 Random Errors

Inertial sensors suffer from a variety of random errors which are usually modeled
stochastically in order to mitigate their effects.
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Fig. 4.25 Sensor axes non-
orthogonality error

Fig. 4.26 Misalignment
error between the body frame
and the sensor axes
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If the bias offset changes for every run, this falls under the bias repeatability error,

and is called the run-to-run bias offset.

4.11.2.2 Bias Drift

This is a random change in bias over time during a run. It is the instability in the
sensor bias for a single run, and is called bias drift. It is illustrated in Fig. 4.27.
Bias is deterministic but bias drift is stochastic. One cause of bias drift is a change

in temperature.
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4.11.2.3 Scale Factor Instability

Random changes in scale factor during a single run. This is usually the result of
temperature variations. The scale factor can also change from run to run, but stay
constant during a particular run. This demonstrates the repeatability of the sensor
and is also called the run-to-run scale factor.

4.11.2.4 White Noise

This is an uncorrelated noise that is evenly distributed in all frequencies. This type
of noise can be caused by power sources but can also be intrinsic to semiconductor
devices. White noise is illustrated in Fig. 4.28.

4.11.3 Notes on Random Errors

Most manufacturers express the randomness associated with their inertial sensors
by the concept of random walk. The angle random walk (ARW) for gyroscopes is

usually specified in terms of deg/hr/v/Hz or deg/v/hr, and the velocity random
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Table 4.3 Performance specification of various KVH gyroscopes
KVH DSP-300 (single axis KVH DSP-3100 (single axis DSP-3400 single axis

FOG) FOG) FOG

Bandwidth 100 Hz 1000 Hz 1000 Hz

Bias drift  <3°/h <1°/h <1°/h

ARW <6°/h/vVHz <4°/h/\/Hz <4°/h/v/Hz
(0.1°/vh) (0.0667°/vh) (0.0667°/vh)

Scale <0.05% <0.05% <0.05%

factor

walk (VRW) for accelerometers is given in terms of ug/ VHz or m/s/v/hr. This
definition requires knowledge of the data rate (sampling frequency) at which the
sensor measurements are acquired by the data acquisition systems. The data rate is
related to the bandwidth of the sensor, which is another important parameter. The
inertial sensor bandwidth (specified in Hz) defines the range of frequencies that can
be monitored by the sensor. For example a gyroscope with 100 Hz bandwidth is
capable of monitoring the dynamics of frequencies less than 100 Hz. Any higher
frequencies will not be detected. For this, the sensor has to sample the signal with
at least double the maximum frequency; in this case 200 Hz. But whilst increasing
the data rate will broaden the bandwidth to facilitate monitoring higher frequency
dynamics, the measurements will also be noisier. Table 4.3 shows some important
performance specifications for various KVH gyroscopes (KVH 2012).

4.11.4 Mathematical Models of Inertial Sensor Errors

The performance of an INS can be described in terms of its two major groups of
sensors, namely gyroscopes and accelerometers.

4.11.4.1 Gyroscope Measurement Model

Gyroscopes are angular rate sensors that provide either angular rate or attitude
depending on whether they are of the rate sensing or rate integrating type.
Measurements of angular rate can be modeled by the observation equation

@), = o, + b, + Sof, + Noj, + ¢, (4.38)
where
&)f?b is the gyroscope measurement vector (deg/h)
oY s the true angular rate velocity vector (deg/h)
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b, is the gyroscope instrument bias vector (deg/h)
S, is a matrix representing the gyro scale factor
N, is a matrix representing non-orthogonality of the gyro triad
g, s a vector representing the gyro sensor noise (deg/h).

The matrices N, and Siare given as

where 0 (

1 Hg.xy tc)g.,)cz
N, = HgA,yx 1 Hg,yz
_ggﬁvc Og 2y 1
[5¢c 0 0
S, = 0 sy O
| O 0 s,

) are the small angles defining the misalignments between the different

gyro axes and s ()are the scale factors for the three gyros.

4.11.4.2 Accelerometer Measurement Model

Performance factors describing accelerometer accuracy are similar to those which
characterize the gyro accuracy bias uncertainty, scale factor stability, and random
noise. Measurements of the specific force can be modeled by the observation

equation

where

€a

£ =1 4 by + Sif + Sof? + Nof + g + £ (4.39)

. 2
is the accelerometer measurement vector (m/s”)

is the true specific force vector (i.e. observable) (m/s?)

is the accelerometer instrument bias vector (m/sz)

is a matrix of the linear scale factor error

is a matrix of the non-linear scale factor error

is a matrix representing non-orthogonality of the accelerometer triad
is the anomalous gravity vector (i.e. the deviation from the theoretical
gravity value) (m/sz)

is a vector representing the accelerometer sensor noise (m/s>).

The matrices N, S;and S, are

1 Ha.xy Ha,xz
N, = 9a7yx 1 Ha,yz
Hcau Qa@' 1
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Table 4.4 Classification of inertial measurement units

Performance Strategic Navigation Tactical Commercial
grade grade grade grade®
Positional error 30 m/ 1 nmi®h or .5 m/s  10-20 nmi/h Large variation
h < 100 m/h
Gyroscope 0.0001-0.001 <0.01 °/h 1-10°h 0.1°%s
drift
Gyroscope - <0.002°/v/h 0.05— Several °/v/h
random <0.02°/vh
walk
Accelerometer 0.1-1 <100 pg 1-5 mg 100-1,000 pg
bias
Applications Submarines General navigation Integrated with Research
Intercontinental high precision GPS for Low cost navigation
ballistic georeferencing mapping pedometers,
missile mapping Weapons Antilock breaking
(short time)) active suspension,
airbags

# Also called automotive grade
® 1 nautical mile (nmi) ~6,076 ft ~1,851 m

S1,x 0 0
S] = 0 Sty 0
L 0 0 Sl,z_
_Sz,x 0 0 i
S$S5=10 s, 0
L 0 0 52,2 |

where 0 () are the small angles defining the misalignments between the different
accelerometer axes and s, ()are the scale factors for the three accelerometers.
For both the inertial sensors, the scale factors and biases are usually considered
to be constant (over a certain time) but unknown quantities which are uncorrelated
between the different sensors. In principle these errors can be eliminated by the
calibration techniques described in Sect. 4.13. The sensor noise ¢ consists of white
noise, correlated noise and random walk, etc. In principle these errors can be

minimized by the estimation techniques described in Chap. 7.

4.12 Classification of Inertial Sensors

No universally agreed definition exists for categorizing inertial sensors. However,
a rough comparison of different inertial navigation sensors/systems is outlined in
Table 4.4 with data obtained from (Groves Dec 2007), (Petovello et al. Jun 2007),
(Barbour and Schmidt 2001) and (Wang and Williams 2008).


http://dx.doi.org/10.1007/978-3-642-30466-8_7
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Usually the cost of an IMU is dictated by the type of inertial sensors. IMUs are
categorized according to their intended applications, which mainly depend on the
gyroscope bias expressed in deg/hour. A secondary measure of performance is the
gyroscope random walk, which is usually expressed in terms of deg/root-hour and
accelerometer bias.

4.12.1 Gyroscope Technologies and their Applications

There are several gyroscope technologies, including ring laser gyroscopes (RLG),
dynamically tuned gyroscopes (DTG), hemispherical resonant gyroscopes (HRG),
and interferometric fiber-optic gyroscopes (IFOG). Spinning mass and ring laser
gyroscopes offer high performance but at high cost, and find their application in
strategic/tactical and submarine navigation systems. DTG offer a medium level of
performance and share some applications with RLG (Prasad and Ruggieri 2005).
IFOG and Coriolis-based gyroscopes are of lower performance but cost less and
are typically used in torpedoes, tactical missile midcourse guidance, flight control
and smart munitions guidance and robotics. There has been a recent trend towards
MEMS gyroscopes that are being researched for low cost navigation applications
such as car navigation and portable navigation devices. Details of all these sensor
technologies can be found in (Barbour and Schmidt 2001; Lawrence 1998).

4.12.2 Accelerometer Technologies and their Applications

The main accelerometer technologies are mechanical pendulous force-rebalance
accelerometers, vibrating beam accelerometers (VBAs) and gravimeters. The best
performance is provided by mechanically floated instruments, and these are used
in strategic missiles. Mechanical pendulous rebalance accelerometers are used in
submarine navigation, land and aircraft navigation and space applications. Quartz
resonator accelerometers are low grade sensors typically found in tactical missile
midcourse guidance.

4.13 Calibration of Inertial Sensors

Calibration is defined as the process of comparing instrument outputs with known
reference information to determine coefficients that force the output to agree with
the reference information across the desired range of output values. Calibration is
used to compute deterministic errors of sensors in the laboratory. The calibration
parameters to be determined can change according to the specific technology in an
IMU. To accurately determine all of the parameters, special calibration devices are
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Fig. 4.29 Calibrating an accelerometer, with the sensitive axis facing upward on the left and
downward on the right

needed, such as three-axial turntables, to perform either a six-position static test or
an angle rate test.

4.13.1 Six-Position Static Test

In this procedure for sensor calibration, the inertial system is mounted on a level
table with each sensitive axis pointing alternately up and down (six positions for
three axes). Using these sensor readings it is possible to extract estimates of the
accelerometer bias and scale factor by summing and differencing combinations of
the inertial system measurements.

4.13.1.1 Accelerometer Calibration

Accelerometers are normally calibrated by sensing gravity. Each accelerometer of
the triad is placed on a calibrated rate table with its sensitive axis facing up. After
taking about 10-15 min of data, the mean f,,, is computed. Then a similar reading
is taken for fu,,, with sensitive axis pointed downwards. To reiterate the point
made earlier, the accelerometers will measure the reaction to gravity.

By Fig. 4.29, the measurements with the sensitive axis of the accelerometer up
and down can be expressed as

Jup =ba+ (14 Sa)g (4.40)

fdown = ba - (1 + Sa)g (441)
The bias b, is computed by adding these two reading
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Fig. 4.30 Geometry explaining the component of the Earth’s rotation measured by gyros aligned
with the north and up directions

ba :fup +fdown (442)
2
and the scale factor S, is obtained by subtracting the two reading
up — Jdown — 2
S, :M (4.43)

2g

where g represents gravity.
This procedure is repeated for each of the three accelerometers to obtain their
individual bias and scale factors.

4.13.1.2 Gyroscope Calibration

A similar procedure is employed for gyroscopes, but this time the Earth’s rotation
rate is measured instead of gravity. According to Fig. 4.30, for a body frame
located at a latitude ¢ the theoretical projections of the Earth’s rotation rate on the
body axes are

wy = 0; ®, = w,cos p; w; = W, sin @

Therefore, a vertical gyroscope (with its sensitive axis pointing up) will sense a
component of gravity that is w, sin ¢, and this is used in the calibration.

In accordance with Fig. 4.31, the measurements of the gyroscope with its
sensitive axis up and down are

Wyup = bgo + (1 + Sg)w, sin ¢ (4.44)
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WDdown = bgo - (1 + Sg)a)e sin @ (445)

where o, sin ¢ is the vertical component of the Earth’s rotation rate, w, is the
Earth’s rotation rate about its spin axis, and ¢ is the latitude of the location of the
gyroscope.

The bias and scale factor are obtained in a similar way as for accelerometers

_ Qyp ~+ Wdown

by 5

(4.46)

WDyp — Wdown — 26Oe sin %

S =
& 2m, sin @

(4.47)

where by, is the bias, S,y is the scale factor, w, is the Earth’s rotation rate and ¢
is the latitude of the location of the gyroscope.

This procedure is repeated for each of the three gyroscopes to obtain their
individual bias and scale factors.

For low cost gyroscopes that cannot detect the Earth’s rotation rate, the table
can be rotated at a constant rate of @, = 60°/s (or any indeed other rate that is
above the detection threshold of the gyroscopes) and w, sin ¢ is replaced with the
value of w, in Egs. (4.44), (4.45) and (4.47).

4.13.2 Angle Rate Tests

Angle rate tests are utilized to calibrate gyroscope biases, scale factors and non-
orthogonalities. In this type of calibration the IMU is mounted on a precision rate
table (Fig. 4.32 shows one) which is rotated through a set of very accurately
defined angles. By comparing these known rotations with the estimates of the
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Fig. 4.32 A precision rate
table with a gyroscope
mounted on top

angles obtained by integrating the rate outputs provided by the gyros, it is possible
to estimate the various errors in the gyros measurements. For instance, if the table
is rotated clockwise and counterclockwise through the same angle then the biases
and scale factors errors of the gyros can be estimated.

4.14 Importance of Calibration of Inertial Sensors

Calibration of the inertial sensors plays an important role in the ultimate accuracy
of an INS. Any residual flaws in the sensors cause errors which, as we shall see,
tend to grow with time.
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Fig. 4.33 A stationary
accelerometer placed on a
tilted plane

Consider Fig. 4.33, which shows a stationary accelerometer on a plane tilted
from horizontal by the small angle 60. We can prove that this tilt is observable
because the accelerometers are sitting in a gravitational field.

The accelerometers will measure a component of g as follows

f: = gcos 8 in the z direction (4.48)
fx = gsind0 in the x direction (4.49)

where g is the magnitude of the gravitational field.
For small angles where cos 66 is near unity and sin 66 is 66, the measured
values can be approximated as

=g (4.50)
fo =gd0 (4.51)

Therefore the output of the x accelerometer gives us a direct measurement of
the tilt about the y axis. Similarly, the output of the y accelerometer provides a
measure of the tilt about the x axis. This discussion provides a simple example on
correlation of errors. If the x accelerometer has a bias error of b,, the output of the
accelerometer will be

Jx = by + 800 (4.52)

If we are trying to level the platform (which involves determining its attitude
because we do not actually rotate the sensors in a strapdown system) employing
the accelerometer output, we cannot tell the difference between the contribution of
accelerometer bias or the tilt. Hence, the value of the sensor bias determines the
accuracy to which we can estimate the initial tilt alignment of the INS (as will be
discussed in greater detail later). This can be clearly explained in the case of small
tilt angles where f, will be approximately zero and



4.14 Importance of Calibration of Inertial Sensors 161

ob Jl ov _[ or

-t >t t

Fig. 4.34 Effect of a bias error in acceleration, velocity and position

00 ~ —— (4.53)

4.14.1 Case-I: Bias Error in an Accelerometer

An uncompensated accelerometer bias error by (expressed in terms of either g or
m/s?) will introduce an error proportional to ¢ in the velocity measurement and an
error proportional to > in the position measurement due to the integrations to
obtain the velocity v and the position r from the gyroscope output. Taking these
into account

v = / bydt (4.54)

1
r= / vdt = / / bftdtzibftz (4.55)

Therefore an accelerometer bias introduces a first-order error in velocity and a
second-order error in the position, as shown in Fig. 4.34.

4.14.2 Case-II: Bias Error in the Gyroscope

An uncompensated gyro bias (expressed in terms of deg/h or radians/s) in the gyro
error b, will introduce an angle error (in roll or pitch) that is proportional to time f,
and hence
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50 = / bodt = byt (4.56)

This misalignment of the INS will result in the measured acceleration vector
being incorrectly projected. This in turn will introduce acceleration in one of the
horizontal channels (as mentioned previously) with a value of

a = gsin(00) =~ gl ~ gb,t (4.57)

Now when we integrate this acceleration to obtain the velocity and position, it
will introduce an error proportional to > in the velocity of

1
V= / bgtdt = Ebwgt2 (4.58)

and an error proportional to #* in the position of

1 1
r= / vdt = / / zbwgtzdt :gbwgz3 (4.59)

Since, a gyro bias introduces a second-order error in velocity and a third-order
error in position, the gyroscope tends to dictate the quality of an IMU and thus the
accuracy of the output of navigation algorithms.

4.15 Initialization and Alignment of Inertial Sensors

An INS takes acceleration and rotation rates from sensors to calculates velocity
and attitudes by integrating them once, and then integrates the velocity in order to
obtain the position. The navigation equations require starting values for position,
velocity and attitude. These are readily available from the last epoch of an ongoing
iteration, but for the first epoch the INS must be specifically provided with this
information before it can begin to function. This process is called initialization for
position and velocity, and is called alignment for attitude (Groves Dec 2007).

4.15.1 Position and Velocity Initialization

Position can be initialized using a vehicle’s last known position before it started to
move. For a system where the INS is integrated with other systems, typically GPS,
a position can easily be provided by the external navigation system. In some cases
the starting point is known a priori (for example a pre-surveyed location). If the
vehicle is stationary then the velocity initialization can be made with zero input.
If it is moving, the initial velocity can be provided by an external navigation
source such as GPS, Doppler or an odometer.
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4.15.2 Attitude Alignment

Attitude alignment involves two steps. First, the platform is leveled by initializing
the pitch (p) and roll (») angles, and then gyro-compassing to provide an initial
value of the heading (alternatively known as the yaw angle ‘y’ or azimuth ‘A”’).

4.15.2.1 Accelerometer Leveling

With the vehicle held stationary, accelerometers measure the components of the
reaction to gravity due to the pitch and roll angles (i.e. the tilt with respect to the
horizontal plane). The accelerometer measurements are in the body frame and can
be expressed as

¢ = RH(-£)
- (&) (-¢) (460

where the rotation matrix RZ is defined as

cosycosr —sinysinpsinr —sinycosp cosysinr + sinysinpcosr
R’b = |sinycosr4cosysinpsinr cosycosp sinysinr — cosysinpcosr
—cospsinr sin p COSpcCcosr
(4.61)

and the gravity vector g’ is defined as
g=[0 0 —g

Substituting these values into Eq. (4.60) gives

cos(y) cos(r) — sin(y) sin(p) sin(r) —sin(y) cos(p) cos(y) sin(r) + sin(y) sin(p) cos(r) ]\ © 0
= sin(y) cos(r) + cos(y) sin(p) sin(r) ~ cos(y) cos(p)  sin(y) sin(r) — cos(y) sin(p) cos(r) -1 0

— cos(p) sin(r) sin(p) cos(p) cos(r) —g
(4.62)

cos(y) cos(r) — sin(y) sin(p) sin(r) sin(y) cos(r) + cos(y) sin(p) sin(r) —cos(p)sin(r) | [0

= — sin(y) cos(p) cos(y) cos(p) sin(p) 0

cos(y) sin(r) + sin(y) sin(p) cos(r) sin(y) sin(r) — cos(y) sin(p) cos(r)  cos(p) cos(r) g
(4.63)

1. —gcos(p) sin(r)

Ll = gsin(p) (4.64)

1. gcos(p) cos(r)
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From Eq. (4.64) we can calculate the pitch and roll angles as

(4.65)

Y S
p = tan ( fxz-l-fzz')

r=tan"' (_f—{x> (4.66)

4.15.2.2 Gyrocompassing

As well as potentially being sensitive to the Earth’s rotation rate, a gyroscope will
measure the rotation of the body frame with respect to the e-frame, hence

oy, = o), + oy, (4.67)

Because the sensor triad is required to be stationary for the calibration process,
the second term on the right-hand side of this equations is zero, and
wf’b = wf’e +0
b _ pb
Wy = Rewfe
h _ pbpl e
Wy, = Rl Rewie

o), = (R)) (R))' of,

(4.68)

where, the rotation matrix Ré is defined in Eq. (4.61) and the rotation matrix R; is
given as

—sinA  —sin@cosi cos ¢cos i
R = | cosA —singsind cos@sini
0 cos ¢ sin ¢

and
o, =10 0 cog]T

The term o, is the Earth’s rotation about its spin axis, which is approximately
15.04 deg/h.
By substituting the expressions for Ré,Rf and o, into Eq. (4.68), we get

cos(y) cos(r) — sin(y) sin(p) sin(r) sin(y) cos(r) + cos(y) sin(p) sin(r) — cos(p) sin(r)
ol = — sin(y) cos(p) cos(y) cos(p) sin(p)

cos(y) sin(r) + sin(y) sin(p) cos(r) sin(y) sin(r) — cos(y) sin(p) cos(r)  cos(p) cos(

r)
0

(4.69)

—sin i cos A 0

—singpcosA —singsind cos @

cos@cosi  cos@sinld  sing
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cos(y) cos(r) — sin(y) sin(p) sin(r)  sin(y) cos(r) + cos(y) sin(p) sin(r) —cos(p) sin(r)
o = [ — sin(y) cos(p) cos(y) cos(p) sin(p) :|
cos(y) sin(r) + sin(y) sin(p) cos(r)  sin(y) sin(r) — cos(y) sin(p) cos(r)  cos(p) cos(r) (470)
0
W, COS
W, sin @

w, {sin(y) cos(r) + cos(y) sin(p) sin(r) }w, cos ¢ — w, cos(p) sin(r) sin ¢
|:w :| = |: w,cos@ cos(y) cos(p) + w, sin ¢ sin(p) :| (4.71)

{sin(y) sin(r) — cos(y) sin(p) cos(r) }w, cos ¢ + w, sin ¢ cos p cos(r)

Since the pitch angle p and roll angle r were already obtained during the
accelerometer leveling process using Egs. (4.65) and (4.66) respectively, we will
now use the three gyro measurements to obtain the yaw angle y. It is evident from
Eq. (4.71) that if the gyro measurement w, is multiplied by cos(r) and the gyro
measurement ¢, is multiplied by sin(r) then

wy(cosr) + w,(sinr) = (w, cos @) siny (4.72)
Similarly
wy(cosp) + w,(sinpsinr) — w;(cos rsinp) = (w, cos @) cosy (4.73)
Consequently
tany = wx(co§ r) —1— ,(sinr) . (4.74)
wy(cosp) + w,(sinpsinr) — w,(cos rsinp)
Finally the yaw angle is
V= tan~! wy(cosr) + w,(sinr) (4.75)

wy(cosp) + w,(sinpsinr) — w,(cos rsinp)

For land vehicle applications, where the vehicle travels is almost a horizontal
plane, the pitch and roll angles are close to zero and the small angle approximation
yields

cosr=cosp =~ 1
4.76
sinr =sinp =~ 0 ( )

Equation (4.75) now reduces to

y=tan"! <%> (4.77)
wy

It should be noted that gyro-compassing is not feasible for low grade IMUs,
which cannot detect the Earth’s rotation because their noise threshold exceeds the
signal for the Earth’s rotation. For these IMUs a heading (yaw angle) is obtained
externally using either a compass or a magnetometer. For systems integrated with
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GPS, the east and north velocities supplied by this system provide a heading after
the host platform has started to move. In this case the heading is

y=—tan"! (v—) (4.78)
Vn

where v, is east velocity and v,is north velocity.
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Chapter 5
Inertial Navigation System Modeling

Modeling requires representing real world phenomena by mathematical language.
To keep the problem tractable the goal is not to produce the most comprehensive
descriptive model but to produce the simplest possible model which incorporates
the major features of the phenomena of interest. The model is also restricted by the
ability of mathematics to describe a phenomenon. This book deals with models
which describe the motion of an object on or near the surface of the Earth. This
kind of motion is greatly influenced by the geometry of the Earth. There are two
broad categories for modeling motion: dynamic and kinematic.

5.1 Dynamic Modeling

Dynamic modeling deals with the description of motion due to forces or other laws
of interaction to describe the effect of one physical system on another. Newton’s
second law of motion is an example of this modeling, and expresses the change of
motion resulting from the force model F{r,v,}
2

m%:m'f:F{r,v,t} (5.1)
where r is the position vector, v is the velocity vector, these being referred to as
state vectors, and time ¢ is an independent variable. This equation can be solved for
the velocity vector by a single integration or for the position vector by a double
integration. This solution represents the motion of a particle with respect to an
inertial frame of reference.

A unique analytical solution to the above equation can be given as

r(t) =r(t,a,b) (5.2)
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where a and b are constant vectors which can usually be determined from initial
conditions such as

r(0,a,b) =r(t) (5.3)
v(0,a,b) = v(t) (5.4)

As a result, if the position and velocity of a particle are specified for an initial
time, they can be uniquely determined for any later time. Applications of dynamic
modeling include the rotation of the Earth and describing the motion of a satellite
orbiting the Earth. This kind of modeling is usually not applied to the motion of an
object on or near the surface of the Earth because the model would become very
involved and essentially non-analytical.

5.2 Kinematic Modeling

Kinematic modeling is often used where dynamic modeling of a moving object is
impractical. It deals with studying the motion of an object without consideration of
its mass or the forces acting upon it, obviating the force model. In kinematic
modeling the motion of a body is determined solely based on position, velocity or
acceleration measurements, collectively known as observables. Depending on the
observable available, the following time-variable vectors are used for the position
vector

r(1) = {x(1), (1), (1)} (5.5)
the velocity vector
. dx dy d
i(1) = (Z’ﬁd_i) = (v, vy, v2) (5.6)

and the acceleration vector

; d’x d*y d’z o
r(r) = (W’W’W) = (ax,ay,az) = (vx,vy,vz) (5.7)

which describe the motion of a particle in an inertial frame of reference.

The type of observable that is available dictates which of these three equations
to use; for example a GPS can measure either r(¢) or v() and an accelerometer or
a multi-antenna GPS system can measure acceleration.
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Fig. 5.1 The concept of rigid 7' d
body motion depicting two
reference frames

X X
5.2.1 Rigid Body Motion Modeling

The models previously discussed deal with the motion of a particle, whereas real
life applications involve 3D objects. For such objects a rigid body motion model is
used. A rigid body is a system of particles in which the distances between the
particles do not vary. Two systems of coordinates are used to describe the motion
of a rigid body; a space-fixed system (in this case the ECEF frame) and a moving
system that is rigidly fixed in the body (i.e. the body frame) and participates in its
motion. The orientation of the axes of that system relative to the axes of the space-
fixed system is specified by three independent angles. As illustrated in Fig. 5.1,
rigid body motion can be expressed as the sum of two vectors.

The first vector points from the origin of the ECEF frame to the center of mass ¢
of the body, which is denoted by r¢. This represents the translational motion of the
body in 3D. The second vector points from the center of mass to any particle in the
body and is denoted by Ar”. This denotes the position of an arbitrary point in the
body frame. If the b-frame changes its orientation relative to the e-frame, we need
the rotation matrix Rj, to transform the orientation of the rigid body back to the
e-frame. Hence the position of the body in the e-frame is

r(t) = r(t) + R () Ar” (5.8)

This equation is mainly used to describe the position and the attitude of a rigid
body with respect to an Earth-fixed reference system.

5.2.2 Observables

The observables are measurements of the quantities of interest, excluding errors.
It is very important to determine the appropriate observables for accurate kine-
matic modeling. The field of estimation deals with the optimal extraction of
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Fig. 5.2 A block diagram depicting the mechanization process of an INS

modeling parameters from the noise inherent in measurements. Measurements fall
into two basic categories.

e Autonomous measurements are self-contained (no external reference is
required). Accelerometer and gyroscope measurements are examples of this
kind. They have good short term accuracy but are not very accurate in the long
run.

e Non-autonomous measurements need some sort of external reference. They
include signals from beacons, satellites, and measurements of road markers.
Their accuracy is time-independent but they are constrained by the environ-
ments due to their dependency on external signals.

It is evident from Eq. (5.8) that the time-dependent quantities, namely the
position vector ré(r) and the rotation matrix Rj(¢), are the two observables for rigid
body kinematic modeling. So, depending upon the type of accuracy required,
autonomous measurements as well as non-autonomous measurements can be used.
Being complementary in nature they can both be optimally utilized and integrated
together by utilizing an estimation technique. Autonomous measurements include
acceleration, angular velocity and tilt, whereas ranges, range rates, directions and
angles belong to non-autonomous measurements.

5.3 INS Mechanization

Mechanization is the process of converting the output of an IMU into position,
velocity and attitude information. The outputs include rotation rates about three
body axes a)f-’b measured by the gyroscopes triad and three specific forces f” along
the body axes measured by the accelerometer triad, all of which are with respect to
the inertial frame. Mechanization is a recursive process that starts with a specified
set of initial values and iterates on the output. A general diagram of INS mech-

anization is shown in Fig. 5.2.
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5.3.1 INS Mechanization in an Inertial Frame of Reference

The output of an accelerometer is called the specific force, and is given as
f'=a —g (5.9)

where f is the specific force, a is the acceleration of the body, and g is the
gravitational vector.
By letting a’ = I this can be rewritten as

i =f1g (5.10)

where
i is the second derivative of the position vector measured from the
origin of the inertial frame to the moving platform
fi s the specific force
g is the gravitational vector

For ease of solution, the set of three second-order differential equations can be
transformed to a set of first-order differential equations as follows

P =V (5.11)
Vi=f +g (5.12)

The measurements are usually made in the body frame. By assuming that the
body frame coincides with the sensor triad frame (which is usually so to eliminate
a further transformation) these measurements can be transformed into the inertial
frame using the transformation matrix R} between the body frame and the inertial
frame

f' =Rt (5.13)

where Ri is a 3 x 3 rotation matrix which transforms the measurement from the
b-frame to the i-frame.

Since the gravitational vector is usually expressed in either the e-frame or the
I-frame, it can be transformed to the i-frame through a rotation matrix R; or Rﬁ. The
gravitational vector transformation from the e-frame to the i-frame is

g = Rig’ (5.14)
Substituting Egs. (5.13) and (5.14) into Eq. (5.12) gives

v/ =Rif’ + R g (5.15)
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As discussed in Chap. 2, the rate of change of a transformation matrix is
. -
R, = R, (5.16)

where be is the skew-symmetric matrix form of the vector of angular velocities
wf’b output by the gyroscope. This can be represented as

Wy 0 —w; O,
b __ b __ _
o, =, | — Q=1 o 0 OF (5.17)
w, —m, 0
vector skew—symmeticmatirx

where w,, w, and w, are the gyroscope measurements in the b-frame.

Solving Eq. (5.16) yields the desired transformation matrix R.. Once the ele-
ments of the rotation matrix are known, it is possible to calculate the attitude of the
body using Euler angles in a similar fashion to Chap. 2.

The mechanization equations for the i-frame can therefore be summarized as

i

r \4
v | = |Rf’+Rg (5.18)
R, R,Q;,

where the specific force vector f° and the angular velocity vector o, are sensor

measurements. The gravity model in the e-frame g° is known in advance. The
navigation parameters provided by this system are

r' =[xy Z']is a 3D position vector in the i-frame

Vi vi]is a 3D velocity vectorin the i-frame

vi= [v
R is a3 x 3 matrix containing the information for the three Euler angles.
b g g

Figure 5.3 illustrates the mechanization process in the inertial frame.

5.3.2 INS Mechanization in ECEF Frame

A position vector r¢ in the e-frame can be transformed into the i-frame by using
the rotation matrix Rf_, as follows

r'=Rir (5.19)

After differentiating twice and rearranging the terms (in accordance with the
derivation in Chap. 2) we get

B = Ry (I + 2008 + Qfre + QL 0r) (5:20)


http://dx.doi.org/10.1007/978-3-642-30466-8_2
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http://dx.doi.org/10.1007/978-3-642-30466-8_2
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http://dx.doi.org/10.1007/978-3-642-30466-8_2
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Fig. 5.3 A block diagram depicting the mechanization of an INS in the inertial frame
and substituting this into Eq. (5.10) gives
RL(F 4+ 2001 + Qor + Q. Q0r¢) =f + g (5.21)

Further substituting quantities from the right-hand side of Egs. (5.13) and (5.14)
yields

R (i + 2005 + Qr¢ + Q. Q0 r¢) = Rif® + Rig* (5.22)

le-"ie

This can be simplified by letting R}, = R\R and Q¢,r¢ = 0, because the Earth’s
rotation rate w;, is approximately constant

RL(F + 2001 + Q,Q0r°) = RIRSE” + Rig* (5.23)
P = RoFP — 20 1° + g° — Q°, Q¢ (5.24)

and because the gravity vector is defined as g° = g — Q; Q¢ r°, this can be further
reduced to

¥ = Rf? — 2001 4 g° (5.25)
which is second-order and can be broken into the following first-order equations
I =v, (5.26)
Ve = RiFP — 206 v¢ + ¢ (5.27)
The rate of change of the rotation matrix R} can be given as

R = RO, (5.28)
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Fig. 5.4 A block diagram depicting the mechanization of an INS in the ECEF frame

As we wish to write the above expression in terms of sensed angular rate o,
monitored by the gyroscopes then we use the following relationship

Q= +q,

(5.29)
Q= — &+
Qb =00 + Qb (5.30)
Substituting Eq. (5.30) into Eq. (5.28) yields
5 = k3 () + ) (531)
The e-frame mechanization equations can be summarized as
I'_G VE
V| = | Rf” — 200V + ¢ (5.32)
R; R; (@, + )

which represents the mechanization equations in the e-frame where the inputs are
the sensed accelerations f” from the accelerometers and rotation rates «?, from
the gyroscopes. The outputs are the position vector r, the velocity vector v, and
the Euler angles, all expressed in the e-frame. Figure 5.4 is a block diagram of the
mechanization in the ECEF frame.

5.3.3 INS Mechanization in the Local-Level Frame

In many applications the mechanization equations are desired in the LLF for the
following reasons:
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a. The navigation equations in the I-frame furnish a navigation solution that is
intuitive to the user on or near the Earth’s surface.

b. Since the axes of the l-frame are aligned to the local east, north and up
directions, the attitude angles (pitch, roll and azimuth) can be obtained directly
at the output of the mechanization equations when solved in the local-level
frame.

c. The computational errors in the navigation parameters on the horizontal (E-N)
plane are bound by the Schuler effect (as discussed in Chap. 6).

d. This effect stipulates that the inertial system errors of the horizontal plane
components are coupled to produce the Schuler loop, and that these errors
oscillate at the Schuler frequency of 1/5,000 Hz.

5.3.3.1 Position Mechanization Equations

The position vector r of a moving platform is expressed in geodetic (curvilinear)
coordinates in the ECEF frame as

r'=[¢ . nl" (5.33)

where ¢ is the latitude, /4 is the longitude and 4 is the altitude. As the platform
travels on or near the surface of the Earth, the rate of change of its position is
expressed in terms of the velocity in the east, north and up directions.

From Chap. 4, we know that the rate of change of the platform’s latitude,
longitude and altitude are

v
o =——" (5.34)
R, +h
; %
A=—r—"4 5.35
(Ry + h)cos @ (5:35)
h=v, (5.36)
where
Ve is the component of the velocity in the east direction
Vi is the component of the velocity in the north direction
Vi is the component of the velocity in the up direction

Ry is the meridian radius of the ellipsoid
Ry is the normal radius of the ellipsoid

Therefore using Eqs. 4.28—4.32 the time rate of change of the position com-
ponents is related to the velocity components (Noureldin et al. 2009; Farrell 2008;
Georgy et al. 2010; Igbal et al. 2009) as follows


http://dx.doi.org/10.1007/978-3-642-30466-8_6
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http://dx.doi.org/10.1007/978-3-642-30466-8_4
http://dx.doi.org/10.1007/978-3-642-30466-8_4
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; 0w 0] [
= s 0 0 | (5.37)
i 0 1] |y,

¥ =DV (5.38)

in which D~! transforms the velocity vector from rectangular coordinates into
curvilinear coordinates in the ECEF frame.

5.3.3.2 Velocity Mechanization Equations
The acceleration of the moving body is measured in three mutually orthogonal

directions in the b-frame by a three-axis accelerometer. These measurements are
known as specific force measurements and are given in the b-frame as

e
= |f (5.39)
RE
They can be transformed to the local-level frame using the rotation matrix R,
¢ A £ eb ¢ fx
f =1/ =Rf"=R, | f (5.40)
I e

However, for three reasons the acceleration components expressed in the local-
level frame f' cannot directly yield the velocity components of the moving body:

a. The rotation of the Earth about its spin axis (w® = 15°/hr) is interpreted in the
local-level frame as the angular velocity vector @', and (as derived in Chap. 4) is
given as

0
o', = | o cos @ (5.41)
w® sin @

b. A change of orientation of the local-level frame with respect to the Earth arises
from the definition of the local north and vertical directions. The north direction
is tangent to the meridian at all times, while the vertical direction is normal to
the Earth’s surface. This effect is interpreted by the angular velocity vector wé,
which is given in Chap. 4 as


http://dx.doi.org/10.1007/978-3-642-30466-8_4
http://dx.doi.org/10.1007/978-3-642-30466-8_4
http://dx.doi.org/10.1007/978-3-642-30466-8_4
http://dx.doi.org/10.1007/978-3-642-30466-8_4
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= o 1‘?}1\::-}1
oy = | icosg | = | R (5.42)
Jsin @ V}L“i 2
c. The Earth’s gravity field is
0
g=10 (5.43)

Taking these three factors into the consideration we can derive the expression for
the time rate of change of the velocity components of the moving body.
The Earth-referenced velocity vector ¥ can be transformed into the local-level

frame by using the rotation matrix R!
v =Rl (5.44)

] T
where V' = [v., v, V] .
The time derivative is therefore
V =R + R, (5.45)

We know from Chap. 2 that the rate of change of the transformation matrix is
R’e = RIQS, where €, is the skew-symmetric matrix corresponding to .
Substituting this into Eq. (5.45) gives
v =RIQCF + RIF
o = R0 + )
and since Qj, = —Q¢, and ¥ = v*
(5.46)

V= Ry (¥ — Qgv)

We can transform the position vector r from the ECEF frame into the inertial
(5.47)

frame by
r' =R'r

and taking the time derivative and using the relationship RQ = RIQX, gives
¥ = Rir* + R
i’ = RIQr + R i (5.48)
i =R (Qr + 1)


http://dx.doi.org/10.1007/978-3-642-30466-8_2
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178 5 Inertial Navigation System Modeling

where Q¢ is the skew-symmetric matrix corresponding to w¢,.

Taking the time derivative a second time and rearranging the terms in a similar
manner to that in Chap. 2 (except that now the rotation is between the e-frame and
the i-frame, instead of the b-frame) we arrive at

i = RL(F +2Q0 1 + QOr° + QL Q0 r°) (5.49)

e~ "ie
and because the Earth’s rotation rate is approximately constant, Qfe = 0 and hence

P = RL(i +2Q0 1 + Q,00r°) (5.50)

e~ "ie

From Newton’s second law we also have the relationship
i=f+g (5.51)

where f' is the specific force and g is the gravitational field vector, both given in
the inertial frame.
Substituting the value of ¥ from Eq. (5.51) into (5.50) gives

e e

Ri(f'+g) = (F 42001 + QLQ0r)

f'+g =R (i + 2001 + Q00 r°)

i . . (5.52)
48 = (i +2Q0F + Q0 r°)
P= £ 4 g — Q00 — 20° i

The gravitational field vector g¢ and the gravity field vector g° are related by

g=g —QQr (5.53)

e e

and substituting both this expression for g° and the fact that ¥ = v* into Eq. (5.52)
gives

=1 4+g" -2Q v (5.54)
Substituting this expression for ¥ into Eq. (5.46) gives

V= R g 200 - )
vi=R{f +g° — (29, + Q))v}
v = R + Rig® — RL(2Q, + Q) v

5.55
Vi =t +g — R (2RIQ, R, + RIQL R ) v (3.55)

V=R g (R, 1 REL)RY
Vi =RitP — (20}, +Q))V + ¢

el

where Ré is the transformation matrix from the b-frame to the 1-frame, 2 is the
specific force measured by the accelerometers in the b-frame, and g is the gravity


http://dx.doi.org/10.1007/978-3-642-30466-8_2
http://dx.doi.org/10.1007/978-3-642-30466-8_2
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vector in I-frame. As mentioned earlier, Q!, and Q! are the skew-symmetric
matrices corresponding to !, and @, and are expressed as

0 0 —wfsing w°cos @
o, =|wcosp| — Qfe = | wsing 0 0 (5.56)
| w’sin ¢ —mw® cos @ 0 0
r Vy 0 —Vetan @ Ve
Rf“} +h Rv+h Ry+h
! e 1) Ve tan @ Vn
W, RN+h R RN+I’I 0 RM+h (55)
Ve tan @ —Ve —Vn 0
L Ry +h Ry +h Ry +h

5.3.3.3 Attitude Mechanization Equations

The attitude (orientation) of the moving body is determined by solving the time
derivative equation of the transformation matrix R} that relates the body frame to
the local-level frame. For local-level mechanization the following time derivative
equation of the transformation matrix should be considered

R =R.QY (5.58)
where the angular velocity skew-symmetric matrix Q;’b can be expressed as
o, = O+,

b b b

Q, = =+,
o, = @ — (5.59)

Substituting this into Eq. (5.58) gives

R, = R, (@, — ) (5.60)

The rotation matrix can be obtained by solving Eq. (5.60) for the attitude
angles.

The quantity Qf’b, which is the rate of rotation of the b-frame with respect to the
i-frame, is directly measured by the gyroscopes. However, in addition to the
angular velocities of the moving body the gyroscopic measurements contain both
the Earth’s rotation Qﬁ’e and the change in orientation of the LLF. So Qf’l must be
subtracted from QY to remove these affects. Q) is composed of two parts: Q7
which is the Earth’s rotation rate with respect to the i-frame expressed in the body



180 5 Inertial Navigation System Modeling

frame and QF,, which is the change in the orientation of the LLF with respect to the
ECEF frame as expressed in body frame. Therefore

Qb =0b + O, (5.61)
where
b [
Qie = R?QMRé
Q) = RIQR,
giving
Qb = RVQLR, + RVQL R (5.62)
Qb =RN(Q, +QL)R, (5.63)

By substituting this into Eq. (5.60) we get
R, = R, [, — RI (Y, + Q,)R)] (5.64)

b . . . .
where € is the skew-symmetric matrix corresponding to the gyroscopic
measurement vector.

5.3.3.4 Summary of INS Mechanization Equations

The results of the previous sections can be summarized as follows

iV D~
vi | = | R — (29’ +Qe W+ g (5.65)
Rlb Rl (Q Qll)

which expresses the mechanization in the local-level frame. The position output is
expressed in ECEF curvilinear coordinates ¢, 4, i, the velocity output is in 1-frame
coordinates v,, v,,v,, and the attitude angles (roll, pitch and yaw) are measured
with respect to the l-frame. Figure 5.5 is a block diagram of local-level frame
mechanization.

5.3.4 INS Mechanization in Wander Frame

The 1-frame rotates continuously as it moves over the curved surface of the Earth
because its y-axis always points toward the north (tangential to the meridian). As
was explained in Sect. 2.24 and is reiterated in Fig. 5.6, this rate of rotation
becomes ever greater as the 1-frame approaches the pole and will become infinite if
the I-frame passes directly over the pole.


http://dx.doi.org/10.1007/978-3-642-30466-8_2
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Fig. 5.5 A block diagram depicting the mechanization of an INS in the local-level frame

Fig. 5.6 The rotation of the
y-axis of the local-level frame
(dark arrows) for a near-pole
crossing trajectory at various
latitudes

The rotational rate of the navigation I-frame over the Earth’s surface (known as
the transport rate) is

Vi
We _(P Rl\‘;/[ T h
o= |on| = |icose | = |z (5.66)
w, Asin @ v, tan @
Ry +h

where w,, ®, and w, are the east, north and up angular velocity components as in
Fig. 5.7.

It is evident from Eq. (5.60) that the third component of the above vector will
introduce numerical instabilities as ¢ approaches /2 and will actually be inde-
terminate at the pole. This condition is avoided by using the wander azimuth frame
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Fig. 5.7 A depiction of the rotational velocity components experienced in the 1-frame

in which the third component of Eq. (5.66) is forced to zero and the y-axis of the
w-frame will deviate from true north by an angle «, referred to as the wander
azimuth angle (Bekir 2007). This angle is initialized when initiating the trajectory.
In the wander frame, the wander azimuth angle between the true north and the
y-axis of the frame varies as the vehicle moves. The output parameters of the
w-frame mechanization are eventually transformed into the 1-frame.

The angular rate vector of the wander frame with respect to the 1-frame can be
expressed (Jekeli 2001) as

o, =[0 0 &’ (5.67)

and the angular rate of the wander frame with respect to the e-frame is

wl, = o), + o), (5.68)
o 0
wiw = | Acos |+ 10
! Asin @ o (5.69)
-
o, = 2.c08 ¢
_/.1 sin ¢ + &

and therefore the rotation rate of the w-frame with respect to the e-frame, resolved
in the w-frame, is
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o’ =R'o (5.70)

ew

where R} is the rotation matrix from the I-frame to the w-frame. It is simply the
transpose of the matrix R{V defined in Chap. 2 as

cosoe —sina O
R = |sina cosa O (5.71)
0 0 1

To force the third component w, of Eq. (5.66) to be zero we must ensure that
4= —Asing (5.72)

The mechanization equations are equivalent to those of the I-frame except that
all the notations are for the w-frame rather than for the I-frame

P D'y
V= [ RE - (2Q + QU )V + 8" (5.73)

5.4 Parameterization of the Rotation Matrix

The solution of the mechanization equations requires the parameterization of the
rotation matrix Rﬁ). The three most common methods are Euler angles, direction
cosines and the quaternion. Euler angles require only three independent parame-
ters. Direction cosines require nine parameters, six of which are independent. Both
of these methods are computationally expensive and therefore inappropriate for
real-time computations. Furthermore, Euler angles are prone to singularities. The
six independent kinematic equations involved in the derivative of the rotation
matrix R} = R)Q!, cannot be solved in closed form, and require numerical
integration. The most effective way of parameterizing the transformation matrix is
therefore to use the quaternion method.

5.4.1 Solution to Transformation Matrix
The time rate of change of a transformation matrix from the body frame into a
computational frame k is

RE = REQ, (5.74)

For the general case (and for simplicity) we shall delete the superscripts and
subscripts


http://dx.doi.org/10.1007/978-3-642-30466-8_2
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R =RQ (5.75)

where R is the transformation matrix from the body frame to the computational
frame, and Q is the skew-symmetric matrix associated with the angular velocities
Wy, Wy, ®; of the body frame with respect to the computational frame

0 -w, o
Q=| o, 0 —o (5.76)
—w, 0

Equation (5.75) requires the solution of nine differential equations in order to
obtain the transformation matrix from the angular velocity data. A closed form
solution of this equation will now be discussed.

Assuming the angular velocity @ is constant over the small time interval Az,
then the small incremental angular changes of the rotation of the body frame with
respect to the computation frame k is

0, WAt
0= 10, = /wdt = 0Ar = | wyAt (5.77)
0, w, At

and the solution to Eq. (5.75) can be written (see Appendix A) in a recursive form
as
Riy1 = Rkefgdt

— RkeQAt

= (QAN)"
n=0

n:

o) Sn
Rii1 = Ry Zﬁ (5.78)
n=0 """

where S = QA¢ is the skew-symmetric matrix of vector § = (HX, Oy, HZ)T such that

0 —w. At w,At
S=| wAt 0 —w, At
! —wyAt w At 0 (5.79)
0 -0, 0,
S=| 0, 0 -0
| =0, 0, 0

The matrix S has the following characteristics

S = —|0]°s; §* = —|0]25%; 5% = |0]'S; $° = |0|'s? (5.80)
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where |0°= (o)fC + w% + w?) A%,
Equation (5.78) can be expanded as
s 2§ s 8
Riy1 = Rk[l-i-l'-i- +3'+ +5'+ } (5.81)

and in view of the characteristics of Eq. (5.80) this becomes

L e e [
Riv1 =Ry I—&—S—I—E—?S— 4'S+5'S—|— 6'5_"' (5.82)
which can be rearranged as follows
1
Rt = R+ (3= 0P+ o= )52+ (1= S0P+ ol )]
(5.83)
We know from the definitions of the sine and cosine series that
) 03 05 07
smH:@fﬁJrﬁf o +.
sin 0 0> o0 o
—_— =]l -t —= .84
0 3 + 517 +. (5.84)
and
0 B 2 04 06
cosf =1 —E—kz—a—i—...
0> 0 °
1—0030*§—m+6' +.
l—cosf 1 6 ¢
702 :5_14_6' + . (5.83)

Equations (5.84) and (5.85) enable Eq. (5.83) to be rewritten as

. .
Risi = Ry <I+ SI|“9||O|S l;‘f'e' SZ> (5.86)

and by letting s = Sil‘:)"o‘ and ¢ = 1—‘ce_<|>;\9| we get

Rip1 = Re(I + 58 + cS?) (5.87)

The above equation allows the direct determination of the transformation matrix in
the computational frame from the observables (rotation w) in the body frame.
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However, this equation offers no particular advantage over the quaternion
approach (discussed next). It may be noted that the first-order approximation of the
Eq. (5.87) for a small value of angle 0 is

Ris1 = Re(I+S) (5.88)

5.4.2 Quaternions

Solving the mechanization equations requires the parameterization of the rotation
matrix Ré. The most popular method is the quaternion approach (Kuipers 1999).
Euler’s theorem states that the rotation of a rigid body (represented by the body
frame) with respect to a reference frame (in this case the computational frame) can
be expressed in terms of a rotation angle 0 about a fixed axis and the direction
cosines of the rotation axis that define the rotation direction. Figure 5.8 represents
a quaternion where 0 is the magnitude of the rotation and o, § and y define the
orientation of the unit vector ‘n’ that lies along the axis of rotation.

A quaternion is a four-parameter representation of a transformation matrix that
is defined (Rogers 2007) as follows

0, 0

q1 Hgslnj

L. H

g2 | _ | psing
q= =143 (5.89)

q3 % gin 2

0 2

q4 cosg

. . 0, 0 .
where 0 = ,/0)2( + 03 + (9? is the rotation angle, and %77) and 5 are direction

cosines of the rotation axis with respect to the computational frame.
The components of a quaternion are related by the constraint

2., 2, 2, 2
Hta+ata =1 (5.90)
This indicates that three independent quaternion components are sufficient to
describe the rotation of a rigid body.
The quaternion parameters are functions of time, and the associated differential
equation is

4=5Q(w)q (5.91)

N —

where Q(w) is the skew-symmetric matrix of the following form
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Fig. 5.8 Spatial representation of a quaternion in relation to the reference frame XYZ

0 W, —o, o o .

_ _ ! —83x3 1 M3y

Q)= | @ O e oy e T (5.92)
Wy, —, 0 w, )
—w, -, —w, 0 —ol , 0

. . T . . . .
in which o = (a)x, Wy, wz) is the angular velocity of the body rotation and Q is
the skew-symmetric form of .

5.4.2.1 Relationship Between the Transformation Matrix
and Quaternion Parameters

Once the quaternion parameters are known at a certain time, the rotation matrix R
can be obtained using the following direct relationship

"R(1,1) R(1,2) R(1,3)
R= |R2,1) R(2,2) R(2,3)
|R(3,1) R(3,2) R(3,3)

G -B-B+E 29— 43q4) 2(q195 + q2q4)
= | 2(qe+9p9s) —a+a—a+a; 2(q293 — q194) (5.93)
| 2(q195 — q294) 2q2q3 + q194)  —41 — @+ G5+ 43
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After determining the initial rotation matrix from the attitude angles measured
during the alignment process, the initial values of the quaternion are calculated as

q 0.25{R(3,2) — R(2,3)}/q4
@ | _ 0.25{R(1,3) = R(3,1)}/q4 (5.94)
3 0.25{R(2,1) — R(1,2)}/q4 '

a1, L[05V1+R(1,1)+R(2,2)+R(3,3)

5.4.3 Solutions of the Quaternion Equation

5.4.3.1 Discrete Closed form (Analytical) Solution

During a short interval of time At, the angular velocity of the rotation @ can be
presumed constant, and the closed form of the discrete solution to the quaternion
Eq. (5.91) is

1
Qe r1 :ef ZQ(U))dI(Ik
Qo :e%Q((/))Atqk
8] 1 _
Q1 = (Z Znn'Q”(w)At"> 9 (5.95)
n=0 :
By the definition -
S =Q(w)At
[0 W, -0,
S —, 0 Wy o, As
N w, -, 0 o
|-y —w, —w, 0 (5.96)

[95]]
I
»

| -0, -6, =0, O

it may be noted that the matrix S has the following properties

§* =01

$=—0*s; §t=-085 (5.97)
$=0'S;, =08

and therefore Eq. (5.95) becomes
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o0 1 -
Q1 = (Zis )‘lk (5.98)

n=0

As discussed earlier for the rotation matrix R, and from the above mentioned
properties, a similar approach can be adopted to solve Eq. (5.98) as

1 0 2. 0.
Q1 = G +§ {2(0055 - 1)I+551n5S(a))} qx (5.99)
where 0 = ./0?—&—954—03.

5.4.3.2 Numerical Integration Methods

If the rotation rate is slow, then standard numerical integration algorithms can also
be used to solve the differential Eqgs. (5.75) and (5.91).

Euler’s Method

For a first-order differential equation

dy

a :f[xvy(x)]v y(XO) =Yo (5100)

the solution using Euler’s method is

Yi+1 — Yk
Yetl 7Yk _ £,

Ax 1, yi) (5.101)
Vi1 = Yk +f (xe, ye) Ax

Applying this concept to the quaternion equation q = %Q(a})q gives

1=
Qer1 = Qi + §Q(wk)qkAt (5.102)
Since truncating the series expansion of analytical solution (5.95) yields the

same result as Eq. (5.102), this represents the first-order approximation to the
analytical solution given by Eq. (5.99).

5.4.4 Advantages of Quaternion

The quaternion method offers advantages (Rogers 2007) for the parameterization
of the rotation matrix RZ, namely:
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a. Only four equations are solved numerically instead of six differential equations
when the rotation matrix R} is manipulated directly by using directions cosines.

b. The quaternion solution avoids the singularity problem that can arise when
Euler angles are used.

c. The quaternion computation is relatively simple to perform.

The disadvantages of the quaternion method include the presence of non-linear
terms in the result and the need for renormalizations in the computational cycles.
Table 5.1 lists the pros and cons of parameterizing the transformation matrix using
the three methods mentioned.

5.5 Step by Step Computation of Navigation Parameters
in the 1-Frame

Owing to the advantages offered by mechanization in the 1-frame (as discussed in
Sect. 5.3.3) many applications prefer to implement mechanization in this frame of
reference. Before we delve into the mathematics, let us review the steps of the
mechanization process in the 1-frame.

a. Obtain rotation rates (wy,w,,w.) from the gyroscopes and accelerations
(f,fy,f2) from the accelerometers. These measurements are in relation to the
inertial frame resolved into the body frame, and they constitute the IMU
outputs.

b. Calculate the attitude angles of pitch, roll and azimuth (p,r,A) in terms of the
rotation rates (wy, @y, w;). This involves the computation of Rﬁ,.

c. Use R/ computed by the previous step to transform the specific forces in the
body frame to the navigation frame, yielding the accelerations in the local-level
frame (f;. fy. f,)-

d. Since accelerometers also measure gravity and Coriolis forces, we must com-
pensate for these effects.

e. Calculate the east, north and up velocities (V,,V,,V,) by integrating the
transformed specific forces (f;,f,f)-

f. Calculate the geodetic coordinates of the position (¢, 4, /) by integrating the
velocities.

The mechanization equations in the 1-frame are reproduced here for reference
and to assist understanding of the ensuing material

l-,l D! Vl

V| = R - ool g g
» b b

R, R,

and mechanization in the l-frame is summarized the Figure 5.9.



Table 5.1 A summary of the characteristics of various methods for the parameterization of the transformation matrix

Methods

Advantages

Disadvantages

Euler Angles

Direction Cosines

Quaternion

Only three differential equations are needed (three independent parameters)
Direct initialization from roll, pitch
and yaw angles.
Linear differential equations
No singularities
Direction computation of the transformation matrix
Only four differential equations
No singularities
Simple computation
Only three differential equations are needed (three independent parameters)
Direct initialization from roll, pitch and yaw angles

Non-linear differential equations

Singularity occurs as the angles approach +90°
Order of rotation is important

Six independent differential equations
Computationally complex

Euler angles are not directly available

Euler angles are not directly available
Transformation matrix is not directly available
Initial conditions using Euler angles are required
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Fig. 5.9 A detailed diagram of mechanization of an INS in the local-level frame
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It should be noted that the rotation rate of the I-frame due to the Earth’s rotation
rate o', and movement on the curved surface of the Earth o, must be compensated
from the measured angular rate of the body wf’b prior to integration. Similarly, the
Coriolis acceleration due to the Earth’s rotation !, and movement of the 1-frame

over Earth’s curvature Qil must be subtracted from the measured specific force f°.
The mechanization algorithm provides the position, velocity and attitude
components of the moving platform in the following format

e The position in geodetic (curvilinear) coordinates (¢, A, h)
e The velocities along the east, north and up directions (v, vy, v,)
e The attitude angles as roll, pitch and yaw.

Mechanization in the I-frame is more intuitive for navigation on or near the Earth’s
surface because the position of the moving platform is provided in familiar map
coordinates (latitude, longitude and altitude) and its attitude is given as angles in the
familiar roll, pitch and yaw scheme. Also, the gravity model for the 1-frame is simpler.
However, additional computations are required to remove the effect of changes in the
orientation of the 1-frame which are not caused by the movement of the body itself.

5.5.1 Raw Measurement Data

The output of inertial sensors can sometimes (and especially for low cost sensors)
be the angular rates and specific forces rather than incremental values. Because we
require incremental values for our algorithms the angular rates and specific forces
must be changed to their incremental counterparts as follows

AV = fP At
b p (5.103)
AO;, = @y At
where
fb is the specific force (i.e. the output of the accelerometer) (in m/sec?)
(I)f?b is the rotation rate of the body frame with respect to the inertial frame,

resolved in the body frame (i.e. the output of the gyroscope) (in radian/sec)

AP is the change in specific force during the time interval t (i.e. the
velocity) (in m/s)

Aéf’h is the change in angular rate during the time interval t (i.e. an angle) (in
radians)

At is the sampling interval (i.e. the reciprocal of the sampling frequency)
(in sec)
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5.5.2 Correction of the Measurement Data

Although inertial sensors are calibrated in the factory they are usually recalibrated
in the laboratory, as explained in Sect. 4.13. As a result of this calibration the
biases and scale factors of the sensors are computed and subsequently compen-
sated for in the raw measurements in order to obtain corrected measurements using
the following relationship

b
ADY, — beyrot

Ae?b =
L s (5.104)
A — AV — by At
1+ Sace

where
beyro i the drift of the gyroscope (in radians/sec)
Seyro 18 the gyroscope scale factor (in ppm)
buce is the bias of the accelerometer (in m/secz)
Sace is the accelerometer scale factor (in ppm)
Aoibb is the corrected incremental gyroscope output (in radians/sec)

Av? is the corrected incremental accelerometer output (in m/s)

5.5.3 Calculation and Updating of Rotation Matrix

In I-frame mechanization the updated rotation matrix RZ transforms the sensor
outputs from the body frame to the I-frame, which requires a determination of the

angular increment Of’b of the body with respect to the 1-frame.

5.5.3.1 Computation of Angular Increment of Body Rotation

The angular rate of the body with respect to the 1-frame @, is

oh = o, — o) (5.105)

o, is the rotation rate of the body frame with respect to the inertial frame,
resolved in the body frame (i.e. the output of the gyroscope) (in radian/

sec)
wf’l is the rotation rate of the l-frame with respect to the inertial frame,

resolved in the body frame
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Furthermore, wﬁ’l can be computed as

o)) = Rl o), (5.106)

where
wﬁz is the rotation rate of the l-frame with respect to the inertial frame,
resolved in the 1-frame
RY s the rotation matrix from the 1-frame to the body frame

The rotation rate of the 1-frame @/, can further be written as

ol = o), + 0, (5.107)
where wfe is obtained as
o), =R o, (5.108)

. . l .
Substituting for R, and w¢, gives

—sin cos A 0 0
ol, = | —sinpcos) —singsinl cosg 0 (5.109)
cospcosl  cosgsind  sing W,
0
o, = | w,cos @ (5.110)
W, sin @
and the transport rate o/, is
Vn
e K
W, = |Acosqp | = Na+h (5.111)
Asin () Ve tan ¢
N+h

After finding the values of the appropriate terms through the above procedure
and substituting them into Eq. (5.105), the equation is integrated for interval Af to
obtain the angular increment of the body rotation with respect to the I-frame

0 =0, —0, (5.112)

which can be expanded into component form as

sz X HZb X BZIY x
Ony | = | Oy | — | Oy (5.113)

b b b
Olh,z Oib,z 0; .
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5.5.3.2 Updating the Quaternion
The quaternion can be updated by any of the methods described in Sect. 5.4.3, but

we will illustrate the analytical method here.
The closed form solution of the quaternion equation is

1 0 2.0
Q1 = G +§ {2<cos§ - I)I—l—asmES(a})} qx (5.114)

and the expanded component form is

@ @ c Ew;b,zAt fﬁwfbyAt Ea)gb,zAt @
a0 e 1 —wab,ZAt c Ew§h7xAt S‘wﬁb_’yAt 9
- T3 <o Sl = Sl
qs qs 2| soy, At —sop, At c soy, At E
94 ke L9414 —sop, At —swp, At —s0), At ¢ | Ldw
(5.115)
< <pb <gb  <pgb
q1 qi ¢ , § 0_1b7z - ‘an ¥ oib,z q1
92 _ |4 _|_1 —50y, . ¢ 5O, 5Oy, q2 (5.116)
s gs | 2| sey,, —s6;,. ¢ 50 | |4
b —nb —pb <
94 1 k11 94 |k =50, —s0,, —s0;,, c |, 94 1k
The terms s and ¢ are defined as
_ 2.0
s = —sin— 5.117
§ =gsing ( )
_ 0
c=2 cosi—l (5.118)

The magnitude of the incremental angle of the body rotation about a fixed axis

is therefore
0= \/ (of’,,‘x)zjt (oj’b,y)2+(0§’,,ﬁz)2 (5.119)

5.5.4 Attitude Computation

Once the quaternion has been computed at epoch k + I, the transformation matrix
RL can be obtained using the following relationship
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R = | R(2,1) R(2,2) R(2,3)
R(3,1) R(3,2) R(3,3)
(-G -G+ a 2192 — q3qs) 2(q193 + q2q4)
= | 2Aqn+apan) —-A+E-B+494G 29935 — q1q4)
| 2(q195 — 92q4) 2qq3 + q194) —G - B+ B+ 4

(5.120)
where (in accordance with Chap. 2) the actual elements of the matrix Ré are

cosycosr —sinysinpsinr —sinycosp cosysinr + sinysinpcosr
Rlb = | sinycosr+4cosysinpsinr cosycosp sinysinr — cosysinpcosr
—cospsinr sinp COSpCcosr

(5.121)

Once the updated transformation matrix R, is known, the attitude angles can be
computed as

pitch = sin™" [R}(3,2)] (5.122)
I
yaw = —tan”~ [RZE : ;] (5.123)
~ tan! R;(3,1)
roll = —t [Rlb(373)} (5.124)

5.5.5 Velocity Computation

The mechanization equation for the rate of change of velocity in the 1-frame is

vi= R — (20, + Q) + ¢
AV

— = R — (20, + QL) + ¢ (5.125)

AV = RUfP At — (290, + QL )V At + g At

AV = AV — (200, + QL)W At + g/ At (5.126)
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where
AV is the measured velocity increment after transformation to
the 1-frame
(2Q§e + Qi I)Vl Ar s the Coriolis correction that compensates for the Earth’s
rotation and the resulting change of orientation of the 1-
frame
g'At is the gravity correction

Because the z-axis of the 1-frame is defined to be normal to the ellipsoid, the
normal gravity vector is zero in the other axes
! T
g=[0 0 —g] (5.127)
The gravity component g is calculated (in accordance with Chap. 2) as
g=ai(1 +axsin® ¢ +assin® ) + (ay + as sin @) h + agh? (5.128)

Now the velocity at the current epoch can be calculated by the modified Euler
formula

Vie, = Vi + .5(AV + Avi,) (5.129)

T
where V! = [v, v, v,]".

5.5.6 Position Computation

The position coordinates for the I-frame (i.e. latitude, longitude and altitude) are
calculated as follows.
The rate of change of latitude is

b =—" (5.130)

therefore

1 |:vn,k + vn,k+l:|

(Pk+1:q)k+§ Ry +h

At (5.131)
The rate of change of longitude is
: v
A=t 5.132
(Rn + h) cos ¢ ( )

therefore
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1 (Ve,k + Ve,k+l)

Jp1 = 4 e 5.133
ke Ak+2(RN+h)cosq) ( )
The rate of change of altitude is h= v, therefore
1
P = b + 5 ("uAk + Vu7k+l)At (5.134)

Appendix A

Solving the equation of the form y = yx

y=yx
dy
Y x
dt >
d
—yzxdt
y

In(y)[}i"'= /xdt
In(yes1) — In(ye) = /xdt

In (y"—“) - / xdt
Vi

Vil _ B f xdt

Yk

Yi+1 = }’kefm
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Chapter 6
Modeling INS Errors by Linear State
Equations

The accuracy of an INS is affected by various sources. These include errors during
the initial alignment procedure, sensor errors, and the limitations of the processing
algorithm. To see the effect of these errors on the navigational output parameters
(position, velocity and attitude) it is vital to understand their propagation through
the navigation equations. Once the nature of the errors is known, one can mitigate
them by proper modeling and estimation techniques. This usually requires external
aiding sources in order to limit the errors and predict their behavior. Hence error
models are required for the analysis and estimation of the error sources associated
with any inertial navigation system. The estimator options include Kalman filters
(KF) (Karamat et al. 2009; Noureldin et al. 2009), particle filters (PF) (Georgy
et al. 2008, 2010, 2011) and artificial intelligence (AI) techniques (Noureldin et al.
2007; Chiang et al. 2006). Traditionally various forms of KF are used for sensor
fusion and therefore we will restrict ourselves to this technique.

Mechanization equations describe physical process by a deterministic dynamic
system. Navigation parameters can be determined using these state equations by
taking kinematic measurements along a nominal trajectory. Since the solution of
these equations incorporate errors (both deterministic and stochastic), sensor error
models are required for analysis and estimation purposes. The errors of dynamic
systems are variable in time, and are therefore described by differential equations.
And since these equations are non-linear, we must linearize them prior to applying
Kalman filtering.

In general a dynamic non-linear system can be expressed by a set of first-order
differential equations as follows

X(l) = f(x, t) (6.1)

where X is a vector of internal parameters of the dynamic system that is referred to
as the state vector. The exact values of x are usually not known, and only an
approximate value can be computed based upon the nominal trajectory and noisy
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measurements. For inertial systems, the output of mechanization can be thought of
as a nominal trajectory.

After linearizing Eq. (6.1) about a nominal solution (see Chap. 2 for the detailed
derivation of the linearization) and retaining only the first-order terms

ox(r) = @&(z) (6.2)
By letting
iy = 70

and substituting F into Eq. (6.2) we obtain linearized error state equation of the
non-linear system

Sk(1) = Fy(£)ox(1) (6.3)

For the inertial navigation system, the state vector dx consists of the position
errors, velocity errors, attitude errors and the errors in the inertial sensors. The
matrix F is called the dynamic matrix which propagates the errors over time.

Since inertial sensors (accelerometers and gyroscopes) contain both correlated
and white noise components we can rewrite Eq. (6.3) as

0x(t) = F,(t)0x(t) + Gw(?) (6.4)

where
w(t) are the random forcing functions, assumed to be Gaussian white
noise associate with the inertial sensors
G is the noise distribution matrix.

6.1 Local-Level Frame Error State Equations

The navigation equations can be mechanized in the i-frame, e-frame or l-frame as
detailed in Chap. 5. That said, mechanization equations are usually sought in the
I-frame because of the advantages mentioned in that chapter. The derivation of the
error state equations in the 1-frame is more complex. However, once understood,
the equations for the other frames can easily be derived based on the knowledge of
I-frame error state equations. As this will be briefly illustrated later in this chapter,
here we will focus on the I-frame error state equations so that the reader will gain
sufficient understanding of the procedure to be able to implement the algorithm.

As explained in Chap. 5, the mechanization equations in the I-frame can be
expressed in a compact form as


http://dx.doi.org/10.1007/978-3-642-30466-8_2
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i Dy
V| = R - 0, + Q)Y 1 g (6.5)
R, Ry (%, — )

The error state vector for the mechanization equations in the local-level frame
consists of the errors along the curvilinear geodetic coordinates (latitude error
d¢, longitude error 4/, and altitude error oh), the errors along the Earth-refer-
enced velocities (east-velocity error dv,, north-velocity error dv,, and up-velocity
error J0v,) and the error along the three attitude angles (pitch error dp, roll error
or, and azimuth error JA). It also includes the accelerometer biases and gyro
drifts. The complete vector of error states is therefore

T
X115><1 = [51'13“75"{3“78{3“,5(03x1,5f3x1] (6.6)

where

orl = [5¢, 87, 5}1]7 is the position error vector

oVl = [6v,, vy, (3vu]T is the Earth-referenced velocity error vector

gl = [op, or, 5A]T is the attitude error vector

Sm = [560x, day, 560z] T is gyroscope error vector (consisting of drifts)

S5f = [5fx , 0f,, Of- ]T is accelerometer error vector (consisting of

biases).

6.1.1 Position Errors for Local-Level Frame
From Eq. (6.5) the relationship between the time rate of change of coordinate
vector r/ and the Earth-referenced velocity vector v/ is

i =DV (6.7)
where

i' = (¢,4,h)

Vl = (Ve; Vn, Vu)

1
1 (1) (Ry+h) 0
b= (Rn+h) cos ¢ 0 0
0 1

Substituting these terms into Eq. (6.7) gives



204 6 Modeling INS Errors by Linear State Equations

(:P 0 (RM]+h) 0 Ve
/.{ - (RN+hl) cos ¢ 0 0 Va (68)
h 0 0 1] [Vu

The error in the coordinate vector is the difference between the true coordinate
vector r! and the one computed during the INS mechanization # ! The time rate of
change of this error or! is

o =1 —F (6.9)

As discussed earlier, by employing the Taylor series expansion to a first-order
approximation it is possible to express the time rate of change of the coordinate
error OF as

0 )
1
5 w0 [ ve (6.10)
.1 _ 9 !
- a RN+h ) cos ¢ 0 0 vn or
0 1 Vu
1
, 0w O ve
or = (RN+h) cos @ 0 0 51/” +
0 0 1] [0 6.11)
6.11
—dh
0 (Ry+h) 0 Ve
tan @ oh
(Ry+h) cos @ (Ry +h)2 cos @ 0 0 Y
0 0 0fLV

The next two steps will manipulate the second term in this equation.

r 0 Rk RMI ) 07 [ ov.
.[ _ 1
or = ReThoos 0 0f|0v|+
i 0 0 1 5\)”
- L (6.12)
(Ru+h)
{ tanpdp oh }V
(Ry+h)cos@  (Ry+h)?cosef ¢
L 0

The second term on the right-hand side of this equation can be rewritten as the
product of a matrix and a vector of position errors
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r 1
O mem O [ov
.l 1
or = (Ry+h) cos ¢ 0 0 51),, +
L 0 0 1] o 6.13)
—v 13
0 O Gy o9
Ve tan @ —Ve S
(Rn—+h) cos ¢ 0 (Ry+h)* cos ¢ 0/
0 0 0 oh
The reader should recall that 1 = Mm and ¢ = Rﬁ:’;h. The above equation

and similar ones that will appear later in this chapter may use either /S and ¢ or
their right-hand-side equivalents. It should also be noted that the terms which
involve the reciprocal of the square of the Earth’s radius (Ry; or Ry) are very small

and can be neglected. These include —2— and Ve . Furthermore, the
(Ry+h) (Ry+h)” cos ¢

second term of the above equation involves multiplication of (R‘”&

N-+h) cos ¢
with the latitude error d¢. This will lead to a relatively small error quantity that
can also be neglected. Therefore the time rate of change of the coordinate errors

can be reduced to

(or J tan ®)

P I I
r = I e yn 0 0 Vi .
s (RN-H(l)) cos @ 0 { 5\/”

which can be written more compactly as

oF = DoV (6.15)

6.1.2 Velocity Errors for Local-Level Frame

From Chap. 5 we know that vehicle accelerations are obtained from the specific

force measurements f? after compensating for both the Coriolis acceleration and
the effect of gravity.

V=R - 20, + Q) + ¢ (6.16)

el

Taking into account the errors in the measurements

i = (I+ V)R, (£ + of") — [2(CY, + 6Q,) + QL + sQL)] (v + V') + (g’ + og')
(6.17)

sl . .
where v = v/ + oV
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After mathematical manipulation of this equation and discarding the second-
order terms, the error on the velocity states becomes

oVl = WRLE” + R ot? — (20, + QL)ov! — (26€Y, + 6QL)V + g’ (6.18)

Recalling that f/ = Rlbfb, and applying the skew-symmetric matrix property
Ab = —Ba, we finally get

oV = —F'e' + Rt — 2(Q, + Q')ov! + V! (200!, + da) + g (6.19)

where
F! is the skew-symmetric matrix of the corresponding specific force
vector f'
V! is the skew-symmetric matrix of the corresponding velocity vector v/

og! is the error in the normal gravity vector
5mfe is the error in the rotation rate of the Earth, resolved in the I-frame

dwl, is vector of the error in the angular velocity vector o',

Now we will explore Eq. (6.19), which describes the velocity errors, and
expand the components in a matrix form to get a sense of what these terms really
are. The terms are labeled as follows

el

oV = —141*’8’ + RO —2(Q + QL)ov + V! (200!, + dl) + og  (6.20)
2 3 4 5

We will start by expanding the first term of Eq. (6.20)

0 fu _fn 5p
—Fld=|—f, 0 f ||or (6.21)
fi ~f. 0 [|[oA

where f,, f, and f, are the body accelerations along the east, north and up
directions.

In the second term of Eq. (6.20) the accelerometer biases of” are transformed
from the body frame to the local-level frame using the R/ matrix

Rii Rix Riz| | dfs
Rot" = |Ry Ry Rx||df (6.22)
R3i Ry Rsz | | of:

For the third term of Eq. (6.20) we use the following definitions (from Chap. 4)

=9 0 OVe
o, = 4.c0s @ o, = | w,cosp |0V = | ov, (6.23)
Asin @ W, sin @ ovy

to obtain
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0 —w,Sin@  w,Ccos @
W, sin @ 0 0 +
—m, cos 0 0 Ve
! Iy sol e COS @
—2(Q;, +Q,)ov = -2 . . OV
0 —Asing Acos¢@ o,
Asin @ 0 1}
—J.cos @ —Q 0
(6.24)
0 (2we+4)sing —(2w,+ 1) cosg] [ve
—2(Q +Q)OV = | —(20, + ) sing 0 — oV
(2w, + ) cos ¢ 10) 0 ovy
(6.25)

Now consider the fourth term of Eq. (6.20). Given the definitions of wfe and cold
in Eq. (6.23) we can obtain do', and dw!; as follows

0 —0¢
5wf€ = | —w, sin pdo |, 5wlel = | —Asin @@ + cos pdi (6.26)
W, COS PP Acos @ + sin @O
Therefore
0 —0¢
(200!, + dol)) =4 | =20, sin de |+ —).sin 3¢ + cos P
2w, cos POP J.cos 3¢ + sin i
h 50
(200!, + dal;) = | =20, sin pde — J.sin @ + cos @
20, c0s P3P + J.cos pdp + sin @I
! W, COS @ qo+/'ucosq) @ +sm e (6.27)
3¢
(200!, + d0,)) = | —(2w, + 1) sin pde + cos I/
| 2w, + i) cos P + sin pd
[ 0 —6¢
(200}, + d0l)) = | — (20, + A) sin @dg | + | cos o
| (2w, + 1) cos sin o/
0 0 0] [de
(200}, + dal)) = | —(20, +A)sing 0 0] | 64

2w, +A)cosp 0 0] | oh
-1 0 0] [d¢
+10 cosp 0|02 (6.28)
0 sing O |dh
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Substituting for [0, 32, 0h)" from Eq. (6.13) into (6.28) gives

0 00 op
(200!, 4+ 00') = | —(2w, + ) sing 0 0| | 04 |+
2w, +A)cosp 0 0
1
@iy O] [ 0ve
RN+h cos @ 0 OV,, +
—1 0 0 0 1 5‘}”
0 cosep O )
—¢
0 sing O 0 R th) | | 00
Jtang 0 <R;ih> 04
0 0 0 oh
(6.29)
0 0 07 [d0 0 w0 [ov.
(200, + d0l) = | —(2w. + )sing 0 0| | 02| + | mis 0 0| ov, |+
(2w, +4)cosp 0 0 [ ok Gy 0 0 Low
0 O @& | [50
Jsin @ 0 ?I;Vci;‘f )
} . —Jsing oh
isinptang O Ruth)
(6.30)
Adding the first and third terms on the right-hand side
0 O (RM(Z*/’I)
. —).¢cos 5(p
—2w, sin @ 0 —Leose
(200, + dol) = , R oo |+
(2w, + 1) cos @ o clsing Sh
. h
+Asin ¢ tan ¢ e (6.31)
0 Ry +h) v,
1
w0 Opjow
tan ¢ 0 O 5‘}”
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0 0 (RM(erh) 5S¢
(200, + d0l;) = —2w, sin ¢ 0 - (j;;/:voj’l(f) oA |+
2w, c0s ¢ + A(cos ¢ + %) 0 - (;37:17;) ok
0 m 07 Tov,
w0 O | 6w,
e 0 o Lov,
(6.32)
Using the definitions ¢ = (RA:—“M) and A = m gives
0 O ®mir | [o
(200, +dl) = | T2oesing 0 mEIgE L Sh |+
0 (Rﬁ;j-h) 0 OV,
m 0 Of |dv,
w0 0 Lov

Ignoring the terms which are divided by (Ry + h)* or (Ry + h)* (as explained
earlier) yields

0 0 07 [de
(200}, +dwl)) = | —2wesing 0 0| | 55|+
2w, cos ¢ + Cof;f 7 0 0 oh
_ 6.34
0 (RMih) 0 OV, ( )
1
(Ry+h) 0 0 Ovn
tan
ey 0 0] Lov
The skew-symmetric matrix of the velocities is given as
0 —v, v,
Vi=|lwvw 0 —v (6.35)
—Vy Ve 0

Multiplying the above matrix with Eq. (6.34) yields the fourth term of the right-
hand side of Eq. (6.20)
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20, (v, sin @ + v, cos @) + vl () () 10

cos ¢
1 ! I\ .
V (25(1)1-6 + 5wel) = 72(,06‘}6 cos qD _ CZ;);/, 0 O 5}» +
. oh
—2W,V, 0 0
v V—vsnl (pv tan @ (636)
®oin Twey O O [ov,
?;;ﬁr;z;p (Rﬁ_ﬂh) 0 OV
R T w0 az

The final term on the right-hand side of Eq. (6.20) is the error in normal gravity
due primarily to the error in the altitude

ogl=1 0 (6.37)

where g represents the normal component of gravity and R is the mean radius of
the Earth.

By combining Eqgs. (6.21, 6.22, 6.36 and 6.37) we get the complete definition of
the time rate of change of the velocity errors

0 fu —ful||P Ry Ry Riz|[of
V=1~ 0 fo||r|+|Ry Ra Rxu||0f|+
S —fe O A R3i R Rsz| | 9f
1 2
. Val 1 -.
2w, (v, sin @ + v, cos @) + = - 0 0 5o
—2wW,V, COS @ — Cf;;;p 0 0 oL |+
—2m,V, sin @ 0 %g_ oh
T + G (2we + 4)sing  —(2w, +A)cos | s,
—Asing — 2w, + A) sin ¢ @—Vﬁh) - ov,
7.c0s ¢ + (20, + 1) cos ¢ (R/%;thh) 0 ovy
(6.38)
Again the reader should remember that ¢ = (jorh) and /. = m, and

hence
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0 fi —fu]||0p Rii Rz Riz| | ofc

V=1 0 f or |+ |Ra Ry Ry | |dfy |+
o —fo O 0A R31 Ry Ry | O
1 2
_2we(vusin(p+vncosq))+m 00 )
2
72(1)51)6(:03@ 7(&\/‘*’)’/% 00 o4+
L —2w,V,sing 0 0] Loh
3
[ —v, )t . i A
(RNt#h) + (VRNTZ’) (2609 + (RN+‘;1)COS1/)) sme. — (2(0"' + (RN+;1)cos (/)) cos¢ 5Ve
ve ; —h vy
- <2we + (RN+h)cosw> s Rt 1) R 1) OV
ov
Ve 2v, u
L (2(}“)"' + (RN+;1)cosq7) cos (RMV+h) 0
4
(6.39)

The third and the fourth terms on the right-hand side of Eq. (6.39) contain
expressions where velocities are divided by the Earth’s radius or multiplied by the
Earth’s rotation rate. Some of them are also multiplied by the latitude or longitude
errors (in radians). As these terms are relatively minor they can safely be ignored
for most applications and Eq. (6.39) can be approximated as

Ove 0 fu —Sfullop Rii Riz Ruiz| | dfc
o, | = _fu 0 fe or | + Ry Ry Rxn 5f) (640)
oy o e O 0A R31 R Rsz| | df:

In general, f, and f, are very small acceleration components (close to zero) in
comparison to f,, which is close to the acceleration due to gravity (9.8 m/sec?).
Hence there can be strong coupling between dv, and dr, as well as between Jv,, and
dp. On the other hand, there will be weak coupling between dA and either év, or ov,,.

6.1.3 Attitude Errors for Local-Level Frame

The errors in the transformation matrix between the body and the computational
frames are caused by angular velocity errors in measuring the rotation between the
two frames. The Euler angles between the body frame and the 1-frame are obtained
from the transformation matrix Ré, which is gained (Schwarz and Wei 1999) by
solving the following differential equation

% b
R =R, (6.41)
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Taking into account the measurement and computational errors, the calculated
rate of change of the transformation matrix R, is

R =RIOY (6.42)
The computed transformation matrix Ré can be written as

R =R} + OR, (6.43)
By letting 6R. = ‘{’lRf7 we obtain

R, = (I+¥)R, (6.44)

where W' is the skew-symmetric matrix of the attitude errors arising from the
transformation errors

0 —0A or
Y=164 0 —dp (6.45)
—or Op 0

and the matrix (I + ‘Pl) is basically an orthogonal transformation that contains a
small rotation angle (expressed by ') between the actual and the approximate
computational reference frames.

To get the rate of change of the transformation matrix IAQZ in terms of the rate of
change of attitude errors &/, Eq. (6.44) is differentiated to yield

d . d
() =2 (ry + iRl
Y]

(6.46)
R, =R, + V'R, + ¥R,
and since R, = R,Q}
R = RO + WR + WRLQY, (6.47)
Now we substitute IAQL from Eq. (6.44) into Eq. (6.42) to obtain

R, = (I+ ¥R, (6.48)

and since QY = QY + Q0 this gives
R = (I+W)R, (Q + 5Q,) (6.49)
R, = (R, +WR) (@, + 60 (6.50)

R, = R.Ql, + RLOQL, + WRLQL, + WIRL QY (6.51)
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where 5921 represent the linear angular velocity errors.
Combining Eqgs. (6.47 and 6.51) gives

RO, + V'R, + WRLQ) = RLQY + RL6QL, + WRIQY 4+ PR 6O (6.52)

in which the following terms can be canceled from both sides

VR VR = AL R VR YRR,

'R, = R,&Q, ++¥'R,A;,

Substituting R, = W'R! gives
PR, = RLoQY, + OR., 50, (6.54)

and by neglecting the second-order effect 5R25§2;’b we get

vl pl [ 1)
WIRL = RL5Q,

. 6.55

W= R SQLRY (65)
which can be expressed in vector from as

¢ =R oo, (6.56)

This shows how the time derivative of the attitude errors & = [dp, or, 0A]" is
represented by angular velocity errors 5colbb. The angular velocity of the body

frame with respect to the l-frame, (bfb, is obtained by subtracting the angular
velocity of the 1-frame with respect to inertial frame ﬁ)f'l from the rotational rate of
the body frame as measured by the gyroscope (bf-’b, therefore

@), = @), — &)

b ib il
) b pad (6.57)
0, =0, —R/o;

and by linearizing this and neglecting the second-order terms the angular velocity
error da}, is

doy, = dwy, — O (Rj o))

5wf’b = 5wﬁ’b — 5R§’ wf, — R;’ 5wﬁ,

doy, = ooy, — (5R§;)T“’fz — Rjda (6.58)
Sy, = ooy, — (\PIRZ)wal — Rjd0x

b b bwl\T 1 bs |
ooy, = dmy, — R, (\P) w; — Rjday

By noticing that (‘PI)T: —¥! and rearranging
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Sol, = RiY' o}, — RV sol;, + darb, (6.59)
From the skew-symmetric matrix property Ab = —Ba, we can say that
Yo szs (6.60)

where (Y} is the skew-symmetric matrix corresponding to the vector @), and & is

the attitude error vector corresponding to the skew-symmetric matrix ¥'.
Substituting into Eq. (6.59) gives

dob, = —RQLg — RV ol + sl (6.61)

from which it is apparent that the error in the computed angular velocity do/, has
contributions from the coordinate transformation error & between the b-frame and
the 1-frame, the error in the angular velocities wf,, and the measurement errors
dab.

Substituting de}, from Eq. (6.61) into Eq. (6.56) gives

¢ =R, (—RIQLe — RV, + o)) (6.62)
and the set of differential equations for the attitude errors in the local-level frame

i = -Qle — s, + RS, (6.63)
where the vector &'contains the attitude errors dp, or, 5A, the vector 5wfl represents
the errors caused by navigation parameters errors (Jr, dv, etc.), the vector b,
depicts the errors in the measurement of body rotational rates, and the term €,
represent the skew-symmetric matrix containing the angular velocities for the
rotation of the I-frame with respect to the i-frame.

Now we will examine Eq. (6.63) in order to achieve a sense of what these terms
really are.

We can write dw!, as a combination of following two terms

S0, = dal, + dal, (6.64)

As shown between Eqgs. (6.26 and 6.33), we can express this in terms of position
and velocity errors

¢ -1
0 O @ | [o¢ 0 O] [ov,
Soly = | —w, sin ¢ 0 — (ARTVOiZ)) gi + W 0 0 gvn
). sin h tan Vu
, o8 ¢ + =% ¢ 0 - <§§}/ +‘}j) (Ry+h) 0 0
(6.65)

Similarly, Qll can be written as
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Q) =9, +9Q, (6.66)
0 —J.sin ¢ %cos ¢ 0 —w,sin¢  w,cos ¢
Q=1 sing 0 10) + | w,singp 0 0
—Jcos¢p —¢ 0 —wecos¢p O 0
(6.67)
0 - (we + /lg> sin ¢ (cog + /Ie) cos ¢
Q= | (@ +k)sing 0 é (6.68)
— (we + )e> cosp —¢ 0
Substituting Egs. (6.65 and 6.68) in Eq. (6.63) and rearranging the terms gives
r 1
0 w0 OVe Riy Riz Rz || oy
i = m 0 O |6v,|+ |Ra Rn Ru||dw|+
I &QL‘TZ&) 0 0| Lovu Ry Ry Ry | dw,
v 2
I 0 (coe + Ze) singp — (we + ie) cos ¢
op
— (we + Ae> sin ¢ 0 —(2) or | +
. . A
(we + )»e) cos ¢ ¢ 0
I -¢
0 O Tn | [09
. sin ¢ 0 - (ARfvoif) o/
2 J.sin 6h
| —®e COS ¢ + C();d) 0 - (R,sv+(/f)

(6.69)

The components of the third and the fourth terms are either divided by the
Earth’s radius (or its square) or are multiplied by the rotation of the Earth and as
such can safely be ignored for most navigational applications. This simplifies the
time rate of change of the attitude errors to

1
51) 0 (Ry+h) 0 5Ve Rii1 Ry Ry 5&))(
i = or | = (R;—ih) 0 O] |ova|+ |Rau Ry Ryl |do,
0A —tang 0l 6V R31 Ry Rs| | b,

(Ry+h)

(6.70)
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Fig. 6.1 The autocorrelation
sequence of a random
variable described by the
first-order Gauss-Markov
process

.y
R'\_‘\.(r)---(:r =

Y
-

in which it is evident that dr is coupled with dv,, and Jp is coupled with Jv,. These
implicit interrelationships are known as the Schuler effect.

6.1.4 Inertial Sensor Error States

The set of linear differential Egs. (6.15, 6.16 and 6.63) are non-homogeneous due
to the effects of sensor errors which are mainly gyroscope drifts and accelerometer
biases that possess deterministic as well as non-deterministic parts. The deter-
ministic part is computed during calibration in the laboratory and compensated in
the measurements. The non-deterministic part of the sensor errors is random and
modeled by stochastic models. These errors are usually correlated in time, and the
methods commonly used to model them include the random walk process, the
first-order Gauss-Markov (GM) process, and the autoregressive (AR) process
(Noureldin et al. 2009).

The first-order GM process is commonly used to model the stochastic sensor
errors, and its general form is

X = —fx+ /2p5*w (6.71)

where
x  is the random process
f is the reciprocal of the correlation time of the process
W is zero-mean uncorrelated Gaussian noise vector of unit variance
g2 is the variance of the white noise associated with the random process.

The first-order GM model is a decaying exponential autocorrelation sequence of
X, as shown in Fig. 6.1.
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6.1.4.1 Accelerometer Bias Errors

For accelerometer stochastic biases, the time rate of change of the accelerometer
bias errors can be expressed as

. 2 2
L [ B 0 0 [0k V2
0

o = |of | = By O Sy | + | \/2By0% [w(t)  (6.72)

of. 0 0 —B:] Lok
’ ) \/2Br%.
where

Br By B, are the reciprocals of the correlation times associated with the
autocorrelation sequence of Jfy, of, and Jf;

a]%ﬂ q}%y, JJ%Z are the variances associated with the accelerometer errors

w(r) is white Gaussian noise with variance equal to one.

6.1.4.2 Gyroscope Drift Errors

For gyroscope stochastic biases, the time rate of change of the bias errors can be
written as

5(:Ux _ﬁ(l)x 0 O 5(/0)6 V 2ﬁu)x6(zux
db»= o, | =| 0O —f, O oy | 4 | 1/2Buy02, |w(t) (6.73)

wy
da 0 0 — 0 Y
@z ﬁwz @z Zﬂ wz 0(2:)1

where
B Buys By are the reciprocals of the correlation times associated with
the autocorrelation sequence of dwy, dw, and dw;
62,02 a2  are the variances associated with the gyroscope errors

w(t) is white Gaussian noise with variance equal to one.

For both the accelerometer and the gyroscope error models, the white noise term
w(t) is of unity variance because the variance has been included inside the process.
The above equations for the stochastic drift and bias are in the b-frame and, being
independent of any reference frame, apply equally to all computational frames.

6.1.5 Summary of Local-Level Frame Error State Equations

From the position, velocity and attitude error state Eqs. (6.14, 6.40 and 6.70), and
the sensor error Egs. (6.72 and 6.73), the state equations for the INS error states in
the I-frame can be summarized in a compact form as
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b —(x 200 +Q ,
J‘EJ‘ [

Fig. 6.2 Flow diagram of the error state equation in the I-frame

[ o

ov!
()= &

5(1.);:,7

L of

r D 1ov!
—Flel —2(Q, + Q)ov! — V! (260!, + dcl,) + og' + R,

_ —Qll-lsl — 56051 + Rééw?b (674)
—ﬂwéwfb + /2p,02W
I —Bot” + (287w

where
[ —Bx 0 0
Bo=1 0 =B, O
L 0 L
_—ﬂfx 0 0
Br=1 0 =By O
L 0 0 *ﬁfz

The conceptual flow diagram of the above equations is shown in Fig. 6.2.
The above set of equations are the first-order differentiation of the error states
and can be represented in a compact form as

%' = F'x' + G'w (6.75)
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Now we expand Eq. (6.74) as Eq. (6.76) to present the individual terms to see
the overall picture and understand which terms are coupled together.

I
000 0 0O00 0 0 0 0 0 0 0 0
R, +h
e I =
pl1looo0 —— 0 0 0 0 0O O 0O 0 0 0 0 [dp
e (Ry +h)cos @ A
oA oA
v 000 0 O 1.0 0 0 0 0 0 0 L
i PP 0 o of0 1 o o o (B & &
5V . 1 &,
Sl 1o 0 o 0 o ofEf o 0o o o R R R
oV, 1 : oV,
oo o 0 0 0 —rou0M 0 o o WR. R R !
oV / / %
) .
spl looo 0 o0 o o & R R 0 0o 0 |s
F R, +h
S | = ] or [+Gw
S5y 00 0 0o 0 0 0 R R R 0 0 0 Sy
: Ry +h 2
[0) [0}
i tan ¢ ! !
so|l o 0 0o BE=—= o o 0o o o R RE R 0o 0 0 |se
¥ Ry +h L 3
% 1o 0 0 0 o 0 0 0 0 A O 0O 0 0 0 Zf"'
‘)f 000 0 00 0 0 0 0 - 0 0 0 0 ;_'
Tl 1o o o 0 o 00 0 0o 0 0 - o o o |
¥ .
Lofd 1o 0 0 0 o 00 0 o 0o o o 5 o o [9]
000 0 0 0 0 0 0 0O 0 0 0 -5 0
000 0 00 0 0 0 0 0 0 0 0 -B
(6.76)

The distribution vector of Eq. (6.76) consists of the variances and is

000000000 ,/2 2 /2 2
o V2Bon, 20y, /2B c0? 6

\/25fx% \/Zﬁfyqu‘_ \/Zﬁfzafz

6.2 Schuler Effect

The Schuler effect is related to the coupling in the horizontal plane between the
velocity errors dv, and dv,, and between the pitch and roll errors dp anddr. As will
be explained later, this coupling bounds the errors in both the horizontal and
vertical velocities and the pitch and roll angles.

6.2.1 Error Model Along the East Channel

From the modeling of the attitude errors in Eq. (6.70) the rate of change of the
error in the roll angle can be written as

or = Re héve + dwy, (6.78)
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And similarly from Eq. (6.40) the rate of change of the error in the east velocity
can be written as

Sip = f,0r — fu0A +0f, (6.79)
—

very small

For terrestrial navigation the acceleration component f, is relatively strong
(a value close to that of gravity) and it is usually much larger than f,. This results
in a strong coupling between ov, and Jr. And because the term f,0A can be
neglected Eq. (6.79) reduces to

ov, = gor + of, (6.80)

where f, is replaced by g for simplicity.

If we differentiate this and substitute the expression from the rate of the change
of the roll error in Eq. (6.78) the following non-homogenous linear second-order
differential equation can be obtained

. 8
OV + =0V, = gow, 6.81
Ve + Re i h Ve = gow (6.81)
the solution of which yields velocity errors v, oscillating over time with a very
small frequency equal to 1/5000 Hz called the Schuler frequency f; with a time
interval of 84.4 min (King 1998). Consequently, the velocity error becomes
bounded over time. The Schuler frequency is

1 g g
;= — >, = .82
eV (632)

where g represents gravity and R is the mean radius of the Earth.

Similarly, if we differentiate both sides of Eq. (6.78) and substitute v, from Eq.
(6.80) we get the following non-homogenous linear second-order differential
equation

g —1
or =
Ry +h Ry+h

oF + Ofe (6.83)
the solution of which yields roll errors Jr oscillating over time at the Schuler
frequency. As a result, the attitude error becomes bounded over time.

The Fig. 6.3 illustrates the strong coupling between the east velocity error dv,
and roll error ér which implies that if the east velocity of the INS is updated from
some external source (like GPS) to enable accurate estimation of ov,, this will
result in an accurate estimation of Jr. In other words, the velocity update makes
Jv, an observable component of the estimator, while the strong coupling of dv,
with Jr, will make the roll error also observable.
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Fig. 6.3 Illustration of the
schuler loop-east channel

S

6.2.2 Error Model Along the North Channel

The Schuler effect manifests itself in the north channel as well. From the modeling
of the attitude errors in Eq. (6.70) the error in the time rate of change of the pitch
angle is

. 1
op = m&vn + dw, (6.84)
From Eq. (6.40) the rate of change of the error in the north velocity is

OVy = —fu0p + feOA + Of, (6.85)

For similar reasons to those mentioned for the east channel, the error in the rate
of change of the north velocity can be simplified as

ov, = —gop + of, (6.86)

By differentiating this and substituting the expression for the rate of change of
the pitch error in Eq. (6.84) we obtain the following non-homogenous linear
second-order differential equation

8

5,
" +RM +h

Ovy = —gow, (6.87)

the solution of which yields velocity errors dv, oscillating over time at the Schuler
frequency. As a result, the north velocity error becomes bounded over time.

If we now differentiate both sides of Eq. (6.84) and substitute v, from
Eq. (6.86) then we obtain the following non-homogenous linear second-order
differential equation

. g 1
s 5p =
Pt w1 T Ry h

S, (6.88)
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Fig. 6.4 Illustration of the
schuler loop-north channel
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the solution of which yields roll errors or oscillating over time with Schuler
frequency f;. As a result, the roll attitude error becomes bounded over time.

The strong coupling between the north velocity error dv, and pitch error dp is
shown in Fig. 6.4. This behaves in a similar manner to the east channel. When the
north velocity of the INS is updated from an external source, Jv, is estimated
accurately and because of the strong mutual coupling dp will also be estimated
accurately. Therefore, the velocity update not only makes dv, an observable to the
estimator but also dp due to the strong coupling between them.

6.2.3 Understanding the Error Behavior of the Inertial System

The error analysis of the inertial system in the previous section indicates that the
velocity errors ov, and Jv, are composed of two components

The Schuler part: which gives the strong coupling between Jv, and Jr, and
between dv,, and Jp.

The non-stationary part: which depends upon the body acceleration components
along the horizontal plane and relates the velocity errors to the azimuth error.

These components can be rewritten as follows

5‘./e,Sch :fuér + 5fe & 5‘-}€,nst = _fnéA

5‘.’n,Sch = ﬁfuép + 5fn & 5‘.’11,nst :feéA (689)
———
Schuler part Non—stationary part

Owing to the Schuler effect, the Schuler parts of the velocity errors dv, and dv,
(related to or and Op respectively) are bounded in time. Since there is no strong
coupling with the azimuth error the second part, which is related to A, continues
to change with time depending on the azimuth drift and so is known as the
non-stationary part. In fact, with velocity updates any optimal estimation tool can
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estimate and compensate only for the Schuler part of the velocity errors. On the
other hand, if not updated the non-stationary parts of both év, and dv, can jeop-
ardize the long term accuracy of the position components along the north and the
east directions.

If we twice integrate the time rate of change of the non-stationary parts of the
velocity errors along the east and the north directions as follows

S = —f,04 — / / e Py (1) = OPuna(ti 1) — iOAAL  (6.90)

and

OVipst = feOA — / / — 0Py st (t) = OPp st (tr—1) + veOA At (6.91)

it is evident that the non-stationary parts of dp, and dp, drift with time in a rate of
v,0A and v,0A respectively. Hence the azimuth error JA has an important role in
determining the long term position accuracy. Since it is modulated by the velocity
components v, and v,, an azimuth error is particularly significant for a vehicle
traveling at high velocity.
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Chapter 7
Kalman Filter

As stated in the previous chapter the accuracy of an INS is affected by the errors in
the inertial sensors, initialization and computational algorithms. The situation is
worse for the low cost MEMS sensors where the INS output can drift rapidly and
render them essentially unusable as standalone sensors for navigation applications
owing to severe stochastic errors. The main errors are accelerometer biases and
gyro drifts. In order to improve the accuracy of an INS, k regular time intervals
must be made to estimate the stochastic errors in the inertial sensors as a basis for
compensation. As noted in the case of velocities and attitude angles along the
horizontal channel, in the absence of ongoing optimal estimation of the velocity
errors and their removal they will result in significant inaccuracies in the values of
v, and/or v, over the long term. These velocity values modulate the azimuth error
and jeopardize the positioning accuracy in the long term. Hence it is vital to
establish accurate computation of the velocity components in order to cancel the
pitch and the roll errors and thereby limit the growth rate of the position com-
ponents as per the Schuler effect discussed in the previous chapter. Typically, the
following types of measurement updates are used

1. Position or coordinate update known as “CUPT”.
2. Velocity or zero velocity update known as “ZUPT”.
3. Attitude update.

Various methods are available to update an INS with external measurements,
including Kalman filtering (KF), particle filtering (PF) and artificial intelligence
(AI). Traditionally, Kalman filtering is used when integrating an INS with aiding
systems such as GPS for the estimation and compensation of the inertial sensors
errors. In fact, the very first practical use of KF was in the Apollo program in the
1960 s for navigating in deep space.

In general, a Kalman filter is an algorithm for optimally estimating the error
states of a system from measurements contaminated by noise. This is a sequential
recursive algorithm that provides an optimal least mean variance estimation of the

A. Noureldin et al., Fundamentals of Inertial Navigation, Satellite-based 225
Positioning and their Integration, DOI: 10.1007/978-3-642-30466-8_7,
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Fig. 7.1 Typical use of KF in a navigation application

error states. In addition to its benefits as an optimal estimator, KF provides real-
time statistical data related to the estimation accuracy of the error states, which is
very useful for quantitative error analysis. The beauty of KF is that it utilizes all of
the available measurements, regardless of their precision, to estimate the current
value of the state of the system by appropriately weighting these measurements.
KF uses the following information (Maybeck 1979) to accomplish its task

1. Information about the model of the system and its measurements.
Statistical knowledge of the systems noise, the measurement errors, and the
uncertainty in the system model.

3. Available knowledge about the initial conditions of the system states.

For inertial navigation applications Kalman filtering is used in complementary
configuration in which redundant measurements of the same signal with different
noise characteristics are combined as a means of minimizing the error (Brown and
Hwang 1997). An INS provides good high frequency information, but its errors
grow increasingly over time owing to the implicit mathematical integration in the
mechanization algorithm, which causes the bias errors of both the accelerometers
and gyroscopes to accumulate at the output. The bias errors of the inertial sensors
usually appear at the low frequency part of the sensor output and they are known
as long term errors. On the other hand many other navigational systems (such as
GPS) provide good low frequency characteristics and are prone to high frequency
noise. Hence KF is employed to benefit from accurate low frequency data from an
external source and therefore limit the long term errors of an INS. There are many
sources that can provide reliable external aid for an INS, including radar, GPS, the
speed from an air data system, wheel sensors, laser ranging, and a stored image
data base. For the purpose of the book we will consider GPS as the external aiding
source because of its accuracy, global availability and low cost. Figure 7.1 depicts
a typical use of KF in navigation, where data from external sensors with good long
term accuracy is combined with INS data with good short term accuracy in order
to provide the best overall estimate of position, velocity and attitude.
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Fig. 7.2 The discrete-time process and measurement model

KF methodologies are therefore used to implement

1. Continuous position and velocity updates from sensors and systems other than
INS (e.g. GPS).

2. Zero velocity updates (ZUPT) by halting the vehicle at regular intervals.

3. Coordinate updates (CUPT) at certain control stations whose coordinates are
well known.

7.1 Discrete-Time KF

The application of KF requires that both the system and the measurement models of
the underlying process be linear. A discrete-time linear system can be described as

X = Opp1 X1 + G 1 Wi (7.1)
where
Xy is the state vector
@y x—1 s the state transition matrix (STM)
Gi_1 is the noise distribution matrix
Wi_1 is the process noise vector
k is the measurement epoch.

Since a noise source can affect more than one component of the state vector of a
dynamic system, we introduced a noise distribution vector G which takes into
account the coupling of common noise disturbances into various components of
the state dynamics.

The discrete-time linear measurement equation of the system is

Z; = Hpxp + 1 (7.2)

where .
7,  is the measurement vector of the system output
H, is the observation or design

n, is the measurement noise.
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Figure 7.2 shows the discrete-time system corresponding to Egs. (7.1) and
(7.2).

The state transition matrix (STM) @ represents the known dynamic behavior of
the system (in this case the INS error model) which relates the state vector from
epoch k — 1 to k. Given the dynamic coefficient matrix F' of a continuous time
system the STM is

® = exp(FAr) (7.3)

To linearize this for use by KF we take the first two terms of the Taylor series
expansion of the equation as follows

@ = (I + FA) (7.4)

where [ is identity matrix and Ar is sampling interval.

7.1.1 KF Assumptions

Kalman filtering relies on the following assumptions (Maybeck 1979; Minkler and
Minkler 1993).

1. The system (both the process and the measurements) can be described by linear
models.

2. The system noise w; and the measurement noise #, are uncorrelated zero-mean
white noise processes with known auto covariance functions, hence

E[wi] =0, E[g]=0 Vk (7.3)
Elwen] =0 Vk,j (7.6)
Elwew!] = { G i;j (7.7)
T Rka k :.]
sl = {0 § 2 79

where Oy and Ry are known positive definitive matrices. In INS/GPS integra-
tion, Q; represents the covariance matrix of the system noise associated with
the INS errors, and R; represents the covariance matrix of the measurement
noise associated with the GPS position and velocity updates.

3. The initial system state vector Xq is a random vector uncorrelated to both the
process and measurement noises, hence

E[xow;] =0, E[xoni]=0 Vk (7.9)
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Fig. 7.3 The KF recursive process of ‘prediction’ and ‘correction’

4. The mean value of the initial state X, and its covariance matrix Py are known,
and can be expressed as

%o = E[xo| (7.10)

Py == E[(xo — %) (X0 — Xo)"] (7.11)

Under these assumptions KF is the optimal filter of any conceivable form.

7.2 KF Procedure

KF is a recursive algorithm which estimates the states of a system by operating as
a feedback loop. Based on the known system model the filter estimates the system
state at an epoch and then receives the feedback through measurements which are
themselves contaminated by noise (Welch and Bishop 2001).

As shown in Fig. 7.3 the operation of a KF has two phases: (1) prediction or
time update, and (2) correction or measurement update. In the prediction phase the
system model is applied to propagate both the current state of the system and its
covariance estimates from epoch k — 1 to k. Then in the correction phase the
measurements are used to update the previous estimates, thereby improving on the
last estimate. Table 7.1 explains the variables in the KF literature, most of which
will be further explained in the ensuing discussion.
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Table 7.1 Important terms encountered in the KF literature

®: State transition matrix of a discrete-time H: Measurement sensitivity matrix or

linear dynamic system observation matrix which defines the linear
x: State vector of a linear dynamic system relationship between the state of the
dynamic systems and measurements that can
be made
x(—): Predicted or a priori value of the P(—): Predicted or a priori matrix of the
estimated state vector of a linear dynamic estimation covariance of state estimation
system uncertainty in matrix form
X(+): Corrected or a posteriori value of the ~ P(+): Corrected or a posteriori matrix of
estimated state vector of a linear dynamic estimation covariance of state estimation
system uncertainty in matrix form

z: Measurement vector or observation vector ~ w: Process noise
K: Kalman gain matrix n: Measurement noise

7.2.1 Time Update or Prediction

The estimate of the system state x at time k given only the information up to time
k — 1, is called prediction X;(—). It is also the a priori estimate because it applies
‘prior’ to a measurement. Since the system noise is zero-mean, the best prediction
of the state at time k is

Xe(—) = Pyge—1 X1 (+) (7.12)

where X;_; (+) is the best estimate of state during the last epoch and is called the a
posteriori estimate (described later). This is solely based on the process model,
which is represented by the STM @, _;. KF also propagates the uncertainty about
its estimate from epoch k — 1 to k. This is called error covariance, and is the
expected value of the variance of the error in the states at time k given all the
information up to time k— 1. It is represented by the covariance matrix Py(—), also
known as the a priori covariance matrix

Pi(=) = Qg1 Pt (1) Py + Gio1 Qi1 Gy (7.13)

where P_;(+) represents the best estimate of the covariance in the last epoch and
is based upon the measurement at epoch k — 1. This is the a posteriori estimate of
covariance (described later). It should be noted that the a priori covariance matrix
Py(—) depends on both the process noise and the a posteriori covariance Py_1(+).

7.2.2 Measurement Update or Correction

After the KF has predicted its estimate of the state, this is corrected whenever a
measurement from an external source becomes available. Firstly, based upon the
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measurement covariance Ry, a weighting factor called the Kalman gain K, is
computed such that it minimizes the mean squared error of the estimate

K = Po(—)H{ [HPu(—)H{ + Ri]”' (7.14)

It is the Kalman gain which makes KF stand out in the category of optimal
estimation algorithms. As is evident from the equation, K depends upon both the a
priori covariance Pi(—) and the measurement noise covariance Ry. If the mea-
surements are noisy (when Ry increases) or the process noise is lower (when Py(—)
reduces), then K becomes relatively smaller. When there is more noise in the
process (when Pj(—)increases) or the measurements are less noisy (when
R reduces), then K becomes relatively larger. As we will see, when K is large it
assigns more weight to the measurements and when it is small it shows greater
faith in the prediction. In the context of INS/GPS integration, K takes relatively
larger values when the GPS is more accurate and less noisy. In such a case the
measurement covariance matrix becomes relatively small. If Eq. (7.14) is carefully
examined, it is evident that small values of R lead to relatively larger values of K.

When a new measurement z; is obtained at time #, it is compared with the
predicted measurement H;X;(—) based upon the a priori state estimate. Their
difference is weighted by K and the prediction of the state vector is updated to
generate the best estimate. The estimate of the state at time #; is therefore

X (+) = X (—) + K[z — HiXi(—)] (7.15)

where H;X;(—) is the predicted observation called 2, and z, — HyX(—) is the
innovation sequence, a vector of the difference between the actual observation z;
and the predicted observation z;. The innovation sequence is

Vi :Zk—zk :Zk—Hk)ACk(—) (716)

and represents the amount of useful information gathered from new measurements
whereas K weights the useful information for the next update. It can be seen that
when K is large (because there is less noise in the measurements or because the
process noise is greater) the new information based on the measurements is given
more weight. When K is smaller (because either the measurements are noisy or
there is less the process noise) the innovation is small and the new information is
given little weight.

Based on the value of K, the Kalman filter also updates the uncertainty of its
new prediction X;(+), which is called the a posteriori covariance

Pi(+) = [I — KxHi]Pr(—) (7.17)

Equation (7.17) is strongly contested by P. D. Joseph (Bucy and Joseph 2005) to
be a bad simplification. He argues that even the smallest error in computing K in
Eq. (7.14) could result in horrific errors when using Eq. (7.17). This was a real
problem in the 1960s and caused serious issues in KF design. Instead he advocates
the use of an expanded form of the equation, known as the Joseph form
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Fig. 7.5 A block diagram showing the information flow in a KF

Pi(+) = [I = KeHPi(—) [ — KeHi]" + KiRoK{ (7.18)

which is numerically stable and yields correct answers even when the computation
of K has an error (e.g. owing to rounding off). It is noteworthy that this form of the
a posteriori error covariance Py(+) helps to avoid divergence by virtue of the
assurance of positive semi-definiteness of Py(+).

In most INS applications the KF update procedure is implemented at a lower
rate than the predictions. For example, in a typical application of integrating GPS
and INS through KF the prediction maybe carried out at 100 Hz whereas the
update may occur at 1 Hz. Figure 7.4 shows the process for typical prediction and
update rates.

The specific equations for the time and measurement updates are presented in
Tables 7.2 and 7.3 respectively. Figure 7.6 shows the flow diagram of the KF
algorithm.

A system level block diagram of the discrete-time KF is shown in Fig. 7.5.
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Table 7.2 KF time update (predictor) equations

System dynamic model: X = Dy Xe—1 + Gro 1 Wi (7.19)
Wi ~N(0, Q)

Predicted state vector: X (=) = Q1 xk—1(+) (7.20)

Predicted covariance matrix: Pi(—) = cI)k‘kflPk,l(-i-)(I)]gkfl + Gk*IQk*leTfl (7.21)

Table 7.3 Discrete-time KF measurement update (corrector) equations

Measurement model: 2% = Hpx + 1 (7.22)
My NN(07 Rk)

Kalman gain matrix: Ki = Pk(_)HkT[Hkpk(_)HkT + Rk]_l (7.23)

Corrected state estimate: X (+) = x(—) + Ki[zx — Hixe(—)] (7.24)

Corrected covariance matrix: Pu(+) = [I — KeHi|Pr(—) (7.25)

Joseph form: Py = (I — KeH)Po(—=) (I — KeHy)" + KRy KT (7.26)

7.3 KF Algorithm Steps

A KF essentially comprises five equations which operate in a sequential manner.
The flow of the algorithm is depicted in Fig. 7.6, and the steps in the process are
explained below.

1.

Firstly, the filter is initialized. This requires providing the filter with the initial
estimate for its states X, and the uncertainty in the initial estimate Py. The
estimate of Py is based upon knowledge of the approximate accuracy of the
initial state estimates and is usually set to relatively high value. We also need to
provide the filter with the initial estimates of the system noise covariance
matrix Q and measurement noise covariance matrix R. These are estimated on
the basis of prior experience with the system and are tuned to get the best
estimates of the states.

. In the first part of the prediction step, the STM ® is computed and then, using

this matrix, the initial state is propagated from the epoch k — 1 to k, which is
denoted by X (—).

. In the second part of the prediction step the covariance of the predicted state Py

is calculated. This is based on the STM, the previous value of the state
covariance Pj;_1, the last value of the process noise covariance Qy_;, and the
noise distribution matrix Gy_;. It may be noted that if the process noise is high,
Py will increase and result in a lower confidence in the predicted state X;(—).

. In the first step of the update stage the Kalman gain Kj is computed. This

depends upon the a priori error covariance Py(—), the process noise covariance
Ry, and the design matrix Hy. When P;(—) is higher the gain is higher, and
when Ry is higher the gain is lower, and vice versa of course.

. In the second part of the prediction stage the estimated (or the a priori) state

X (—) is corrected whenever a measurement is received. This is based on the
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Fig. 7.6 KEF algorithm flow diagram

difference of the predicted measurement HX;(+) and the actual measurement
z,. This difference contains the new information that forms the basis for the
correction. When K is higher, this difference is weighted more heavily and
added to the a priori estimate in order to update this to the a posteriori estimate
X¢(+). But when K is lower, the new information obtained from the mea-
surement is given less weight and the a priori estimate is considered to be
relatively accurate.

. After correcting the state estimate, the KF goes a step further and also updates

the a priori error covariance Py(—) to the a posteriori error covariance Py(+)
to indicate the level of trust in the corrected estimate X;(+), which is pro-
portional to gain Kj and Pi(—).

. Now the KF is ready to go through another loop based on the a posteriori

estimates that will constitute the a priori estimates for the new epoch, as shown
in Fig. 7.6.
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7.4 Non-Linear Kalman Filtering

As stated earlier, KF is optimal for linear systems only; however, linear systems
are idealized systems which, strictly speaking, do not exist. All systems are non-
linear, and even Ohm’s law is only an approximation over a limited range and its
linearity breaks down above a certain voltage threshold (Simon 2006). However,
because many systems are very close to linear, these estimation approaches give
satisfactory results. Techniques of linear estimation theory can be applied to non-
linear systems by first linearizing them. Although KF assumes a linear system
model, it has been successfully applied in many situations in which the dynamics
were non-linear. In fact the first practical use of KF was for a non-linear system
used in Apollo spacecraft. The idea is to linearize the non-linear model, then apply
conventional Kalman filtering. When a system is linearized its states represent the
deviations from the reference trajectory, and the deviations estimated by KF are
subtracted from the reference. Therefore, the non-linear filters operate on the error
states rather than the rotal states or whole states. The error states are formed by
taking the difference between the INS states and the aiding source states (such as
from GPS). The methods available for linearization are linearized KF (LKF) and
extended KF (EKF).

7.4.1 Linearized KF

When Kalman filtering is applied to a system which has been linearized around a
nominal trajectory (Maybeck 1982a) this is known as linearized KF (LKF). The
nominal trajectory is usually known in advance. For example, the route of a ship or
a passenger aircraft is planned in advance and gives the nominal trajectory.
Similarly for a satellite orbit, an ellipse or even a circle can be used as a nominal
trajectory. For INS/GPS integration the output of the INS is considered to be the
nominal trajectory. The linearized KF corresponds to the open-loop configuration
in which the filter estimated errors are subtracted from the INS output but they are
not fed back to the inertial system (Fig. 7.7).
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7.4.2 Extended KF

Sometimes it is not possible to know the nominal trajectory in advance; therefore
the current best estimate of the actual trajectory is used as the nominal trajectory
(Grewal and Andrews 2001). When KF is applied to the trajectory linearized using
the previous best estimate rather than using a predefined nominal trajectory, it is
called Extended KF (EKF). The KF is initialized with the best known estimate and
then the estimated value is used as the nominal trajectory for the next epoch, and
so on. EKF therefore corresponds to the closed-loop filter configuration in which
the estimated errors are fed back to the inertial system to correct its output
(Fig. 7.8). This configuration is preferred (especially for low cost and MEMS
sensors) so that the INS errors remain small and the linearity assumption required
for the KF technique is upheld.

For an in-depth exposition of KF, LKF and EKF the reader is referred to the
excellent texts of (Maybeck 1979; Gelb (editor) 1974; Minkler and Minkler 1993;
Brown and Hwang 1997; Grewal and Andrews 2008; Simon 2006; Maybeck 1982a, b).

7.5 KF Divergence Control

The process of simplifying the actual system for mathematical representation and
linearization gives rise to inadequacies in the system model which can result in the
divergence of the KF. This problem was discovered at the very beginning of KF
theory, and proposed divergence control techniques include adding fictitious noise
to the KF process model, the Schmidt epsilon technique, finite memory filtering
and fading memory filtering.

7.5.1 Addition of Fictitious Noise to the KF Process Model

As pointed out in Chap. 5, many simplifications and assumptions must be made in
order to make the mathematical model of a real system tractable. Furthermore,
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most systems are non-linear and they have to be linearized before we can use KF.
This linearization process imposes further approximations on the system model.
These inadequacies result in poor KF performance and may lead to divergence.
The deterioration in the KF performance can be mitigated by introducing artificial
noise into the system by increasing the process noise covariance Q. A similar
effect can be achieved by decreasing the measurement noise covariance R. So in
reality the Q and R parameters are initialized based on prior experience and are
then tuned in order to optimize the performance of the system. For further details,
the reader is referred to (Maybeck 1982a; Gelb (editor) 1974).

7.5.2 Schmidt Epsilon Technique

One way to control divergence in KF is to define a threshold for the covariance
matrix of the estimation error so that it does not go below a certain value. While in
operation the covariance matrix P(—) keeps getting smaller, reducing the filter
gain K. As is evident from Eq. (7.14), when Pi(—) becomes too small
K approaches zero, new measurements are not given sufficient weight, and the
filter rejects new measurements and relies on its estimates alone. This is called
Kalman filter incest (Biezad 1999) and it can be cured by preventing the computed
error covariance from falling below a minimum threshold. In covariance thres-
holding, a lower bound is imposed upon the computed error covariance matrix
Py(—) simply by adding to it a fixed quantity denoted by epsilon ¢ (Schmidt 1968).
This value is determined empirically by the designer and can be either an educated
guess or a result of trial and error.
The modified Kalman gain equation can therefore be rewritten as

Ki = {Pu(=) + el}H {H Py (=) H! + R} (7.27)

and all the other KF equations remain the same.

7.5.3 Finite Memory Filtering

In KF, the latest estimate X;(+) is based on all the measurements from the start of
operations to epoch k. The filter must account for all the previous measurements in
order to furnish the best estimate. But sometimes the older data is no longer valid
and instead of being of use to the filter it may cause problems. Therefore, in fading
memory filters the information from only the most recent measurement data is
used and the older information is discarded. For example, the KF could be pro-
grammed to use only the last 100 samples of the measurement. The details of this
algorithm can be found in (Maybeck 1982a; Gelb (editor) 1974).
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7.5.4 Fading Memory Filtering

Sometimes a system model is appropriate for a limited length of time, after which
it no longer represents the system adequately. In this case we would rather discard
the older measurements gradually, which can be achieved simply by progressively
increasing the measurements noise covariance R for that data in order to limit its
influence on the latest estimate (Fagin 1964). In mathematical terms (Minkler and
Minkler 1993) this is

R = Ry 2D (7.28)

where « is a positive constant. Over time k becomes greater and R; gradually
decreases, thereby giving greater weight to the most recent data.

A similar effect can be achieved (Schlee et al. 1967; Sorenson and Sacks 1971;
Simon 2006) by increasing the computed error covariance P(—) by a factor of o?
as follows

Pi(=) = D1 Py (1) Dy + Ope (7.29)

where the term « can be chosen to be > 1.
In both cases, all the other KF equations remain the same.

7.6 Explanatory Examples

We shall now give some simple examples to help the reader to understand how KF
operates.

7.6.1 A Simple Navigation Example

Consider a body moving in a straight line with constant acceleration. The time rate
of change of the velocity error is equal to the accelerometer bias error. In addition,
the time rate of change of the position error dp will be equal to the velocity error.
This can be expressed mathematically as

op = ov

55— of (7.30)

Moreover, the accelerometer errors are modelled using the first-order Gauss
Markov process

of = —odf + V20?w(t) (7.31)
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The system equation in its matrix form is

op 01 0 op 0
S| =10 0 1 wl+| 0 | w (7.32)
of 0 0 —al |of V2a02 |

X F G

Let us now assume that GPS position updates are continuously available. The
measurement (update) equation is obtained by comparing the output of the aiding
source (GPS) to the INS output. The observation z supplied to the Kalman filter is
therefore

z = pcres — (Pins + 5”Ip) =0p+ 5’7,; (7.33)

where 97, is the GPS measurement noise. Hence z is related to the error state
vector x as follows

op
z=[1 0 0] [ov|+dn, (7.34)
%/—’H 5f ~—
N , n

X

If we have velocity measurement updates instead of position updates, then
z = vgps — (vins + 91,) = v + on, (7.35)

where 61, is the GPS measurement noise. In this case z is related to the error state
vector x as follows

op
z=[0 1 0] |dv|+ o, (7.36)
H n
N——

X

If we have both velocity and position updates, then

op
=10 O s | (7.37)
010 on,
H ~——— M

X

7.6.2 Zero Velocity Update

In applications where there are no continuous update measurements available or
when the measurements are temporary denied, the surveying accuracy may be put
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Fig. 7.9 The operation of the KF during the ZUPT

at risk by a potentially unlimited increase in the velocity errors and their direct
contributions to both the attitude and position errors. ZUPTs provide a dramatic
improvement in the accuracy of inertial surveying as compared to the standalone
systems.

The procedure to carry out the ZUPT is as follows

1. Stop the vehicle every 2—4 min for 30-60 s.
2. Obtain between 30 and 40 velocity measurements while halted.
3. Use these measurements as KF updates or for velocity curve fitting.

The advantage of ZUPT is that because no additional equipment is needed, it is
simple and inexpensive to perform. Also, there are no synchronization problems
between the predictions and measurements. However, its major limitation is that
the vehicle must be readily halted, which is not always possible (e.g. for airborne
and sea vehicles).

7.6.2.1 Improving Surveying Accuracy by ZUPT

An optimal estimation procedure like KF should be used to restore the behavior of
the INS velocity errors between ZUPT stations. At such a station the differences
between the INS output velocities and those of the ZUPT along the three mutually
orthogonal direction are fed to the Kalman filter (Fig. 7.9).

The system equation is independent of the type of update measurement, and is
given as

X =Fx+ Gw (7.38)

where x is the state vector consisting of fifteen states as follows
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T
X = | 66b, 6, O, v, SV, 64, Op, O, GA , S, S0y, 30, Ofis Oy, O,
—_— Y
Position errors  Velocity errors — Attitude errors Gyro errors Accelerometer errors
(7.39)

The design matrix H of the measurement update equation depends upon the
type of measurement available, and is given as

z = Hx + 0n, (7.40)
With ZUPT measurements the design matrix will be
Oo0o01 0O0O0OO0OO0OO0OO0OO0OO0OTO0OOQO0

H=0 0 0 01 000 O0O0O0O0OO0O0OO0 (7.41)
00 0O0O0O1O0O0O0OO0OO0OOO0OTQO0OT® O

and therefore the measurement update equation is

Ve — Ve NS 00 01O0O0O0O0O0OO0OO0OO0OTO0OTO0OO0
Veo —Veuns | =10 0 0 01 0 0 0O 0OOO OO O O]x
V0 — VuINS 00 0O0O0OT1UO0O0O0O0O0OO0TO0OO0O0
z H
OMye
+ | 0Ny
My
]
(7.42)
where
Ve INSs Vn,INS, Vu,ins  are the INS output velocities
Ve,0s V05 Vu,0 are the zero update velocities, which can be modeled

either as zeros or as very small values corresponding to
any vibrations which might exist in the system

H is the design matrix
X is the INS error state vector given in Eq. (7.39)
OMyes OMNyms Oy are the uncertainties around the zero velocity

Figure 7.10 illustrate the trend of the velocity and the position in the periods
during and between the ZUPTs. It is evident that the ZUPTs prevent the error in
the position from growing unhindered. It can be appreciated that in the absence of
ZUPTs the position error would grow very rapidly and make the position estimate
totally unreliable.
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Fig. 7.10 The velocity and the position between and during ZUPTs

The performance of the ZUPT is affected by two factors

1. The duration between two neighboring ZUPTs, during which the velocity errors
grow with time. The choice of the time duration between ZUPTs is related to
the accuracy and the performance of the IMU employed.

2. The ZUPT time interval should be chosen to enable the KF algorithm to
converge and restore the INS errors.

The significance of ZUPT can be assessed by the following factors

1. It limits the growth of velocity errors and can even reset them to zero.
2. It facilitates estimation of the accelerometer bias errors.
3. It facilitates estimation of the misalignment of the three attitude angles.

In general the ZUPT procedure is effective in limiting the long term growth of
surveying errors.

7.6.3 Coordinate Update

In some applications the coordinate update can be provided either continuously or
at CUPT stations whose coordinates are accurately predefined. If the navigation
system were left working as a standalone INS without updates, we would expect
significant long term error growth, even when using highly accurate navigational
grade inertial sensors. With CUPT, the motion of the body is interrupted to permit
the output of the INS to be compared with the coordinate measurements supplied
by the aiding source.
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Fig. 7.11 The operation of the KF during CUPT

7.6.3.1 Improving Surveying Accuracy by CUPT

This procedure is similar to ZUPT except that instead of the velocities the update is
for the position coordinates. An optimal estimation procedure like KF is used to
restore the behavior of the INS position errors between CUPT stations. At each
station the differences between the INS position outputs and of the CUPT are fed
to the Kalman filter (Fig. 7.11).

As in the case of ZUPT, the system equation is independent of the type of
update measurement and is given as

x =Fx+ Gw (7.43)

where x is the state vector consisting of 15 states are follows

T
X = | 0¢,0A, 0h, Ove, OVy, Ovy, Op, Or, 0A, dwy, 0wy, 0w,  Ofy, Ofy, Of:
e e N e e e —_—
Position errors  Velocity errors  Attitude errors Gyro errors Accelerometer errors
(7.44)

The design matrix H of the measurement update equation depends upon the
type of measurement available, and is given as

z = Hx + dy, (7.45)
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With CUPT measurements the design matrix will be

1 00 00 O0O0O0OO0OO0OO0OO0OO0O0OO0

H=|01 0 00 0 O0O0O0O0O0O0O0O0O0 (7.46)
0O o1 00O0O0O0O0OO0OO0OO0OO0OO0OO0
and therefore the measurement update equation is
Pcps — PINs 1 00 000O0OO0OO0OO0OO0OO0OTO0OTO0ODO
Agps — s | =10 1 0 0 0O O OO OO OOOUO O]x
heps — hins 001 00O0OOOOOOO0OO0OO0OO
z H
on,
+ | on,
ony,
1
(7.47)
where
@inss ANss N are the INS output position coordinates
Pcps, Acrs, hgps  are the GPS output position coordinates
H is the design matrix
X is the INS error state vector given in Eq. (7.44)
0Ny, 0Nz, Oy, are the uncertainties position measurements.
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Chapter 8
INS/GPS Integration

There are contrasting pros and cons to INS and GPS. An INS is a self-contained
autonomous navigation system that provides a bandwidth exceeding 200 Hz. It has
good short term accuracy and provides attitude information in addition to position
and velocity. But long term errors grow without bound as the inertial sensor errors
accumulate due to intrinsic integration in the navigation algorithm. In contrast to
an INS, GPS has good long term accuracy with errors limited to a few meters and
user hardware costing as little as $100. But it has poor short term accuracy and a
lower output data rate. A standard GPS receiver usually does not provide attitude
information, but it can with extra hardware and software. GPS needs a direct line
of sight to at least four satellites, which is not always possible because the signals
from satellites suffer from obstruction by tall buildings, trees, tunnels, degradation
through the atmosphere and multipath interference.

Capitalizing on the complementary characteristics of these two systems, their
synergistic integration overcomes their individual drawbacks and provides a more
accurate and robust navigation solution than either could achieve on its own. The
integrated navigation solution is a continuous high data rate system that provides a
full navigation solution (position, velocity and attitude) with improved accuracy in
both the short and long term. Optimal estimation techniques, predominantly based
on Kalman filtering, are employed to optimally fuse the GPS and INS positioning
and navigation information to yield a reliable navigation solution. GPS prevents
the inertial solution from drifting and INS provides continuity in the navigational
solution, attitude information, and bridges GPS signal outages. A typical INS/GPS
integration is depicted in Fig. 8.1.

The estimator compares the outputs of the INS and GPS and estimates errors in
inertial position, velocity and attitudes, plus some other parameters. Traditionally
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Fig. 8.1 An overview of a typical INS/GPS integration
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Fig. 8.2 An open-loop implementation of INS/GPS integration

the estimator is a KF or a variant such as LKF and EKF, but other filters (e.g. a
particle filter) or Al techniques are available. In Fig. 8.1 the inertial output is
corrected using the estimated errors to produce the integrated navigation solution.
Dotted lines in the figure depict the optional paths, the presence of which depends
upon the specific type of integrations scheme, as will be discussed later.

8.1 Error Feedback Schemes

Two types of error feedback mechanisms are used in INS/GPS integration based
on error-state KF: open-loop and closed-loop. As pointed out in Chap. 7, these
architectures correspond to LKF and EKF respectively.


http://dx.doi.org/10.1007/978-3-642-30466-8_7
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Fig. 8.3 A closed-loop implementation of INS/GPS integration

8.1.1 Open-Loop INS/GPS Architecture

In the open-loop configuration the correction of position, velocity and attitude are
performed external to the INS, where the estimated errors are subtracted from the
INS solution at each iteration. The errors, or the corrected state, are not fed back to
the INS. The advantage of this configuration is that, in addition to the integrated
navigation solution, the raw INS solution can support integrity monitoring and
continuing service in the event of a problem with the Kalman filter (Minkler and
Minkler 1993; Groves 2008). However, due to unhindered INS drift, the errors in
the INS grow larger with time, making the linearity assumption invalid. Hence the
open-loop configuration is more prone to KF performance issues (Maybeck 1979).
A schematic of the open-loop INS/GPS integration is shown in Fig. 8.2.

8.1.2 Closed-Loop INS/GPS Architecture

In the closed-loop configuration the error estimates from KF are fed back in order
to correct the INS (Minkler and Minkler 1993). The output of the INS forms the
integrated solution. KF position, velocity and attitude estimates are reset to zero
after the error estimates are fed back. It may be observed from Fig. 8.3 that in
closed-loop integration, KF estimated accelerometer and gyroscope errors are also
fed back to correct the IMU measurements before they are used in mechanization.
These errors are applied on every iteration of mechanization, with feedback from
KF periodically updating the accelerometer and gyroscope errors (Groves 2008;
Maybeck 1979).

8.2 Types of Integration

Capitalizing on the complementary qualities of GPS and INS, various INS/GPS
integration architectures have been proposed (Wagner and Wieneke 2003;
Gebre-Egziabher 2007) to achieve the maximum advantage depending on the
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Fig. 8.4 A block diagram of a loosely coupled INS/GPS integration

application and the requirements of simplicity versus robustness; specifically
loosely coupled, tightly coupled and ultra-tightly (or deeply) coupled.

8.2.1 Loosely Coupled INS/GPS Integration

In this integration, the GPS and INS operate independently and provide separate
navigation solutions. To improve the solution the position and/or velocity from
GPS is fed to some optimal estimator, usually a Kalman filter. The INS solution is
also supplied to the filter which takes the difference between the two and, based
upon the error models, estimates the INS errors. The INS solution is corrected for
these errors to produce the integrated navigation solution in the form of position,
velocity and attitude. The distinguishing feature of this configuration is a separate
filter for the GPS. This integration is an example of cascaded integration because
the two filters (the GPS and the integration filter) are used in succession. It is also
called a decentralized approach because there is a separate filter used for GPS.
A block diagram of the loosely coupled INS/GPS integration is shown in Fig. 8.4.

Loosely coupled integration is simple to implement and is robust. It provides
three separate navigation solutions for open-loop (raw INS, raw GPS, and the
integrated solution) and two for close-loop (no raw INS). The main problem is its
inability to provide GPS-aiding when the effective number of satellites falls below
the minimum. And because the outputs of the GPS KF are time correlated, the KF
assumption of uncorrelated measurement noise is jeopardized, thereby impairing
the system performance.
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Fig. 8.6 A block diagram of an ultra-tight integration of GPS/INS
8.2.2 Tightly Coupled INS/GPS Integration

This architecture is also called centralized integration owing to the use of a single
common master filter. The difference between the pseudo-range and pseudo-range
rate measurements from the GPS and corresponding values predicted by the INS are
fed to the KF to estimate the errors in the INS. The output from the INS is then
corrected for these errors to obtain the integrated navigation solution. It is possible to
use either pseudo-range or pseudo-range rate measurements, but often both are used
because they are complementary (Groves 2008). This architecture is shown in
Fig. 8.5. The tightly coupled integration eliminates the problem of correlated mea-
surements that arises due to cascaded Kalman filtering in the loosely coupled
approach. Furthermore, this integration can provide a GPS update even if fewer than
four satellites are visible. This is useful because a typical real-life trajectory includes
urban environments as well as thick forest canopies and steep hills where the number
of visible satellites can drop to fewer than four. On the other hand the tightly coupled
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approach is more complex to implement, as the algorithm involves processing raw
GPS data. The other limitation is that there is no standalone GPS solution. Using the
same hardware, a tightly coupled INS/GPS integration almost always performs better
than a loosely coupled integration in term of accuracy and robustness.

8.2.3 Ultra-Tight INS/GPS Integration

This type of integration, also called deep integration, is shown in Fig. 8.6. There
are two major differences (Gebre-Egziabher 2007) between this architecture and
those outlined above. Firstly, there is a basic change in the architecture of the GPS
receiver to provide a different implementation of the tracking loops. Secondly, the
information from the INS is used as an integral part of the GPS receiver; hence the
INS and GPS are no longer independent navigators. This scheme usually requires
access to the internal GPS hardware and is complex to implement. The advantages
of this scheme are that it lowers the tracking bandwidth and is more resistant to
jamming. This type of integration can work under a lower signal to noise ratio and
provides a solution in scenarios in which the number of GPS satellites falls below
four. As seen from Fig. 8.6, the defining characteristic of this type of integration is
the feedback path from the estimator which provides the estimated Doppler and
carrier phase data to the GPS structure to enable its phase-lock loops (PLL) and
delay-lock loops (DLL) to provide better accuracy, robustness and overall system
improvement (Alban et al. 2003).

8.3 Dynamic Error Model of INS Equations

An integrated GPS/INS requires an optimal estimator to perform the data fusion
and estimation. Various kinds of estimators can be used depending on the needs of
the system. As KF has traditionally been used for the integration of navigational
sensors we will look at this in greater detail. Owing to the advantages explained in
Chap. 5, the local-level frame is commonly chosen for the implementation of this
integration for navigation applications. Chapter 6 explained that INS errors arise
due to initial condition errors, inertial sensor errors and computational errors. As a
result, error models are required for analysis and estimation of the various error
sources associated with an INS. These error models will be summarized here prior
to moving on to discuss the full KF model for both loosely coupled and tightly
coupled INS/GPS integration schemes.

As shown in Chap. 6, the error state vector for the local-level frame mecha-
nization equations consists of the errors along the curvilinear geodetic coordinates
(latitude error d¢, longitude error 64 and altitude error i), the errors along the
Earth-referenced velocities (east-velocity error dv,, north-velocity error dv, and
up-velocity error dv,) and the error in the three attitude angles (pitch error dp, roll
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error or and azimuth error JA). It also includes the accelerometer biases and gyro
drifts. The complete error states vector is therefore

T
Xisui = [005 1, OViy, 85,0y, 0351, O3] (8.1)
where
ort = [de, 84, 5h]T is the position error vector
v = [dv,, dv,, 5vu]T is the Earth-referenced velocity error vector
g = [op, or, 0A]" is the attitude error vector
Sm = [560):, dwy, 5wZ]T is the gyroscope error vector (consisting of
' drifts)
Sf = [5fx , Of,, Of. ]T is accelerometer error vector (consisting of
’ ' biases)

The linearized error models for these errors are summarized below.
Coordinate errorsin the 1-frame

oq 1
</.) 0 (Ry +h) 0 Ove
— 1
04| = (Ry +h)cos ¢ 0 0 5\/,1 (8 2)
Sh 0 0 11 ]ow,
F, ¥
5it ’ v
Velocity errorsin the 1-frame
Ove 0 fi op Ri1 Rix Rps ofx
o | = | —fu 0 fe or| + | Ry Ryn Rxn (5]‘;, (8.3)
S fo —fo O oA Ry Ry Ry |Of:
N , N—— N~——
v £ 2 R, of

where f,, f, and f, are the body accelerations transformed into the local-level
frame.
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Attitude errorsin the 1-frame

1
O ®uxnm
1 op 1 M OV, Ri1 Rz Ris 0w,
g = or = D —— 0 0 5Vn + R21 R22 R23 5wy
0A (IEN + 1) oy Ry Ry R3 o,
tan ¢
—_—— 0| —~— ————
i (Ry + h) ov! R oo

(8.4)

Accelerometer bias errors
For the stochastic biases of the accelerometers, the time rate of change of the
bias errors can be expressed as

5]4;( _ﬁfx 0 0 of. \/ Zﬁfxa.?x
| =10 =By O | + | \/2Bsa | w(1) (8.5)
of; 0 0 7ﬁfz of: \/272

‘\./_/ SN—— ﬁfzo_fz

(jfb Fy o ———

0'/’

where
B> By B, are the reciprocals of the correlation times associated with
the autocorrelation sequence of Jf;, of, and Jf;
0 07, o7 are the variances associated with the accelerometer errors
w(t) is the unit-variance white Gaussian noise.
Gyroscope drift errors
Similarly for the stochastic biases of the gyroscopes, the time rate of change of
the bias errors can be written as

5(bx _ﬂwx 0 0 5(UX \% zﬁwxo-%vc

o = | dy, | = 0 —B, O ooy | + | \/2Buy0%, | w(?)

0w, 0 0 - ow )
—_—— o WZ_/ \% 2B Oz
o) Fo oo Py

(8.6)

where
Boxs Buys B,  are the reciprocals of the correlation times associated with
the autocorrelation sequence of dw,, dw, and dw,

> > 2 . . .
Oixs Oy Oy AT the variances associated with the gyroscope errors

w(t) is the unit-variance white Gaussian noise.
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8.4 Models for Loosely Coupled INS/GPS Integration
8.4.1 System Model

The system model of continuous KF for loosely coupled integration is given by
0x = Fox + Gw (8.7)

The state vector includes error components of position, velocity and attitude as
well as accelerometer biases and gyroscope drifts

5X115><1 = [5I'l3><1, 5Vl3><17 Séxla 5(03xl; 5f3><l]T (8'8)
where

orl = [0¢, ON, 5h]T is the position error vector

ovl = [0Ve, OV, 5vu]T is the Earth-referenced velocity error vector

gl = [op, or, 5A]T is the attitude error vector

Sm = [5(0)” day, 5wZ]T is.the gyroscope error vector (consisting of
drifts)

Sf = [5]; ,0f, ,5fz]T is. accelerometer error vector (consisting of
biases)

w is the unit-variance white Gaussian noise.
The term G in Eq. (8.7) is the noise distribution vector, which includes the
variances associated with the state vector

G = [o'r,lx37 Gy,1x3, s lx3, Gu lx3, 5f,1><3] (8.9)

The term F is the dynamic coefficient matrix which, as previously explained,
contains the INS error models for the position, velocity, attitude and the inertial
sensors. According to the expressions for the errors in Eq. (8.2) through Eq. (8.6),
we can write F' matrix as

O03x3  Fr O3x3 033 O3x3
03x3 O3¢5 Fy 0343 R,
F= 053 F, 0353 R 033 (8.10)
03x3 03x3 O3x3  Fo  03x3
03x3 03x3 O3x3 O3x3  Fy

where various sub-matrices were defined in Sect. 8.3.
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The system model for the loosely coupled INS/GPS integration can therefore be
written as

5i‘l><l 033 F, 0343 0343 0343 51'13)(1 G 1x3
OV, 03x3 O3¢5 F, 0O3x3 R, oV, Gy 1x3
&1 =103 Fo 03 Rl 03x3 e |+ | G |w
03 0353 O3x3 O3x3 Foo 033 | | 6039 60,1x3
of3x1 03x3 03x3 O3x3 O3x3  Fy b O8] /.13
(8.11)

The discrete form of Eq. (8.7) can be written as
Ox; = (I +FAt)ox—1 + GAtw_, (8.12)

and Eq. (8.11) can be written in the following discrete form

orh,, Ly FAt 0343 033 033 orh ) 613
Vi 0353 DLxs FAt 03x3 R At . Guix3
g | = |03 FAr Iy RLAt 03x3 e | + | e |Atwy
031 03x3  O3x3  O3x3  l3x3 + FAt 03x3 00351 Gu1x3
of351 03x3  03x3  0O3x3 03x3 Bz + FeAt | | 0f34; Gf.1x3

(8.13)

Equation (8.14) is the expanded system model of Eq. 8.11, showing all the
system states and how they are coupled through the dynamic matrix.
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8.4.2 Measurement Model

The measurement model for a KF in the discrete-time domain is expressed as
5Zk = Hkéxk + Ny (815)

Since the state vector ox of our KF contains the errors in the INS, the corre-
sponding measurement vectordz; consists of the differences between the position
coordinates and velocities predicted by the INS and the corresponding values
measured by the GPS, as follows:

Pins — Paps

7"INS - 7\'GPS
! /
e — T hivs — hgp.
ony = { s ,GPS] = | fms — fars (8.16)
vs — Ygps Ve INS Ve,GPS

Vn,INS — Vn,GPS
Vu,INS — Vu,GPS

In Eq. (8.15) 0x; is the state vector and m, is a vector of measurement noise
which is zero-mean with covariance Ry. The term H; is the measurement design
matrix at time #; and it describes the linear combinations of state variables that
comprise z; in the absence of noise. Since in loosely coupled integration the
measurements directly correspond to the position and velocity errors states, Hy
therefore has the following simple form

Hy = [Ioxe  Osx9 ] (8.17)

The full measurement model for the loosely coupled INS/GPS integration can
therefore be written as

l‘stfl'lGPS _ Lys  03x3  O3x9 + n, (8.18)
Vi — Veps 0333 Ix3 O3x9 n,

the expanded form of which is

Oivs — Pps 1 00000O0O0OOOOO0TO0O0 M
Ans — Agps 01 00O0OO0OO0OO0OOOOOSOOTO n;
hins — hgps /00 1.0 00 0O0OO0OO0O0OO0OOO0OTO0 S|
Ve INS — Ve,GPS 0001 0O0OO0OO0OOOOOOOO Nye
Vn,INS — Vn,GPS 0O 00 O01O0O0OO0O0OO0OO0O0OTUO0OTO0OO0 Nyn
Vuins —Vugps |, [0 0 0 0 01 0 0 0 0 0 0 0 0 0], [,
(8.19)

We also have two important covariance matrices R; and Pj.R; contains the
variances of the measured states on its diagonal and is defined as
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2 0 0 0 0 0
0 2 0 0 0 0
0 0 &2 0 0 0
R = i 8.20
¢ 0 0 0 ¢4 0 0 (8.20)
0 0 0 0 o, 0
00 0 0 0 o

The state prediction covariance matrix P, has variances of predicted states
along its diagonal. Cross diagonal elements are cross correlations between various
states. In our case it is 15 x 15 element square matrix which (ignoring the cross
diagonal elements) is

2
O-rﬁ3><3

J%.axs . .
Pk = . . 0'2’3X3 . . (821)
0(20,3><3
J_%,sm

where all the sigma terms are also 3 x 3 diagonal matrices that are associated with
the position, velocity, attitude, gyroscopes bias drift and accelerometers bias drift.

8.4.3 The Overall Implementation Block Diagram
of the Loosely Coupled INS/GPS Integration

The block diagram for the overall implementation of a loosely coupled GPS/INS
integration is shown in Fig. 8.7.

8.5 Modeling Tightly Coupled INS/GPS Integration

This section deals with KF for a tightly coupled integration of INS/GPS. It starts
with INS dynamic error and measurement models in the 1-frame, follows up with a
GPS error and measurement error model, and finally presents a combined overall
system and measurement model for a KF implementation (Hide et al. 2006; Wang
et al. 2005; Wei et al. 2006, 2007; Yang May 2008; Salycheve 2004).
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8.5.1 System Model

INS part

The system model for continuous INS KF is
X = F15X1 + G1W1 (822)

where the state vector x;, dynamic coefficient matrix F;, noise distribution matrix
Gy, and white noise w; have exactly the same form as the corresponding quantities
of the system model of loosely coupled INS/GPS integration outlined in Sect.
8.4.1. These terms will be used later, when we develop the expanded form of the
combined INS/GPS system model.

GPS part
The equation for the KF system model for GPS is

0xg = Fgoxg + Ggwg (823)

where the bias of the GPS receiver clock db, and its drift dd, are both included as
states. They are modeled by random walk, therefore

ob, = od, + wy, (8.24)
od, = wy (8.25)

The state vector of the system model in Eq. (8.23) can be defined as
oxg = [ob, dd,]" (8.26)

and the dynamic coefficient matrix is
Fo = [8 (1)} (8.27)
The noise distribution vector for the GPS system model is

Gg = [op aq]" (8.28)

where . .. . . .
o, is the standard deviation of the white noise for the clock bias

o4 1is the standard deviation of the white noise for the clock drift

Equation (8.23) therefore can be written as

)= 1o ollse] + [ )we 5)
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where

we  is the unity variance white Gaussian noise.
Combining INS and GPS system models

The INS and GPS system models can be combined as

5% = Fox + Gw (8.30)

55(1 - F; 0 5)61 Gy
|:5XG:| - |:0 FG] |:5)CG + GG W (831)
By inserting the parameters from Eq. (8.11) for the INS part and from Eq.
(8.29) for the GPS part we get

Ced A _ - -
51'%“ Ly Fr 0343 033 033 0 0] [ érk,,
: !
5.‘1’3“ O3x3 bLxs Fy 03?3 R, 0 0] ovh,,
£, 0353 Fy D3 R, 03x3 0 0 g5,
56013x1 = | 03x3 03x3 O3x3 D3+ Fy 033 0 0] | dmzx
oty O3x3 O03x3 O3xz O3z Lxs+Fp 0 0] df55
b, 0153 O1x3 O1x3 O1x3 Oixa 0 1 0b,
| od, | 1013 O1x3 Oix3 O1x3 O1x3 0 0] dd |
O, 3x1
Oy 3x1
0:3x1
+ | Gw3x1 |W
Of3x1
b
[ 0]
(8.32)
The discrete form of Eq. (8.30) can be written as
oxXy = (I+FAZ‘)5X]¢71 + GAtwy_4 (833)
and hence Eq. (8.32) can be written in the discrete form as
ory, ) Lz FrAt O3 0353 03x3 0 07 [ or,, 6)3x1
OV 03x3 Bxs FAt 03x3 Ri At 0 0| ovi, 6,31
& 03x3  F:At Dy R, At 03x3 0 0 . G 3x1
0031 | = | 03x3 O3x3  O3x3  D3x3 + FoAt 033 0 0 || dm3x + | 6uax1 | Wk-1
Of 351 0353 O3x3  Os3x3 0353 I+ FAt 00 of31 G/ 3x1
ob, 01x3 O1x3  O1x3 O1x3 O1x3 1 At ob, O
od, |y 01x3 O1x3  Oi1x3 O1x3 O1x3 0 1 ody |4y 7
(8.34)

Equation (8.35) is the completely expanded form of the combined (INS and
GPS) system model.
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8.5.2 Measurement Model

The measurement model for a KF in the discrete-time domain is

5Zk
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expressed as

(8.36)

In the tightly coupled implementation, the available observations are pseudo-
ranges and pseudo-range rate measurements. Therefore the measurement vector is
the differences between these values as predicted by the INS and as measured by

the GPS

5z — {&p} _ [pINS_pGPS

0z, Pivs — PGrs

For M satellites this equation can be written as

- A
5zp

2
cSzp

M
&ﬁ
5Z§
5Zi’

521

P

PINs — PGps

M M
_ | Pins — Pgps
Pivs — Pgps
Pins — PGps

M M
L PINs — PGps

- L-
PiNs — Pgps
2 2

|

(8.37)

(8.38)
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Pseudo-range measurements

Because we want to implement an error state KF, the pseudo-range measurement
vector has the following form

0z, = Pivs — Pgps (8.39)

The pseudo-range for the m” satellite to the GPS receiver can be modeled
(Misra and Enge Dec 2001) by the following expression

Pops = 1" + cot, — oty + o™ + cT" + &) (8.40)
where

plps is the measured pseudo-range from the m™ satellite to the GPS receiver
(meters)

r" is the actual distance between the receiver antenna at the reception time
t, and the satellite’s antenna at the transmit time #* (meters)

ot, is the receiver’s clock offset (sec)

c is the speed of light (meters/sec)

Ot is the satellite’s clock offset (sec)

i is the ionospheric delay (sec)

™ is the tropospheric delay (sec)

e is the error due to inexact modeling, receiver noise and multipath.

Satellite clock bias and ionospheric errors can be calculated from the satellite’s
navigation message, and tropospheric error can also be estimated using an
appropriate model. Hence after correcting all the errors except receiver errors
(noise and clock bias), we can write the corrected pseudo-range as

Pops = 1" + cot, + & (8.41)

where, El’f‘ represents the total effect of residual errors.

The true geometric range from the m"” satellite to the receiver is

= G-y - = k=X (8.42)
where
X = [x,y, Z]T is the true receiver position in the e-frame
X" = [y, z’"]T is the m™ satellite’s position in the e-frame.

Equation (8.41) can be rewritten as

PGps = \/ (x—xm)? + (y =y’ + (2 — ") + Ob, + & (8.43)

where 0b, = cdt, is the error in range (in meters) due to the receiver’s clock bias.
The corrected position of the receiver is defined as
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X XINS — 5)6
y = YINS — 5_)1 (844)
Z ZNs — 02
where
Xivs = |[Xivs, yins, zvs] 1S the output of the mechanization
ox = [dx, dy, 5Z]T is the estimated position error.

Equation (8.43) is non-linear and so must be linearized for KF by applying a
Taylor series around x;ys. For any function f(x,y,z),, we have the Taylor series
expansion around (x;,y;,z;) as

§ )
G-x)+ 2 )t (-2
XisYiyZi XisYiyZi XisYisZi

+ Higher order terms(H.O.T)

9
f(X,y,Z) = f(xiayiazi) + a_f

(8.45)

and linearizing Eq. (8.43) around the current best estimate (x;ys, Yivs, Zivs) yields

Peps = \/(XINS —xm)? + (yivs — ¥ + (zvs — 2) +
(xivs — x™) (x — xvs) + (vivs — ¥™) (v — yivs) + (zavs — 2") (2 — zws)

+ 6b, + &)
2 2 2 ’
\/ (xvs — x™)" + (yvs — ¥™)” + (zivs — 2™)
(8.46)
By defining the pseudo-range for the output of the INS to be
m m 2 m 2 m 2
PiNs = \/(XINS = x")" 4 (yivs = ¥")” + (2vs — 27) (8.47)

we have

(xivs — x") (x = xpvs) + avs — Y™ — yvs) + (zivs — 2") (2 — zws)
\/(xms =) o+ (s =) + (aws — 27)°
b, + &
(8.48)

m m _
PiNs — Pgps = —

(xivs — Xm)(xnvs —x) + (s — ym)(yINs -y)+ (ZINS - Zm)(ZINs —z)
\/(XINS - X"’)2 + (yivs — )”")2 + (zmvs — Zm)2
—ob, + EZ’
(8.49)

m 1
PiNs — PGps =
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By defining the line of sight unit vectorlj, from the m™ satellite to the
receiver’s position based upon the output of mechanization, we have

(XINS*XJ ")
v Vs =) (s =2+ (zws—2" )
" (yvs—=y")
m — ‘l m —
tivs ]';;%INS V/ Gaws x>+ (s =y +(ams ") (8.50)
7,INS (zivs—2")
\/ Cens—x) 2+ (yivs —y™)* +(zivs —2")*
and
Pins — Peps = Los 0x + 1ng 0y + 17yg 0z — 6b, + &) (8.51)
where
ox XINS — X
oy| = |yws—Yy
0z NS — 2
and therefore
0x
0z, = [Wvs Uiws 1ows] | 0y | — ob, + &, (8.52)
0z

For M visible satellites, this equation can be expressed as

1! 1! 1!

leNS - pIGpS x,INS ¥,INS z,INS
2 2 2 2 2 ox
Pins — PGps Lonvs vs  1ovs
oz, = = oy -
5Z 3x1
M M lM lM lM
PiNs — PGps xINS Yy ins  Lzivs i
G (8.33)
=1
6br 8/’
=1
ob, €
+ .
ob m
rSMx1 6/’ Mx1

By defining a geometry matrixG in the above equation, we get

ox
0z, = Guxs | Oy —0b a1 + &5 mxi (8.54)

0z | 3,
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Because we have the position in ECEF geodetic coordinates, we must convert
them to ECEF rectangular coordinates using the following relation

x (Ry + h) cos(¢) cos(4)
y| = | (Ryv+h)cos(p)cos(4) (8.55)
z {Ry(1 — €*) + h} sin(p)

To be used in KF, the above set of equations has to be linearized through a
Taylor series

ox —(Ry + h) sin ¢ cos 4 —(Ry +h)cospsinl cospcosi]| [
6y| = | —(Ry+ h)singsin (Ry + h)cosgpcosA  cosgsind | | 64
oz {Ry(1 —€*) + h}cos g 0 sin ¢ Sh
T3x3
(8.56)
By defining a matrix 7343, the above equation can be expressed as
ox o
5)1 = T3><3 oA (857)
0z oh |4,
and substituting this into Eq. (8.54) gives
oo
5Zp = Gux3T3x3 | 64 — 5br‘M><l + €5 Mmx1 (858)
Hy oh 3x1

Mx3

By defining a matrix Hj,, 5 such that H},. ; = Gux3T3x3, we finally obtain the
following pseudo-range measurement model

o9
5Zp = H;l)/bd oA _5br,M><1 + ép,Mxl (859)

oh 3x1

Pseudo-range rate measurements

The measurement vector for the pseudo-range rate is the difference between the
pseudo-range rate predicted by the INS and the value measured by the GPS

oy = Pivs — Pers (8.60)

The Doppler shift produced by satellite and receiver motion is the projection of
the relative velocities onto the line of sight, scaled by the transmission frequency
and divided by speed of light
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" —v)-1"L
D" = [(V V) } 1 (861)
C
where
mo_ [ moom m] T is the velocity of the m'™ satellite in the e-frame
v = v v vy
V= [y, T is the true receiver velocity in the e-frame
L, is the satellite’s transmission frequency
c is the speed of light
1" is line of sight unit vector from the m™ satellite to the
GPS receiver, which can be expressed as
N T e
Given the Doppler, the pseudo-range rate p™ can be computed as
D"c
" = ——— 8.63
p I (8.63)
and the true pseudo-range rate is
=10 (e = V) Iy =) A+ 1 (v =) (8.64)

This pseudo-range rate can be modeled as

Pops = 17 (ve =) + 17 (vy =) + 17 (v =) + coty + € (8.65)

Pops = 10-(ve =) + 10 (vy =) + 17.(ve = V') + 0d, + & (8.66)

where dd, = cdt, is the receiver’s clock drift in meters/sec and 8;',’ is the error in
observation (meters/sec).

As we want our measurement model as a function of dv,, dvy, dv;, Eq. (8.66)
must be converted to the error state.

The INS estimated pseudo-range rate is given as
Pins = l;'leS'(VJC-INS v+ 1;71Ns~("y-,1NS - V;") + IZINS'(VZ.,INS —v') (8.67)

where vy ivs, Vyns, Vzins are the receiver’s velocities in the e-frame estimated by
the INS.

Taking the difference of INS-estimated pseudo-range rate Eq. (8.67) and GPS-
measured pseudo-range rate Eq. (8.66) we get
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Pins — Péps = _IZTINS'(VX — Vuins) — 1;T1N5~(Vy — Vyvs) + IZ?INS'(VZ — VzINS)
— od, + eg’
(8.68)
Pins — PGps = 1anvs-(vx-,1NS — Vi) + 1;71N5-(Vy,1NS —vy) + 1ZINS'(VZ,INS - V)
—od, + 8;}”
(8.69)
0zy = I ys-0vx + 1 ng.0vy + 17)yg.0v, — 0d, + &) (8.70)
5Vx Vx,INS — Vx
where 0z = pjys — PGps and | Ovy | = | vyvs — Vy
5"1 VzINS — V2
Writing Eq. (8.70) in state space form gives
OV,
o7y = [Wins Wins Uins] | vy | — ddr + &) (8.71)
ov,
and for M satellites the pseudo-range rate measurement model is
Pins — Peps l.vlc,lNS l)lz,lNS lzl,nvs od, ‘“,lg
026 — P2 12 12 12 vy 5d &
PiNs — PGps XINS 1yINS  1ZINS ¥ b
ozy = . = . . . ovy | — : + .
. M : . M 5‘}2
Pins — PGps IQ{INS ly]Ns 1?:111\/5 Mx3 Ody | g1 51,\;/1 Mxl
G
(8.72)
ov,
5Zp = GM><3 5Vy —5dr,M><1 + €pMx1 (873)
6VZ Mx1
The relationship between the velocity in the 1-frame and the e-frame is
ov, Ve
ovy | = Ry | ov, (8.74)
ov, ovy
Substituting for R} gives
ov, —sinA  sing@cosh cos@cosA | | v,
ovy | = | cosA singsinA cos@sink | | dv, (8.75)

ov, 0 cos @ sin ¢ oV,
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Fig. 8.8 An overall implementation diagram of tightly coupled INS/GPS integration

and the pseudo-range rate measurement model becomes

5VE
5Z/‘) = GngRle o | — 5dr,M><l + € mx1 (876)
Hll\]/l><3 5VU
By defining a matrix Hflx3 = Gux3R{, we finally have the expression for the
pseudo-range rate measurement model

) 5VE
5Z/] = Hl’t)4><3 ovy — 5dr7M><1 + € Mx1 (877)
5VU

8.5.3 The Overall Measurements Model

The measurement model for pseudo-range errors provided by Eq. (8.59) and
pseudo-range rate errors provided by Eq. (8.77) can be combined to create an
overall measurement model as
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. |-
péNS_pZGPS
Pins — PGps
' p
p%s_pgps _ |:HM><3 0M><3 Omxo  —lmx1  Opxi 5X1741
. . = y
péNS_ngS Omxs  Hys Omxo Ot =Lt Jopg
Pins — PGps M
M M
L Pins — PGrs d amxi
0z
€pMx1
+ |: Py
EpMx1 | oy
~—————
n
(8.78)

The implementation of the tightly coupled INS/GPS integration is summarized
as a block diagram in Fig. 8.8.
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Chapter 9

Three-Dimensional Reduced Inertial
Sensor System/GPS Integration

for Land-Based Vehicles

This chapter discusses a dead reckoning (DR) solution which is suitable for any
wheel-based platform integrated with GPS. It eliminates several error sources that
exist when using a traditional full IMU, especially low cost MEMS grade sensors.
After discussing and analyzing the performance of a full IMU system, the theory
of the methods employed to tackle sources of errors will be outlined. The reduced
inertial sensor system is introduced and compared to a traditional full IMU, and its
mechanization equations derived. This is followed by a description of both loosely
and tightly coupled KF-based integration of this reduced inertial sensor system
with GPS, including the linearized system model and measurement model for each
integration scheme.

9.1 Performance Analysis of 3D Positioning Utilizing
a MEMS Grade Full IMU

To demonstrate the sources of performance degradation during GPS outages in a
three-dimensional (3D) navigation solution based on a low cost MEMS grade full
IMU integrated with GPS, three uncompensated biases will be investigated: an
uncompensated bias in any of the three accelerometers; an uncompensated bias in
one of the horizontally aligned gyroscopes; and an uncompensated bias in the
vertically aligned gyroscope. As was discussed in Chap. 7, both the LKF or EKF
solutions attempt to compensate for these biases by using the error models for the
sensors that are used within the KF-based solution. These models are indirectly
updated by the KF-based solution when GPS is available. During GPS outages the
filter runs in prediction mode with the predicted values of the INS errors being
subtracted from the mechanization solution to correct it. But this compensation is
not perfect and the residual uncompensated parts of these errors will remain. The
effect of these uncompensated biases will be discussed below.
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As pointed out in Chap. 4, when calculating position and velocity from
accelerometers, an uncompensated accelerometer bias error by will introduce

1. An error in velocity proportional to ¢ (the GPS outage duration, when the KF is
working in prediction mode) dv = [ bydr = byt.

2. An error in position proportional to > which can be expressed as dp; =
[ovidt = [bprdr = Lbpr?.

For the second source of errors, an uncompensated bias b,, in one of the two
horizontally aligned gyroscopes introduces

1. An angle error in either pitch or roll that is proportional to time,
60 = f b,dt = b,t. This small angle will result in a misalignment of the
INS. Therefore when projecting the acceleration from the body frame to
the local-level frame, the acceleration vector is projected incorrectly owing
to this misalignment.

2. An error in acceleration in one of the horizontal channels in the local-level
frame da, = gsin(60) = gd0 ~ gb,t (for the bounded duration ¢ during a GPS
outage, 00 will be a small angle because b,, is a very small value and the
approximation sin(66) a 66 holds).

3. This causes an error in velocity v, = f bwgtdt:%bwgt2 and an error in

position dp, = [ Ovodt = [1b,gr?dt = Lb,gr.

Thus a gyroscope bias introduces a third order error in position. As confirmed in
(Skog and Handel 2009) the effect of these gyroscope errors will be the most
influential part of position and velocity errors when the INS works alone, such as
during GPS outages.

A third source of error arises because any uncompensated bias in the vertically
aligned gyroscope, b,,, will cause an error in azimuth 6A = [ b, dt = b, 1 that is
proportional to time. The resulting positional error will be proportional to vehicle
speed, time and this azimuth error (which is in turn proportional to time and the
uncompensated bias).

9.2 The Proposed Techniques for Overcoming MEMS Grade
IMU Shortcomings for Land-Based Vehicles

The navigation solution outlined in this chapter is suitable for land-based vehicles
that have a source of speed readings, such as an odometer or wheel encoders. This
will address uncompensated errors whilst also minimizing the cost by using fewer
inertial sensors.

To overcome the first error discussed above due to accelerometer biases, the
odometer-derived speed will be used in the navigation solutions. To overcome the
second error due to horizontal gyroscope biases, the pitch and roll angles will be
obtained by combining measurements from the accelerometers and the odometer.
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The calculation of pitch and roll angles from accelerometers was suggested before
for the Measurement-While-Drilling surveying application (Noureldin et al. 2002,
2004). There now follows a brief derivation of the pitch and roll equations.

When the vehicle is stationary the accelerometers measure components due to
gravity owing to the tilt from the horizontal plane by the pitch and roll angles. The
accelerometer measurements are

f* 0 ’ 0 —gcospsinr
Pl =R|0|=(R) |0] = gsinp (9.1)
1t g g gcospcosr

Since only two accelerometers along the X and Y directions are used, the pitch
and the roll angles can be expressed as

= (2) o2

r= sinl( = ) (9.3)
gcosp

When the vehicle is moving the forward accelerometer (corrected for sensor
errors) measures the forward vehicle acceleration as well as the component due to
gravity. In order to calculate the pitch angle, the vehicle acceleration derived from
the odometer measurements must be subtracted from the forward accelerometer

measurements
y _ o0d
p=sin"! (fi“> (9.4)
g

where g is the gravity acceleration, f” is the forward accelerometer measurement
(corrected for sensor errors) and a® is the vehicle acceleration derived from the
odometer measurements.

Similarly the transversal accelerometer (corrected for sensor errors) measures
the normal component of the vehicle acceleration as well as the component due to
gravity. To calculate the roll angle, the transversal accelerometer measurement
must be compensated for the normal component of acceleration

X od 2
r=—sin"! <f—|—vw> (9.5)
gcosp

where f* is the transversal accelerometer measurement (corrected for sensor
errors), v*? is the speed derived from the odometer measurements, w* is the angular
rate measured by the vertically aligned gyro (corrected for sensor errors) and v*/w?
is the normal component of the vehicle acceleration.

For low cost MEMS grade sensors the calculation of pitch and roll from the two
accelerometers is better than that from the two gyroscopes for several reasons.
Firstly, calculating pitch and roll from the two horizontal gyroscopes involves an
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integration operation, whereas calculating them from the accelerometers does not.
The drawback of integration is the accumulation of errors due to uncompensated
sensor bias errors, impairing the positional accuracy. Another reason to eliminate
these two gyroscopes is that accelerometers are less expensive.

The third source of error that is due to the vertical gyroscope bias needs to be
modeled by the integration filter that integrates these sensors with GPS.

9.3 Three-Dimensional Reduced Inertial Sensor System

To cut the cost of a navigation solution for land vehicles, a reduced inertial sensor
system (RISS) which employs one single-axis gyroscope and the odometer was
suggested for two-dimensional (2D) navigation (Igbal and Noureldin 2009; Igbal
et al. 2008, 2009) and integrated with GPS using a KF. This 2D RISS/GPS solution
assumes that the vehicle moves mostly in the horizontal plane, which is generally
plausible. This was called a RISS because it also contained a pair of accelerom-
eters for calculating pitch and roll (Igbal et al. 2008), but these angles were to be
obtained as separate quantities and not utilized to estimate the off-plane motion.
The single gyroscope, which had its sensitive axis aligned with the vertical axis of
the vehicle, was used along with the odometer, and the entire system was inte-
grated with GPS. On the assumption that the vehicle operated in the horizontal
plane, its speed was derived from the odometer measurements and used with the
heading information obtained from the gyroscope to determine the velocities along
the east and north directions and thereby enable the longitude and latitude to be
tracked. This reduced multi-sensor system provides an effective 2D navigation
solution for land vehicles.

As described in (Igbal et al. 2008), two additional accelerometers may be used
if it is necessary to determine the pitch and roll angles. As described earlier, two
accelerometers pointing in the forward and transverse directions of the vehicle, a
reliable model for the Earth’s gravity and speed readings can provide the roll and
pitch angles. These angles were not included in the dynamic model used by KF to
determine when a system is off the horizontal plane.

9.3.1 Overview of 3D RISS

For the 3D RISS solution discussed here, the measurements provided by the two
accelerometers used to calculate pitch and roll are incorporated to estimate the off-
plane motion and allow this solution to target a 3D navigation solution. It has been
proven (Brandt and Gardner 1998) that due to the non-holonomic constraints on
the land vehicle the forward accelerometer and three gyroscopes are sufficient
(as opposed to a full IMU with three accelerometers and three gyroscopes) to
provide a navigation solution that calculates 3D position, velocity and attitude.
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=

Wheel speed
sensor

Gyroscope  Accelerometer

Fig. 9.1 The sensors used in a 3D RISS depicted with respect to the body frame of a land vehicle

This also means that the three gyroscopes together with the forward speed derived
from the vehicle’s odometer are sufficient to achieve 3D navigation. The work
presented in this chapter is a 3D navigation solution using the vehicle’s odometer,
one single-axis gyroscope and two accelerometers. The gyroscope is aligned with
the vertical axis of the vehicle. The pitch and roll angles that would have been
provided by the two eliminated gyroscopes are now calculated using the two
accelerometers. The 3D RISS integrates the measurements from the vertically
aligned gyroscope and the two horizontal accelerometers with speed readings
provided by an odometer or wheel encoders. The 3D RISS system is depicted in
Fig. 9.1. Using a 3D RISS to obtain a navigation solution of 3D position, 3D
velocity and 3D attitude was first proposed in (Georgy et al. 2010).

9.3.2 Advantages of 3D RISS for Wheel-Based Land Vehicles

The advantages of the 3D RISS over 2D vehicular dead reckoning solutions are
based on the fact that the measurements from the two accelerometers are used to
calculate the off-plane motion. The first benefit is the calculation of the correct
azimuth angle. This is because the gyroscope (vertically aligned to the body frame
of the vehicle) is tilted with the vehicle when it is not purely horizontal and thus is
not measuring the angular rate in the horizontal E-N plane. Because the azimuth
angle is in the E-N plane, detecting and correcting the gyroscope tilt yields a more
accurate calculation of the azimuth angle than 2D vehicular dead reckoning that
neglects this effect. The second benefit of 3D RISS is more accurate 2D horizontal
positioning than 2D RISS for two reasons, namely: (1) incorporation of the pitch
angle in calculating the two horizontal velocities from the speed measured by the
odometer and a more accurate velocity provides better position estimates; and (2)
the more accurate azimuth calculation leads to better estimates of velocities along
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east and north and thus a better 2D position. The third advantage of 3D RISS over
2D vehicular dead reckoning is the calculation of the upward velocity and altitude,
quantities which were not previously available.

The advantages of the proposed 3D RISS over a full IMU are the calculation of
pitch and roll from accelerometers instead of gyroscopes, and the calculation of the
vehicle’s velocity from an odometer-derived speed instead of accelerometers. To
demonstrate the superiority of calculating pitch and roll from accelerometers
rather than gyroscopes consider the uncompensated bias in one of the eliminated
horizontal gyroscopes, which will introduce an angle error in pitch or roll that is
proportional to time arising from integration and thus cause a misalignment of the
INS that will incorrectly project the acceleration vector from the body frame to
the local-level frame, in turn introducing an error in the acceleration in one of the
horizontal channels of the local-level frame that will produce an error in velocity
proportional to > and an error in position proportional to #*. When pitch and roll
are calculated from accelerometers, the first integration is eliminated and the error
in these angles is not proportional to time. Furthermore, the portion of the position
error that arises from these angle errors will be proportional to ¢ rather than 73.

In addition to these advantages of using two accelerometers rather than two
gyroscopes for calculating pitch and roll, a RISS provides a further improvement
in the velocity calculations. Calculating velocity using the forward speed derived
from an odometer rather than from accelerometers (in accordance with the non-
holonomic constraints imposed on land vehicles) achieves better performance than
calculating it from the accelerometers. This is because when calculating velocity
from accelerometers any uncompensated accelerometer bias error will introduce
an error proportional to ¢ in velocity and an error proportional to ¢> in position. The
calculation of velocity from an odometer avoids the first integration, thereby
making the position calculation require a single integration. This means that the
position is obtained after a single integration when using odometer measurements
as opposed to two consecutive integrations using accelerometer measurements. In
long GPS outages the error when using accelerometers will be proportional to the
square of the outage duration, which will be drastic for long outages.

As a result of the two abovementioned improvements, a further improvement of
the position calculation will follow. The errors in pitch and roll calculated from
accelerometers (no longer proportional to time) will cause a misalignment of the
inertial system that will influence the projection of velocity (for a RISS) instead of
acceleration (for a full IMU) from the body frame to the local-level frame, making
the portion of the position error arising from pitch and roll errors proportional to ¢
rather than to the > that was discussed in the first improvement to be gained from
eliminating the two gyroscopes.

The only remaining main source of error in 3D RISS is the azimuth error due to
the vertically aligned gyroscope. An uncompensated bias in this gyroscope will
cause an error in azimuth that is proportional to time. The position error due to this
azimuth error will be proportional to vehicle speed, time, and the azimuth error (in
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Fig. 9.2 Positioning results for a 3D RISS mechanization versus a high-end reference solution

turn proportional to time and the uncompensated bias). This must be tackled inside
the integration filter by modeling the stochastic drift of the gyroscope.

To demonstrate the advantages of 3D RISS over a full IMU for land vehicles,
the positioning output of the standalone unaided mechanization for each system is
presented for driving a land vehicle around the Kingston area in Ontario, Canada,
on a trajectory that traveled a distance of around 96 km over a duration of almost
100 min. The positioning results for both systems are presented in Figs. 9.2, 9.3
and 9.4. Figure 9.2 shows a 3D RISS standalone mechanization in comparison to a
high-end reference solution, while Fig. 9.3 shows a full IMU standalone mecha-
nization in comparison to this same reference. It is evident from Fig. 9.3 that the
full IMU standalone solution drifts significantly over time and soon deviates from
the true trajectory. Comparing the two standalone solutions of Figs. 9.2 and 9.3
demonstrates the significance and the importance of the 3D RISS solution. Fig-
ure 9.4 shows a zoom-in at the beginning of the trajectory to show how the
standalone full IMU solution degrades more rapidly than that of the 3D RISS. The
MEMS sensors used in both 3D RISS and full IMU came from the same IMU, a
model IMU300CC-100 manufactured by Crossbow. The gyroscope bias of this
IMU is 2°/s as listed in Table 10.1. It must be noted that for the mechanization
laboratory calibration values were used in both cases to remove the accelerometer
bias offsets from the readings and the gyroscope biases offset were obtained by
averaging the readings during a static period at the start of the trajectory and they
were removed upon finishing the trajectory. The high-end reference is an off-the-
shelf solution by NovAtel called a synchronized position attitude navigation
(SPAN) HG, incorporating a high-end tactical grade IMU from Honeywell (HG
1,700) with a dual frequency NovAtel GPS receiver (OEM4).
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Fig. 9.4 A close-up of the positioning results at the beginning of the trajectory for a 3D RISS
mechanization, a full IMU mechanization and a high-end reference solution

9.3.3 Derivation of the 3D RISS Motion Equations

The non-linear motion model for a 3D RISS involving the position, velocity and
attitude states is presented in this section.

The common reference frames are used. The body frame of the vehicle has its
X-axis along the transversal direction, its Y-axis along the forward longitudinal
direction, and its Z-axis along the vertical direction of the vehicle. The local-level
frame is the ENU frame with axes along east, north and vertical (up) directions.
The rotation matrix that transforms from the vehicle body frame to the local-level
frame at time k — 1 is
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COSAj_1COS Tk + SinAg_ysinpg_ysinrg_;  sinAj_jcospi_y  CcOSA_;sinri_y — sinAg_; sinpy_; cos ry_;
R'M;1 = | —sinAg_ cOSr_1 + COSAf_Sinpg_;sinry_; cosAg_1COSpx_1 —SinAg_qsinrg_; — cosAy_;sinpg_i cos ry_;
— COS P Sinrg_y sinpr_i COS P COS Ik_|

In order to describe the motion model, we first require the control inputs. The
sensors measurements provided by the gyroscope, the two accelerometers, and the
odometer comprise the control inputs represented by the vector

, T
w=[w a? £ f o (9.7)

where
od s the speed derived from the vehicle’s odometer

a¢d is the acceleration derived from the vehicle’s odometer

© is the transversal accelerometer measurement

Y’ is the forward accelerometer reading

w;  is the angular rate obtained from the vertically aligned gyroscope.

The control inputs with the suffix & in this discussion denote those that cause the
system state to change between the time epoch k — 1 and k.

Before deriving the motion equations, it is important to define the navigation
state of the system. One possible state vector is

T
Xk = (pk77\’k7hk7v£upk7rk7Ak7 (98)

where
@ s the latitude of the vehicle
Ak is the longitude
hy s the altitude
v]f{ is the forward speed
pr  is the pitch angle
ry  is the roll angle
Ay is the azimuth angle.

. . T
Another possible state vector is [y, A, b, vE, W, v pi, rie, Ax, | where vE, WY,
and v/ are the velocity components along the east, north and up directions.

9.3.3.1 Pitch and Roll Calculation
For a land vehicle the pitch angle is the angle that it makes with respect to level

ground (i.e. rotation about the transversal axis) and the roll angle is its rotation
about the longitudinal axis, as depicted in Fig. 9.5.
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Roll

Fig. 9.5 Pitch and roll angles of a land vehicle

When the vehicle is moving the forward accelerometer measures the forward
vehicle acceleration as well as the component due to gravity, and to calculate the
pitch angle the vehicle acceleration derived from the odometer measurements is
removed from the forward accelerometer measurements

Yy _ od
pi = sin”! <7" % > (9.9)

Similarly the transversal accelerometer measures the normal component of the
vehicle acceleration as well as the component due to gravity, and to calculate the
roll angle the transversal accelerometer measurement must be compensated for the
normal component of acceleration

X od 2
r = —sin~! (f+_w) (9.10)
8 COS Pk

9.3.3.2 Azimuth Calculation

The azimuth angle of a land vehicle is its deviation from north, as in Fig. 9.6.
In time interval Ar between time epochs k — 1 and k, the counterclockwise
angle of rotation around the vertical axis of the body frame of the vehicle is

Vi = wiAt (9.11)

The aim is to get the corresponding angle when projected on the E-N plane;
i.e. the corresponding angle about the up direction of the local-level frame. The
unit vector along the forward direction of the vehicle at time k observed from

the body frame at time k is U,flk =[0 1 0]". It is necessary to get this unit
vector, which is along the forward direction of the vehicle at time k, observed
from the body frame at time k —1; i.e. U,l("k_l. The rotation matrix from
the body frame at time k — 1 to that frame at time k due to rotating y; around
the vertical axis of the vehicle is R.(y;). The relationship between Uy, and

b .
Uk|k—l is
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Fig. 9.6 The azimuth angle
for a land vehicle

Uggie = Re (7) Ui (9.12)

and because R.(y7) is an orthogonal rotation matrix

, cosy; —siny; O[O —sin
U,l("k_l = (RZ (yi)) U,f‘k = |[siny; cosy; Of|1]| = | cosyi (9.13)
0 0 1110 0

The unit vector along the forward direction of the vehicle at time k seen from
the local-level frame at time Xk — 1 can be obtained from

2 —siny}
U1€|k—1 = | UV | = Ri,k—lUll:Uc—l = Rll;,k—l cos (9.14)
uvr 0

Consequently the new heading from the north direction due to the angle 7y} is

_ E
tan~! (%) , where

UE =sinA;_; cospy_; cos 7 — (cosAg_j cosry_1 +sinAy_; sinp_; sinrg_; ) siny;
UM =cosA;_; cospy_1 cosy; — (—sinA;_jcosry_ +cosAs_sinpy_;sinr_;)siny;

(9.15)
UE
o~
direction and is positive in the clockwise direction.

In addition to the rotations performed by the vehicle, the angle y; has two
additional components. These are due to the Earth’s rotation and the change of
orientation of the local-level frame. The part due to the Earth’s rotation around the
up direction is equal to (w° sin ¢,_;)Ar counterclockwise in the local-level frame;

The azimuth angle defined by tan’1< ) is the angle relative to the north
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w® is the Earth’s rotation rate. This component is compensated directly from the
new calculated heading to give the azimuth angle. It is worth mentioning that this
component should be subtracted if the calculation is for the yaw angle (which is
positive in the counterclockwise direction). In this study we calculate the azimuth
angle directly (which is positive in the clockwise direction) and so the component
for the Earth’s rotation is added. The part of y; due to the change of orientation of
the local-level frame with respect to the Earth from time epoch k — 1 to k is in the
counterclockwise direction and can be expressed as

Vi1 Singy
(Ry + hig—1) cos ¢,

(sin @;_ )AL = At (9.16)

dt|,_,

The relationship between the vehicle’s velocity in the body frame and in the
local-level frame is

Vf 0 vi sin Ay cos py
Vg = R;i,k v’,‘( = v{{ cos Ay cos py (9.17)
Ve, 0 vz sin py

which enables Eq. (9.16) to be rewritten as
dh

dt

f .
. Vi SINAg_| COSpy_ tan @;_,
At = &1 At 9.18
k71(51n (0](,1) (RN+hk—1> ( )

and this must also be added in calculating the azimuth angle.
Finally, the model for the azimuth angle is

E

U Vi sinA,_ it
A=t (UN> (0 sin g ) S SIRAK COSPU D Py

(Ry + hi—1)

(9.19)

9.3.3.3 3D Position and Velocity Calculations

Before describing the system equations for position and velocity, take note that
Eq. (9.17) gave the relation between the vehicle’s velocity in the body frame and
in the local-level frame. As a result of the non-holonomic constraint on land
vehicles the velocity in the body frame consists only of the forward longitudinal
speed of the vehicle; the transversal and vertical components are zeros. Hence the
latitude can be expressed as

do vi\’ vi cos Ay cos py
=, +—|At=¢, 1 +—"—At=¢,_  +———At (9.20
Pr = Pr—1 dr |, Pi—1 Ry + I Pr—1 (Rur + he) ( )

where Ry, is the meridian radius of curvature of the Earth and At is the sampling
time.
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Similarly, the longitude is

d. vE Vi sin Ay cos pg
M=o+ —| At=hy o +— T Ar=y T
TN T r ko (Ry + hy) cos ¢y, ko (Ry + hy) cos ¢y,

(9.21)
where Ry is the normal radius of curvature of the Earth.

The altitude is

dh

| A= hioy+ VP AL = Iy_y + V) sin py At (9.22)

e =1 +

k

The forward speed is

ka = vzd (9.23)

9.3.4 Overview of 3D RISS Motion Model

The overall motion model is represented as follows

Pi
M
hy
Xp = v{( = f(xp_1, ;)
Pk
Tk

Ay |

vi cos A €OS py
v’,zk COS P
(Ry + hy) cos @y

Iy + v} sin At

Y _ _od
sin”! (fk—ak )
8

X od 2
(o
_sin—! (/% k Pk
gcospx

Pr1 + At

9.24
Me—1 + ( )

Ut /| sinA t
-1 e : Vi SinAy_1 cos pr_i tan @y
tan <_UN + o sin @ At + Rethe ) Ar
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Fig. 9.7 A block diagram of the 3D RISS model

If the velocity components in the local-level frame are used in the navigation
state vector instead of the forward speed, the motion model will become

Xy = Vi

=f(xp_1, ) =

r N

Vi
At
Pr-1 Ry + hy
Vi
Mg +—-L— At
k=l (Ry + hi) cos @,
hi—1 + v At

de sin A; coS py
vzd CoS Ay COS py
vod sin py
sin! (=

g
—sin”! (ka +"Zdwi>

gcos py

tan~! (g—f,) + (wsin @,_;)At +

The 3D RISS model is summarized in Fig. 9.7.

9.4 KF for Loosely Coupled 3D RISS/GPS Integration

vE | tan @, Ar
(Ry + hi—1)

(9.25)

As described in earlier chapters, the non-linear motion model forms the basis of
mechanization and the linearized error-state model derived from this serves as the
system model for a Kalman filter.
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Fig. 9.8 A block diagram of a loosely coupled 3D RISS/GPS integration

Two approximations are made here to simplify the following linearized system
model as an error model for a 3D RISS. The first approximation is to exclude the
pitch and roll errors as states in the integration filters. This is acceptable because, as
discussed earlier, the errors in pitch and roll do not grow with time since they do not
involve integration. The second approximation assumes that the gyroscope (along
the vertical direction of the body frame of the vehicle) is aligned with the vertical of
the local-level frame, simplifying the azimuth calculation. Since this gyroscope
measurement includes the component of the Earth’s rotation as well as the rotation
of the local-level frame on the Earth’s curvature these quantities are removed from
the measurement prior to integration. Based upon the above 2D approximation for
the azimuth, we can write the azimuth angle directly in local-level frame as

Ve tan @ Ar
(RN + hg—1)

The block diagram of the loosely coupled 3D RISS/GPS integrated system is
depicted in Fig. 9.8.

A = Ap_1 — 0 At + (0 sin @) At + (9.26)

9.4.1 The Linearized Error Model for 3D RISS

The error-state system model for 3D RISS KF can be written as
0x, = O _10x,_1 + Gr_1wi_1 (927)

where
OXy is the 9 x 1 state vector
®;_; is the 9 x 9 state transition matrix
Gir_1 is the 9 x 1 noise distribution matrix
Wi_1 1s the unit-variance white Gaussian noise.
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The error-state vector that will be used by the Kalman filter is
3% =[5, O, Shy, SVE, v, 6vY, 5Ay, S, 5] (9.28)

where
O¢; s the error in latitude
OA;  is the error in longitude
ohy, is the error in altitude
ovE s the error in the velocity component along east direction
ovY is the error in the velocity component along north direction
dv{ s the error in the velocity component along up direction
0Ay  is the error in the azimuth angle
Sng is the scale factor error of the odometer-derived speed

dw;  is the stochastic gyroscope drift.

As mentioned earlier, the motion model is non-linear and must be linearized to
obtain the error model that will serve as the system model for KF. These equations
are linearized by applying a Taylor series expansion and ignoring the higher order
terms. The corresponding linearized error state system model is therefore

ory Lys  Fio 033 | | 01y 03,
OXp = | ovi | = [ 0353 L3 F, OVi—1 | + | 0351 (929)
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The stochastic errors associated with the gyroscope and the odometer-derived
speed are modeled by a Gauss-Markov model where y,; is the reciprocal of the
autocorrelation time for the scale factor of the odometer-derived speed, olz)d is the
variance of the noise associated with it, f3, is the reciprocal of the autocorrelation
time for the gyroscope’s stochastic drift, and af is the variance of the noise
associated with it.

9.4.2 Measurement Model for Updating 3D RISS

Since we are considering loosely coupled integration, GPS position and velocity
updates are used during the update stage of the KF and the measurement model
used by the filter is

r (pflss_q)EPS T
}\(ﬁlSS_)\(]?PS
hfISsth?PS
0z = | priss  EgGes | = HOXi+ony
Ve -V
ka,RlSS . VkN,GPS
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50, ]
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where 0z, is the difference between the 3D positions and velocities provided by
RISS mechanization and by GPS, and oy, is the measurement noise.
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9.5 KF for Tightly Coupled 3D RISS/GPS Integration

The block diagram of the tightly coupled 3D RISS/GPS integrated system is
depicted in Fig. 9.9.

9.5.1 Augmenting the System Model

The system model for a tightly coupled system integration is like that for a loosely
coupled one, but both it and the state vector also include the GPS receiver’s clock
bias and drift errors and therefore the RISS and GPS parts are simply combined to
provide the full system model

0xp = Op_ 10Xt 1 + Gr_1wi_1

B il I VI e GRISS e (9.31)
o | T o e | axrs | T ey |
The equation for the KF system model of a GPS is
5XCPS — DOPSSXTPS L GIPSy (9.32)

The bias of the GPS receiver’s clock b9 and its drift 6P are included as
states. The system model for these states is

5b]§PS o 1 At 5b]?f15 O'bAt GPS
{561,9” NI ZI R (5:33)
where
kaf § is unit-variance white Gaussian noise
op is the standard deviation of white noise for the clock bias
o4 is the standard deviation of white noise for the clock drift.

and the state vector becomes

Oxi = [6epr, S, Shy, OvE, v ovl , 0Ay, SFY? S0, SbTTS, 5dfPS]T

9.5.2 Raw GPS Measurement Model for Updating 3D RISS

The linearized measurement model for KF in tightly coupled integration is

(3Zk = Hkéxk =+ & (934)
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Fig. 9.9 A block diagram of a tightly coupled 3D RISS/GPS integration

where
0z, is the measurement vector
H,  is the measurement design matrix
Ox; 1is a state vector of dimension 11 x 1
& is a vector of measurement random noise which has a zero-mean and
covariance R.

The GPS observations are pseudo-ranges and pseudo-range rate measurements.
Hence for the error state KF, the measurement vector is the difference between the

RISS and GPS pseudo-ranges dz; and pseudo-range rates éz,’:, expressed as

5z° RISS _ GPS
oz = [&E} = {glkfalss _ gll(i;Ps} (9.35)
where
pRISSis the RISS estimated range between the satellite and the receiver
pRISSis the RISS estimated range rate between the satellite and the
receiver

pCPS  is the GPS measured range between the satellite and the receiver
pCPS is the GPS measured range rate between the satellite and the

receiver.

As pointed out in Chap. 3, p,?P S is corrected for satellite clock errors and for

both ionospheric and tropospheric errors.
For M satellites visible to the receiver, the above equation can be written as


http://dx.doi.org/10.1007/978-3-642-30466-8_3
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These non-linear pseudo-range errors are derived from the measured pseudo-

range and the predicted pseudo-range based on the RISS calculated position. The
GPS.M

pseudo-range for the mth satellite p, can therefore be modeled by
pItsm = e — x| 4 065" + g™ (9.37)
where
Iy is the receiver’s position in ECEF rectangular coordinates
ry is position of the mth satellite in ECEF rectangular coordinates

SbgPS s the receiver’s clock bias

pm is the total effect of residual errors due to atmospheric delays (after
correcting for these errors using models inside the receiver itself),
receiver noise, etc.

The estimated pseudo-range from the output of the RISS navigation system is
defined as

prissm _ KRS — 1| (9.38)

where rf’S is the position of the vehicle calculated from the position output of the
RISS mechanization originally in ECEF geodetic coordinates and transformed to
ECEF rectangular coordinates.

The GPS pseudo-range measurements are not linearly related to the vehicle’s
position but a Taylor expansion series around the latest estimated state allows the
difference between the RISS estimate and the GPS measurement to be modeled as
being linearly related to the error in position

Sz = 1SS (xfISS — ) — SbTPS + & (9.39)
where lflss’m is the line of sight unit vector from the mth satellite to the position of

the receiver based on the output of RISS mechanization

RISS _ wm
lfls&m Y Ty (9.40)
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In component form, Eq. (9.39) can be written as

5Xk
5 — [lff&m lffs’m lﬁss,m} dye | — bGPS 4 g (9.41)
’ 0zk

where dr; = rf, o — 1.

With M satellites visible to the receiver, this becomes

Sbgrs &)
Oxy 5EPS él,:,z
02 et = Grws | v | —| . +] " (9.42)
0z : :
kdsxa 5bGPS ~p,m
koo dmxt L& dya

where

RISS,1 lRISS,l lR[SS,l ]
x,k v,k zk
RISS2 RISS 2 RISS 2
lx“,k 1)',k lz7k
G = (9.43)

1R1.§‘S,M lRIS‘S.,M lRI.S.“S,M
x,k v,k Z.k

4 Mx3

Since the position components of the state vector are in geodetic coordinates in
the ECEF frame, it is necessary to convert them to the corresponding rectangular
coordinates

Xk (Ry + hy) cos @y cos Ay
yi | = | (Ry+ hy)cos @ sinky (9.44)
2k {Rv(1 =€) + I} sin gy

In matrix notation, the linearized position error form of the above equation is

Oxy —(Rn + hy)singgcoshy  —(Ry + hi) cos g sindy  cos @ cos g | [ Sopy

Oy | = | —(Rv+h)singgsinke  (Ry + hi) cos g, coshy  cos @y sindy | | iy

0% {RN(l —é?) +hk}cos N 0 sin ¢, Ohy (9 45)

Oxy Oy '

Ovr | = Lisxs | 0k

0%k Ohy

Substituting Eq. (9.45) into Eq. (9.42) gives
5(/)1( GPS

0z prr = GrmxaLliaxs | Oha | = ObPhry + & (9.46)

Oy

By defining a matrix H} such that HY ,, 5 = Gy ux3Li3x3, the equation for the
linearized pseudo-range measurement model is
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0Py
0z et = HY pps | O —5b1<G§4Sx1 + & w1 (9.47)
Ohy

3x1

The pseudo-range rate measurement from the mth satellite, pGPS ™ is computed

by measuring the Doppler shift in the satellite’s carrier frequency. As noted in
Chap. 3 the pseudo-range rate can be treated as the relative velocity measurement
between the receiver and the satellite projected onto the direction of the unit vector
from the satellite to the receiver. This measurement model can be mathematically
written as

PP = (v — V) 1 3dPS 4 &) (9.48)
where
v is the mth satellite’s velocity in the ECEF frame
Vi is the true velocity of the receiver in the ECEF frame
5dePS  is the receiver’s clock drift
sz m is the error in observation.

In Eq. (9.48), 1} is the true line of sight unit vector pointing from the mth
satellite to the receiver, which is

= T (9.49)
[Ixe x|
Equation (9.48) can be rewritten as
. GPS,m m X — Xy p,m
Pi = (Vk Vi ) H)(ﬁ + 5d,?PS + SZ (9.50)
« = x|
The RISS estimated pseudo-range rate is
pflSS.,m _ (VflSS _ vzq) 5 lfISS,m (951)
where VRS is the velocity of the vehicle estimated by the RISS in rectangular

coordinates in the ECEF frame.
The linearized pseudo-range rate measurement equation is therefore

prISSm _ GPSm _ <1RISS m) v — 5d9PS + g (9.52)
. 5V]§
5Z£7m _ [lffsm liiss,m liiSS,m] 5\)% _ 5dGPS m (9.53)

v
ovy
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where dv, = VRIS — ;.

For M satellites visible to the receiver, the pseudo-range rate measurement of
Eq. (9.53) can be expressed as

3dgrs @'
| o] |edrs
02}y = Graxs | OV - . +| " (9.54)
RN :GPS ~;'):m
O™ Ly LE™ 1y

The relationship between the velocity in the local-level frame and the ECEF
frame is

oy HE
vy | =Rk | OV (9.55)
o oy

where Rf ‘ transforms from the local-level frame to the ECEF frame, and can be
written as

—sinl;  SIN @, COSA; COS () COS Ay
Ri|, | coshc singgsinky cos gy siniy (9.56)
0 COS @y, sin ¢,

By substituting Eqgs. (9.55) into (9.54) and equating H,’;’_MM = Grux3R]
expression for pseudo-range rate measurement model is

& the

g
Oz prirt = HY pres 5"% - 5dl(<;,ZS><1 + & a1 (9.57)
OV

The overall measurement model for the pseudo-ranges and pseudo-range rates
is therefore

Hl s O Owss —lusa Omsa

5Zk,2Mx 1= 5Xk,1 1x1

0 H! 0 0 —1
M %3 kMx3 M %3 M x1 Mx1 Ml

éngl
(9.58)
2M x1

+
=
& Mx1
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Chapter 10
Two Case Studies: Full IMU/GPS and 3D
RISS/GPS Integration

In Chap. 8 the theories of the loosely coupled and tightly coupled integration
schemes of a full IMU with GPS were presented. In Chap. 9 the integration of a
reduced inertial sensor system (RISS) with GPS was detailed, along with its
various advantages. In this chapter we will look at the performance of these
integration techniques using real inertial measurements and GPS data collected
during road test trajectories. After the data had been obtained, some GPS outages
were intentionally simulated during post-processing whereby the number of sat-
ellites available was limited to fewer than four and the response of the INS/GPS
integration was assessed for accuracy against a reference trajectory. When the
number of satellites was reduced to zero in the tightly coupled integration algo-
rithm, a complete blockage of the GPS, its performance resembled that of a loosely
coupled integration because the loosely coupled integration only suffers a com-
plete blockage (no GPS solution) when the number of satellites falls below four,
denying aiding to the INS. In the strict sense this is not a loosely coupled
integration but the performance is so close that we will treat it as if it were. The
ensuing sections describe the equipment used for the experiments and an overview
of the trajectories. The results of the trajectories are assessed for consistency with
the theory and expected improvement or degradation for various satellite config-
urations. Selected GPS outages from each trajectory are also analyzed.

10.1 Navigation Equipment Used for the Experiments

The full IMU used a tactical grade Honeywell HG1700 model AG58 IMU housed
in an IMU-G2 enclosure by NovAtel that provides the power supply and decodes
and times the IMU output data. In this enclosure the unit is known as an IMU-G2-
HSS.
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Positioning and their Integration, DOI: 10.1007/978-3-642-30466-8_10,
© Springer-Verlag Berlin Heidelberg 2013


http://dx.doi.org/10.1007/978-3-642-30466-8_8
http://dx.doi.org/10.1007/978-3-642-30466-8_9

298

Table 10.1 Characteristics of the Crossbow IMU300CC (Crossbow 2012) and Honeywell IMU

(NovAtel 2005)

10 Two Case Studies: Full IMU/GPS and 3D RISS/GPS Integration

Crossbow IMU300CC

HG1700

Size 7.62 x 9.53 x 3.2 (cm) 15 x 15 x 10 (cm)

Weight 0.59 kg 0.725 kg

Max data rate 200 Hz 100 Hz

Start-up time <ls <0.8 s
Accelerometer

Range +2 g +50 g

Bias 430 mg 1.0 mg

Scale factor <1 % 300 ppm

Random walk <0.15 m/s/h'? 0.0198 m/s/h'?
Gyroscope

Range +100 g +1,000 deg/sec

Bias < £2.0%sec 1°h

Scale factor <1l % 150 ppm

Random walk <2.25%h'*? 0.125°/h'?

Electrical

Input voltage 9-30 V dc +5Vdc

Power <3W <8 W

Connector RS-232 RS-422

To assist the reader appreciate low cost sensor performance, a MEMS grade
Crossow IMU300CC (Crossbow 2007) was used for the 3D RISS solution. This is
an inertial system with six degrees of freedom which employs solid state devices to
measure angular rate and linear acceleration. The specifications of these two IMUs
are listed in Table 10.1. For the experiment, only data from the vertical gyroscope
was needed. For the RISS algorithm we used the speed data from the vehicle
collected by a data logger called CarChip (Davis 2012) that was connected to the
OBDII interface of the vehicle. A NovAtel ProPak-G2plus GPS receiver housing
an OEM4-G2 GPS card was used for external aiding. A single frequency output of
the GPS receiver was selected for the algorithm to integrate the IMU with the GPS.
For the reference system an off-the-shelf NovAtel SPAN technology system was
employed. This integrates the HG1700 IMU and ProPak-G2plus GPS receiver
through tightly coupled architecture using both L1 and L2 frequencies. The
accuracy of the reference system is 2 cm with the aid of RT-2 GPS software and
1.5 m for single point (L1/L2) positioning. For laboratory calibration of the IMU
an Ideal Aerosmith 2103HT rate table was used. All of this equipment is shown in
Fig. 10.1.

The systems were mounted on a test vehicle and various trajectories carried out
to address different road scenarios typically encountered in a road trip. Figure 10.2
shows the data acquisition equipment installed in the vehicle prior to the test.
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(@) g N (b)

«, Crossbgw

Fig. 10.1 a Honeywell HG1700 IMU enclosed in NovAtel casing (together referred to as IMU-
G2-H58). b Crossbow IMU300CC. ¢ NovAtel OEM4 GPS enclosed in ProPak G-2Plus SPAN
unit, and d Ideal Aerosmith 2103HT rate table

10.1.1 Partial GPS Outage Criterion

As mentioned, the main advantage of tightly coupled integration is that it provides
a GPS solution for aiding INS even when fewer than four satellites are visible.
In reality, the satellites with the lowest elevation angles are usually blocked.
Figure 10.3 depicts typical urban and rural scenarios. To mimic real life, only the
highest elevation angle satellites were selected in the test.
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Fig. 10.2 The data collection equipment mounted inside the road test vehicle
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Fig. 10.3 GPS signal blockage in rural (leff) and urban ‘canyons’ (right)

10.2 Performance of Tightly Coupled Algorithm
for Full IMU/GPS

The trajectory selected for the analysis of the full IMU tightly coupled algorithm
was performed in downtown Kingston, Ontario, an area that included slow speeds,
frequent stops and many sharp turns. The start and end points of the trajectory are
indicated by a red triangle and circle respectively in Fig. 10.4. The direction of the
trajectory is indicated by a blue arrow. Five intentionally introduced partial GPS
outages (with fewer than four visible satellites) were introduced at locations shown
by the blue circles. It was ensured that these GPS outages were introduced at
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Fig. 10.4 The road test trajectory in and around downtown Kingston, Ontario
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Fig. 10.5 Availability of satellites during the trajectory for the full IMU test

places which contained different features; e.g. slow speeds, normal turns, sharp
turns, high speeds, and slopes. The outage duration was fixed at 60 s and each
outage was repeated four times with the number of visible satellites being
decreased progressively to zero.

Figure 10.5 shows the availability of satellites during the test. It is evident that
there are portions of the trajectory where the number of satellites fell below three.
Since the outages were simulated in post-processing in order to limit the number of
satellites, we could use only those parts of the trajectory for which there were at
least three satellites visible.

Table 10.2 lists the position errors during the five partial GPS outages, each
simulated by limiting the number of satellite to three, two, one and zero. It shows
both the maximum as well as the RMS errors (in meters) for 60 s partial as well as
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Table 10.2 Maximum and RMS position errors for partial outages of a GPS that is tightly
coupled with a full IMU

Outage number Maximum and RMS position error (in meters)

3 satellites 2 satellites 1 satellite 0 satellite

Max RMS Max RMS Max RMS Max RMS

1 4.72 3.79 12.20 6.51 21.97 11.85 21.99 11.86
2 4.96 2.75 6.15 3.29 11.72 7.52 11.65 7.50
3 8.74 7.10 16.42 10.00 25.38 14.47 25.81 14.69
4 2.81 2.41 7.14 4.06 14.24 8.28 11.20 6.67
5 14.50 11.09 19.62 13.21 37.96 21.61 28.82 16.36
Average 7.15 5.43 12.30 7.41 22.25 12.75 19.89 11.42

40 Max Position Error-Tighly Coupled with Full IMU
35 m3 Sats m2 Sats

30 m ] Sat 0 Sat

25
20
15

10

0

1 2 3 4 5
Simulated GPS Outage Number

Meters

Fig. 10.6 A bar graph of the maximum positional errors for partial outages of a GPS that is
tightly coupled with a full IMU

full GPS blockage (zero satellites). The data in Table 10.2 is plotted in the form of
a bar graph in Fig. 10.6 for the maximum position error.

As mentioned, in loosely coupled integration anything less than four satellites
represents a complete GPS outage and no GPS aiding is provided to the INS. For
this reason a loosely coupled integration will always behave like the zero-satellite
case when it does not have four satellites available. Hence we can see that when it
has three satellites, tightly coupled integration will provide an average positional
error of 7 m as compared to 20 m of average positional error in the case of zero
satellites mimicking loosely coupled integration. Similar behavior can be seen for
two versus zero satellites. One important aspect to notice is that in the majority of
cases having one satellite gives poorer performance than having none at all. This is
contrary to theory. However, this phenomenon can be explained if having only one
satellite with noisy and erratic measurements introduces a greater error than the
standalone INS. This is particularly true for the higher grade IMUs. In this case a
zero satellite (INS only) solution will provide better accuracy than GPS aiding
with one erratic satellite. The average maximum position errors for all the five
outages are summarized in Fig. 10.7, where we can clearly see the error trend that
increases with a decrease in the number of satellites except for the just-explained
case of one satellite versus zero satellites.
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Fig. 10.7 The average maximum position error for all of the GPS outages
10.2.1 Analysis of Selected GPS Outages

The GPS outages were introduced during various phases of the road trip in order to
analyze the performance of the algorithm for different scenarios. In this section
some of the outages will be analyzed and their behavior compared with various
satellite signal outages. The plots of the trajectories have been generated using an
online software application called GPSVisualizer (2008).

The performance of the tightly coupled KF algorithm during the first outage of
the trajectory is shown in Fig. 10.8. It shows the trajectories for partial GPS
outages of three (green track), two (blue), one (aqua) and zero (magenta) visible
satellites, in addition to the reference trajectory (red). It should be noted that due to
a discrepancy in the plotting software the reference solution is slightly off the road.
However, for our purposes the trajectory obtained from the NovAtel SPAN system
(rather than the road) is considered as the reference.

This GPS outage starts before a sharp turn when the speed of the vehicle at the
start of the outage is around 40 km/h, and after the turn it gradually slows to zero
for a traffic light. Figure 10.9 shows the speed and azimuth plots of the trajectory
for this outage.

We can see from Fig. 10.8 that when the three satellites were available the
algorithm followed the reference very closely and the maximum position error was
4.72 m in contrast to 21.99 m for the zero satellite case. During this outage, two
satellites also gave satisfactory accuracy with a position error of 12.20 m. The one
satellite case gave higher error of 21.97 m, very similar to a complete outage (zero
satellites).

Outage #3 was exactly the opposite scenario to outage #1, starting just before a
turn while the vehicle was stationary waiting to turn left at a traffic light. After the
turn, the vehicle continued to accelerate to the maximum limit of 50 km/h for that
street. The track for this outage is depicted in Fig. 10.10.
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Fig. 10.8 The performance
of a tightly coupled KF
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The dynamics during this outage are shown in Fig. 10.11. The response of the
algorithm is in line with the theory, as the three-satellite case gives a small position
error of 8.74 m with a gradual increase in the position error towards 25.81 m for
the zero satellite case, which is approximately 0.43 m worse than the one satellite
case. The maximum errors are higher than GPS outage #1 as a consequence of the
vehicle undergoing acceleration after making the turn.

The fourth GPS outage was introduced when the vehicle was traveling on a
straight road at 50 km/h, and after 45 s it came to a stop at a traffic light. The
change in azimuth is minimal at about 4°. For the three-satellite case the position
error is only 2.81 m. This is understandable, as the vehicle was traveling on a
straight portion of the road where the gyroscope scale factor does not play any role
in increasing the position error. In addition, the average velocity was also lower.
The other reason for the relatively small error is that vehicle was stationary for the
final 15 s or so, when the accelerometer scale factor made no contribution to the
error. In this outage the zero satellite case gave a slightly better result than the one
satellite case. Figure 10.12 shows the track and Fig. 10.13 shows the vehicle
dynamics during outage #4.
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Fig. 10.9 Speed and azimuth dynamics for GPS outage #1 (plotted from the reference solution)
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Fig. 10.10 The performance of a tightly coupled KF algorithm during GPS outage #3
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Fig. 10.11 Speed and azimuth dynamics for GPS outage #3 (plotted from the reference solution)
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Fig. 10.12 The performance of a tightly coupled KF algorithm during GPS outage #4
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10.3 Performance of Tightly Coupled Algorithm
for 3D RISS/GPS

Sensors from a MEMS grade Crossbow IMU300CC were used to assess the
performance of the RISS algorithm. This IMU is inexpensive, but has the huge
gyro bias of 2 deg/sec as compared to 1 deg/h for the tactical grade IMU that was
used for the previous trajectory. This was done to show the superior performance
of the RISS algorithm which can achieve an accuracy very close to that of the
tactical grade IMU whilst using a MEMS grade IMU.

The trajectory for analyzing the tightly coupled RISS algorithm is displayed in
Fig. 10.14, and included driving in downtown Kingston at a maximum speed of
40-50 km/h, suburban areas with an 80 km/h limit, and a portion of a highway
with a 100 km/h limit. Five intentionally introduced GPS outages were designed to
address several driving scenarios including high speeds, stops, sharp and mild
turns, etc. The start and end points are indicated with a red triangle and red circle
respectively. The direction of travel is shown with a blue arrow and the simulated
partial GPS outages of fewer than four visible satellites are shown by blue circles.
The outage duration was fixed at 60 s (as in the full IMU trial) and every outage
was repeated four times in order to progressively decrease the number of visible
satellites to zero.

The availability of satellites during the trajectory is shown in Fig. 10.15. It is
evident that on average six to seven satellites were available but occasionally the
number fell below four due to the blockages typically encountered in this kind of
trajectory.

The data for the maximum as well as the RMS error during the partial and full
GPS outages is given in Table 10.3. The trend of the maximum positional errors
during the partial and full GPS signal blockages is shown in Fig. 10.16.

We can see that when three satellites are available, tightly coupled integration will
provide an average positional error of 10.65 m as compared to 36 m for the zero-
satellites case. This demonstrates that the tightly coupled integration performs much
better by virtue of making use of the information that is available from the visible
satellites, even when there are fewer than four satellites visible. Loosely coupled
integration does not benefit from GPS if the number of satellites falls below this
threshold.

Figure 10.17 shows the maximum positional errors averaged over a total of five
GPS outages for the four cases of satellite visibility. The advantage of RISS
integration can be appreciated when comparing the results of a MEMS grade IMU
in Fig. 10.17 with those of the tactical grade IMU in Fig. 10.7. The average errors
of the MEMS grade IMU are not significantly greater than the tactical grade IMU,
despite the huge difference in their gyro bias (stated above). Hence it pays to use
the RISS when the speed data is available, which is the case for most vehicles.
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Table 10.3 Maximum and RMS position errors for partial outages of a GPS that is tightly

coupled with a RISS

Outage number Maximum and RMS position error (in meters)

3 satellites

2 satellites

1 satellite

0 satellite

Max RMS Max RMS Max RMS Max RMS
1 11.77 8.58 22.96 14.44 25.89 15.61 25.22 15.27
2 8.60 7.06 32.20 18.13 38.72 20.33 36.76 19.21
3 13.75 7.81 19.42 12.30 56.30 33.91 57.53 34.52
4 9.39 7.95 10.24 6.85 33.40 19.01 33.59 19.09
5 9.73 7.60 14.97 10.01 31.42 18.36 27.72 16.27
Average 10.65 7.80 19.96 12.35 37.14 21.44 36.17 20.87
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Fig. 10.17 The average maximum position error for all of the GPS outages
10.3.1 Analysis of Selected GPS Outages

Some of the outages will be discussed in order to examine the performance of the
3D RISS algorithm during different phases of the trajectory. GPS outage #2 starts
after a sharp turn and continues on a fairly straight portion of the road, as shown in
Fig. 10.14. The zoomed GPS outage is shown in Fig. 10.18, and the vehicle
dynamics are shown in Fig. 10.19 in terms of speed and azimuth angle. As seen
from Fig. 10.18, in the case of three and two satellites the trajectories remain very
close to the reference and almost within the road boundaries. For the zero satellite
case the trajectory is off the road with an error of about 37 m. This is the typical
error for a loosely coupled integration during such an GPS outage, and shows the
clear advantage of a tightly coupled 3D RISS algorithm. In the case of one visible
satellite the solution does not differ much for the reasons explained earlier.
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Fig. 10.18 Performance of a tightly coupled 3D RISS during GPS outage #2
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Fig. 10.19 Speed and azimuth dynamics for GPS outage #2 (plotted from the reference solution)

As shown in Fig. 10.20, GPS outage #3 was introduced at a turn where the
vehicle entered the highway. The direction of the vehicle changes slowly from an
azimuth of 305 to about 240°, and the speed increases from 65 to 105 km/h as
depicted in Fig. 10.21.

A zoomed view of GPS outage #3 is shown in Fig. 10.22. It is evident that even
during this high speed turn the 3D RISS algorithm performs well, and for the case
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Fig. 10.21 Speed and azimuth dynamics for GPS outage #3 (plotted from the reference solution)
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Fig. 10.22 A zoomed view of the performance of a tightly coupled 3D RISS during GPS
outage #3
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Fig. 10.23 Performance of a tightly coupled 3D RISS during GPS outage #4
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Fig. 10.24 Speed and azimuth dynamics for GPS outage #4 (plotted from the reference solution)

of three satellites the error remains below 14 m. In the zero satellite case the error

sometimes exceeds 55 m.

GPS outage #4 was introduced at the moderate average speed of 83 km/h on a
section of highway where the azimuth was essentially fixed. The zoomed view of
Fig. 10.23 shows the performance and Fig. 10.24 shows the dynamics.
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The case of outage #4 also clearly shows the accuracy of the tightly coupled 3D
RISS algorithm, with the three and two visible satellite cases providing under
10 m of error and staying very close to the road boundaries. The zero and one
satellite cases have positional errors of over 19 m.

This chapter has demonstrated the efficacy of the tightly coupled integration
algorithm as compared to loosely coupled integration, which is similar to the case
where the number of available satellites is reduced to zero. Also, the results from a
3D RISS/GPS integration using a MEMS grade IMU were contrasted with a fully
integrated system using a tactical grade IMU and this algorithm was shown to be
capable of improving the positional accuracy of low cost sensors to approximately
that of a tactical grade IMU.
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